Research Article
BibTex RIS Cite

Oxovanadium(IV) template derived from benzophenone S-allyl thiosemicarbazone: Synthesis, crystal structure, antioxidant activity and electrochemistry

Year 2021, Volume: 8 Issue: 2, 593 - 608, 31.05.2021
https://doi.org/10.18596/jotcsa.911318

Abstract

The oxovanadium(IV) template was formed with the reaction between vanadyl sulfate pentahydrate, 2-hydroxybenzophenone-S-allylthiosemicarbazone, and 3-methoxysalicylaldehyde. The synthesized template complex, along with the starting ligand, was subjected to UV-Vis, FTIR, mass, and magnetic measurement. The square pyramidal structure was proven with the single-crystal X-ray diffraction method. Stronger crystals were formed with π-π interactions, which was also supported by the corresponding peak in the mass spectrum. Conventional three-electrode electrochemistry was performed and cyclic voltammetry revealed that complex 2 underwent one-electron reduction (VIVO –VIIIO) and one-electron oxidation (VIVO –VVO) at the vanadium center. The total antioxidant capacity of the template compound and the starting ligand was performed by the CUPRAC method, yielding that the complex was more potent than the control compound, ascorbic acid.

Supporting Institution

İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Koordinatörlüğü Birimi

Project Number

34846

Thanks

This work was supported by the Research Fund of Istanbul University-Cerrahpasa. Project No: 34846.

References

  • 1. Mendes IC, Botion LM, Ferreira AVM, Castellano EE, Beraldo H. Vanadium complexes with 2-pyridineformamide thiosemicarbazones: In vitro studies of insulin-like activity. Inorganica Chimica Acta. 2009 Jan;362(2):414–20.
  • 2. Far BS, Grivani G, Khalaji AD, Khorshidi M, Gholizadeh A. A new six coordinated oxidovanadium(IV) Schiff base complex: Synthesis, characterization, crystal structure, thermal study and antibacterial activity. Journal of Molecular Structure. 2019 Dec;1197:361–8.
  • 3. Bhattacharjee CR, Goswami P, Sengupta M. Synthesis, electrochemical and antimicrobial studies of mono and binuclear iron(III) and oxovanadium(IV) complexes of [ONO] donor tridentate Schiff-base ligands. Journal of Coordination Chemistry. 2010 Nov 20;63(22):3969–80.
  • 4. Akhter S, Zaman HU, Mir S, Dar AM, Shrivastava S. SYNTHESIS OF SCHIFF BASE METAL COMPLEXES: A CONCISE REVIEW. ECB. 2017 Dec 19;6(10):475.
  • 5. Meng X-F, Liu Q-F, Liu J-L, Sun M-H, Ma J-J. Synthesis, crystal structure, and insulin-like activity of [ N′ -(2-hydroxy-3-methoxybenzylidene)-2-methoxybenzohydrazonato](1,10-phenanthroline)oxovanadium(IV) methanol solvate. Inorganic and Nano-Metal Chemistry. 2017 Nov 2;47(11):1585–9.
  • 6. Saatchi K, Thompson KH, Patrick BO, Pink M, Yuen VG, McNeill JH, et al. Coordination Chemistry and Insulin-Enhancing Behavior of Vanadium Complexes with Maltol C6H6O3 Structural Isomers. Inorg Chem. 2005 Apr;44(8):2689–97.
  • 7. Storr T, Mitchell D, Buglyó P, Thompson KH, Yuen VG, McNeill JH, et al. Vanadyl−Thiazolidinedione Combination Agents for Diabetes Therapy. Bioconjugate Chem. 2003 Jan;14(1):212–21.
  • 8. Bharathi S, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A. In Vitro Antioxidant and Insulin Mimetic Activities of Heteroleptic Oxovanadium(IV) Complexes with Thiosemicarbazones and Naproxen. ChemistrySelect. 2020 Jun 8;5(21):6245–54.
  • 9. Tunali S, Gezginci-Oktayoglu S, Bolkent S, Coskun E, Bal-Demirci T, Ulkuseven B, et al. Protective Effects of an Oxovanadium(IV) Complex with N2O2 Chelating Thiosemicarbazone on Small Intestine Injury of STZ-Diabetic Rats. Biol Trace Elem Res. 2021 Apr;199(4):1515–23.
  • 10. Kanchanadevi A, Ramesh R, Semeril D. Synthesis of Ru(II) pyridoxal thiosemicarbazone complex and its catalytic application to one-pot conversion of aldehydes to primary amides. Inorganic Chemistry Communications. 2015 Jun;56:116–9.
  • 11. Paul P, Sengupta P, Bhattacharya S. Palladium mediated C–H bond activation of thiosemicarbazones: Catalytic application of organopalladium complexes in C–C and C–N coupling reactions. Journal of Organometallic Chemistry. 2013 Jan;724:281–8.
  • 12. Prabhu RN, Ramesh R. Synthesis and structural characterization of palladium(II) thiosemicarbazone complex: application to the Buchwald–Hartwig amination reaction. Tetrahedron Letters. 2013 Feb;54(9):1120–4.
  • 13. Quiroga-Campano C, Gómez-Machuca H, Moris S, Pessoa-Mahana H, Jullian C, Saitz C. Synthesis of calix[4]arenes bearing thiosemicarbazone moieties with naphthalene groups: Highly selective turn off/on fluorescent sensor for Cu(II) recognition. Journal of Molecular Structure. 2021 Feb;1225:129125.
  • 14. İlhan Ceylan B, Yilmaz A, Bölükbaşı O, Acar ET, Özyürek M, Kurt Y, et al. A square-pyramidal iron(III) complex obtained from 2-hydroxy-benzophenone- S -allyl-thiosemicarbazone: synthesis, characterization, electrochemistry, quantum chemical studies and antioxidant capability. Journal of Coordination Chemistry. 2020 Jan 2;73(1):120–36.
  • 15. Poladian Q, Şahin O, Karakurt T, İlhan-Ceylan B, Kurt Y. A new zinc(II) complex with N2O2-tetradentate schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron. 2021 Jun;201:115164.
  • 16. Jia X, Liu Q, Wang S, Zeng B, Du G, Zhang C, et al. Synthesis, cytotoxicity, and in vivo antitumor activity study of parthenolide semicarbazones and thiosemicarbazones. Bioorganic & Medicinal Chemistry. 2020 Jul;28(13):115557.
  • 17. Aly MM, Mohamed YA, El-Bayouki KAM, Basyouni WM, Abbas SY. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities – Part-1. European Journal of Medicinal Chemistry. 2010 Aug;45(8):3365–73.
  • 18. Yanardag R, Demirci TB, Ülküseven B, Bolkent S, Tunali S, Bolkent S. Synthesis, characterization and antidiabetic properties of N1-2,4-dihydroxybenzylidene-N4-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). European Journal of Medicinal Chemistry. 2009 Feb;44(2):818–26.
  • 19. Biot C, Castro W, Botté CY, Navarro M. The therapeutic potential of metal-based antimalarial agents: Implications for the mechanism of action. Dalton Trans. 2012;41(21):6335.
  • 20. Genova P, Varadinova T, Matesanz AI, Marinova D, Souza P. Toxic effects of bis(thiosemicarbazone) compounds and its palladium(II) complexes on herpes simplex virus growth. Toxicology and Applied Pharmacology. 2004 Jun;197(2):107–12.
  • 21. Fonteh PN, Keter FK, Meyer D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: Potential for incorporation into virostatic cocktails. Journal of Inorganic Biochemistry. 2011 Sep;105(9):1173–80.
  • 22. Yildirim H, Guler E, Yavuz M, Ozturk N, Kose Yaman P, Subasi E, et al. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents. Materials Science and Engineering: C. 2014 Nov;44:1–8.
  • 23. de Araújo Neto LN, de Lima M do CA, de Oliveira JF, de Souza ER, Feitosa Machado SE, de Souza Lima GM, et al. Thiophene-thiosemicarbazone derivative (L10) exerts antifungal activity mediated by oxidative stress and apoptosis in C. albicans. Chemico-Biological Interactions. 2020 Apr;320:109028.
  • 24. de Araújo Neto LN, do Carmo Alves de Lima M, de Oliveira JF, de Souza ER, Buonafina MDS, Vitor Anjos MN, et al. Synthesis, cytotoxicity and antifungal activity of 5-nitro-thiophene-thiosemicarbazones derivatives. Chemico-Biological Interactions. 2017 Jun;272:172–81.
  • 25. Li J-Q, Sun L-Y, Jiang Z, Chen C, Gao H, Chigan J-Z, et al. Diaryl-substituted thiosemicarbazone: A potent scaffold for the development of New Delhi metallo-β-lactamase-1 inhibitors. Bioorganic Chemistry. 2021 Feb;107:104576.
  • 26. Bisceglie F, Bacci C, Vismarra A, Barilli E, Pioli M, Orsoni N, et al. Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues. Journal of Inorganic Biochemistry. 2020 Feb;203:110888.
  • 27. Singh NK, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potency of copper(II) complexes of thiosemicarbazones. Journal of Inorganic Biochemistry. 2020 Sep;210:111134.
  • 28. Subasi E, Atalay EB, Erdogan D, Sen B, Pakyapan B, Kayali HA. Synthesis and characterization of thiosemicarbazone-functionalized organoruthenium (II)-arene complexes: Investigation of antitumor characteristics in colorectal cancer cell lines. Materials Science and Engineering: C. 2020 Jan;106:110152.
  • 29. de Oliveira JF, da Silva AL, Vendramini-Costa DB, da Cruz Amorim CA, Campos JF, Ribeiro AG, et al. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. European Journal of Medicinal Chemistry. 2015 Nov;104:148–56.
  • 30. Anonymous. Bruker, APEX2 & SAINT. AXS Inc., Madison, WI; 2004.
  • 31. Sheldrick G. Program for Crystal Structure Refinement. University of Göttingen, Germany; 2014.
  • 32. Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv. 2015 Jan 1;71(1):3–8.
  • 33. Yamazaki C. The Structure of Isothiosemicarbazones. Can J Chem. 1975 Feb 15;53(4):610–5.
  • 34. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J Agric Food Chem. 2004 Dec;52(26):7970–81.
  • 35. Dekar S, Ouari K, Bendia S, Hannachi D, Weiss J. Mononuclear oxovanadium(IV) Schiff base complex: Synthesis, spectroscopy, electrochemistry, DFT calculation and catalytic activity. Journal of Organometallic Chemistry. 2018 Jul;866:165–76.
  • 36. Jeyaraman P, Alagarraj A, Natarajan R. In silico and in vitro studies of transition metal complexes derived from curcumin–isoniazid Schiff base. Journal of Biomolecular Structure and Dynamics. 2020 Jan 22;38(2):488–99.
  • 37. Abu-Dief AM, Nassr LAE. Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde. J IRAN CHEM SOC. 2015 Jun;12(6):943–55. 38. İlhan-Ceylan B. Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2′-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chimica Acta. 2021 Mar;517:120186.
  • 39. Ilhan Ceylan B. Oxovanadıum(IV)-containing N2O2 chelate complex ; crystal structure determination and DFT. J Turk Chem Soc, Sect A: Chem [Internet]. 2016 Sep 30 [cited 2021 Apr 7];3(3). Available from: http://dergipark.gov.tr/doi/10.18596/jotcsa.33245
  • 40. Ze-hua L, Chun-ying D, Ji-hui L, Yong-jiang L, Yu-hua M, Xiao-zeng Y. Structural dependence of π–π interactions in dithiocarbazato and thiosemicarbazato nickel complexes. New J Chem. 2000;24(12):1057–62.
  • 41. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC. Synthesis, structure, and spectroscopic properties of copper( II ) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper( II ) perchlorate. J Chem Soc, Dalton Trans. 1984;(7):1349–56.
  • 42. Menati S, Rudbari HA, Khorshidifard M, Jalilian F. A new oxovanadium(IV) complex containing an O,N-bidentate Schiff base ligand: Synthesis at ambient temperature, characterization, crystal structure and catalytic performance in selective oxidation of sulfides to sulfones using H2O2 under solvent-free conditions. Journal of Molecular Structure. 2016 Jan;1103:94–102.
  • 43. Dekar S, Ouari K, Bendia S, Hannachi D, Weiss J. Mononuclear oxovanadium(IV) Schiff base complex: Synthesis, spectroscopy, electrochemistry, DFT calculation and catalytic activity. Journal of Organometallic Chemistry. 2018 Jul;866:165–76.
  • 44. Kurt Y, İlhan-Ceylan B, Açıkgöz M, Tüzün E, Atun G, Ülküseven B. N2O2-complexes of oxovanadium(IV) with 2,2′-dihydroxybenzophenone thiosemicarbazones: Synthesis, EPR and electrochemical studies. Polyhedron. 2013 Nov;65:67–72.
  • 45. Kurt Y, Koca A, Akkurt M, Ülküseven B. Iron(III) and nickel(II) complexes of O,N,N,O-chelating benzophenone thiosemicarbazone: Electrochemistry and in situ spectroelectrochemistry. Inorganica Chimica Acta. 2012 Jun;388:148–56.
  • 46. Aranha PE, Souza JM, Romera S, Ramos LA, dos Santos MP, Dockal ER, et al. Thermal behavior of vanadyl complexes with Schiff bases derived from trans-N,N′-bis(salicylidene)-1,2-cyclohexadiamine (t-Salcn). Thermochimica Acta. 2007 Jan;453(1):9–13.
  • 47. Asadi M, Asadi Z, Savaripoor N, Dusek M, Eigner V, Shorkaei MR, et al. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Feb;136:625–34.
  • 48. Maurya MR, Kumar A, Abid M, Azam A. Dioxovanadium(V) and μ-oxo bis[oxovanadium(V)] complexes containing thiosemicarbazone based ONS donor set and their antiamoebic activity. Inorganica Chimica Acta. 2006 May;359(8):2439–47.
  • 49. Ilhan-Ceylan B, Tuzun E, Kurt Y, Acikgoz M, Kahraman S, Atun G, Ulkuseven B, “Oxovanadium(IV) complexes based on S-alkyl-thiosemicarbazidato ligands. Synthesis, characterization, electrochemical, and antioxidant studies”, Journal of Sulfur Chemistry. 2015; 36: 434–449.
Year 2021, Volume: 8 Issue: 2, 593 - 608, 31.05.2021
https://doi.org/10.18596/jotcsa.911318

Abstract

Project Number

34846

References

  • 1. Mendes IC, Botion LM, Ferreira AVM, Castellano EE, Beraldo H. Vanadium complexes with 2-pyridineformamide thiosemicarbazones: In vitro studies of insulin-like activity. Inorganica Chimica Acta. 2009 Jan;362(2):414–20.
  • 2. Far BS, Grivani G, Khalaji AD, Khorshidi M, Gholizadeh A. A new six coordinated oxidovanadium(IV) Schiff base complex: Synthesis, characterization, crystal structure, thermal study and antibacterial activity. Journal of Molecular Structure. 2019 Dec;1197:361–8.
  • 3. Bhattacharjee CR, Goswami P, Sengupta M. Synthesis, electrochemical and antimicrobial studies of mono and binuclear iron(III) and oxovanadium(IV) complexes of [ONO] donor tridentate Schiff-base ligands. Journal of Coordination Chemistry. 2010 Nov 20;63(22):3969–80.
  • 4. Akhter S, Zaman HU, Mir S, Dar AM, Shrivastava S. SYNTHESIS OF SCHIFF BASE METAL COMPLEXES: A CONCISE REVIEW. ECB. 2017 Dec 19;6(10):475.
  • 5. Meng X-F, Liu Q-F, Liu J-L, Sun M-H, Ma J-J. Synthesis, crystal structure, and insulin-like activity of [ N′ -(2-hydroxy-3-methoxybenzylidene)-2-methoxybenzohydrazonato](1,10-phenanthroline)oxovanadium(IV) methanol solvate. Inorganic and Nano-Metal Chemistry. 2017 Nov 2;47(11):1585–9.
  • 6. Saatchi K, Thompson KH, Patrick BO, Pink M, Yuen VG, McNeill JH, et al. Coordination Chemistry and Insulin-Enhancing Behavior of Vanadium Complexes with Maltol C6H6O3 Structural Isomers. Inorg Chem. 2005 Apr;44(8):2689–97.
  • 7. Storr T, Mitchell D, Buglyó P, Thompson KH, Yuen VG, McNeill JH, et al. Vanadyl−Thiazolidinedione Combination Agents for Diabetes Therapy. Bioconjugate Chem. 2003 Jan;14(1):212–21.
  • 8. Bharathi S, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A. In Vitro Antioxidant and Insulin Mimetic Activities of Heteroleptic Oxovanadium(IV) Complexes with Thiosemicarbazones and Naproxen. ChemistrySelect. 2020 Jun 8;5(21):6245–54.
  • 9. Tunali S, Gezginci-Oktayoglu S, Bolkent S, Coskun E, Bal-Demirci T, Ulkuseven B, et al. Protective Effects of an Oxovanadium(IV) Complex with N2O2 Chelating Thiosemicarbazone on Small Intestine Injury of STZ-Diabetic Rats. Biol Trace Elem Res. 2021 Apr;199(4):1515–23.
  • 10. Kanchanadevi A, Ramesh R, Semeril D. Synthesis of Ru(II) pyridoxal thiosemicarbazone complex and its catalytic application to one-pot conversion of aldehydes to primary amides. Inorganic Chemistry Communications. 2015 Jun;56:116–9.
  • 11. Paul P, Sengupta P, Bhattacharya S. Palladium mediated C–H bond activation of thiosemicarbazones: Catalytic application of organopalladium complexes in C–C and C–N coupling reactions. Journal of Organometallic Chemistry. 2013 Jan;724:281–8.
  • 12. Prabhu RN, Ramesh R. Synthesis and structural characterization of palladium(II) thiosemicarbazone complex: application to the Buchwald–Hartwig amination reaction. Tetrahedron Letters. 2013 Feb;54(9):1120–4.
  • 13. Quiroga-Campano C, Gómez-Machuca H, Moris S, Pessoa-Mahana H, Jullian C, Saitz C. Synthesis of calix[4]arenes bearing thiosemicarbazone moieties with naphthalene groups: Highly selective turn off/on fluorescent sensor for Cu(II) recognition. Journal of Molecular Structure. 2021 Feb;1225:129125.
  • 14. İlhan Ceylan B, Yilmaz A, Bölükbaşı O, Acar ET, Özyürek M, Kurt Y, et al. A square-pyramidal iron(III) complex obtained from 2-hydroxy-benzophenone- S -allyl-thiosemicarbazone: synthesis, characterization, electrochemistry, quantum chemical studies and antioxidant capability. Journal of Coordination Chemistry. 2020 Jan 2;73(1):120–36.
  • 15. Poladian Q, Şahin O, Karakurt T, İlhan-Ceylan B, Kurt Y. A new zinc(II) complex with N2O2-tetradentate schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron. 2021 Jun;201:115164.
  • 16. Jia X, Liu Q, Wang S, Zeng B, Du G, Zhang C, et al. Synthesis, cytotoxicity, and in vivo antitumor activity study of parthenolide semicarbazones and thiosemicarbazones. Bioorganic & Medicinal Chemistry. 2020 Jul;28(13):115557.
  • 17. Aly MM, Mohamed YA, El-Bayouki KAM, Basyouni WM, Abbas SY. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities – Part-1. European Journal of Medicinal Chemistry. 2010 Aug;45(8):3365–73.
  • 18. Yanardag R, Demirci TB, Ülküseven B, Bolkent S, Tunali S, Bolkent S. Synthesis, characterization and antidiabetic properties of N1-2,4-dihydroxybenzylidene-N4-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). European Journal of Medicinal Chemistry. 2009 Feb;44(2):818–26.
  • 19. Biot C, Castro W, Botté CY, Navarro M. The therapeutic potential of metal-based antimalarial agents: Implications for the mechanism of action. Dalton Trans. 2012;41(21):6335.
  • 20. Genova P, Varadinova T, Matesanz AI, Marinova D, Souza P. Toxic effects of bis(thiosemicarbazone) compounds and its palladium(II) complexes on herpes simplex virus growth. Toxicology and Applied Pharmacology. 2004 Jun;197(2):107–12.
  • 21. Fonteh PN, Keter FK, Meyer D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: Potential for incorporation into virostatic cocktails. Journal of Inorganic Biochemistry. 2011 Sep;105(9):1173–80.
  • 22. Yildirim H, Guler E, Yavuz M, Ozturk N, Kose Yaman P, Subasi E, et al. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents. Materials Science and Engineering: C. 2014 Nov;44:1–8.
  • 23. de Araújo Neto LN, de Lima M do CA, de Oliveira JF, de Souza ER, Feitosa Machado SE, de Souza Lima GM, et al. Thiophene-thiosemicarbazone derivative (L10) exerts antifungal activity mediated by oxidative stress and apoptosis in C. albicans. Chemico-Biological Interactions. 2020 Apr;320:109028.
  • 24. de Araújo Neto LN, do Carmo Alves de Lima M, de Oliveira JF, de Souza ER, Buonafina MDS, Vitor Anjos MN, et al. Synthesis, cytotoxicity and antifungal activity of 5-nitro-thiophene-thiosemicarbazones derivatives. Chemico-Biological Interactions. 2017 Jun;272:172–81.
  • 25. Li J-Q, Sun L-Y, Jiang Z, Chen C, Gao H, Chigan J-Z, et al. Diaryl-substituted thiosemicarbazone: A potent scaffold for the development of New Delhi metallo-β-lactamase-1 inhibitors. Bioorganic Chemistry. 2021 Feb;107:104576.
  • 26. Bisceglie F, Bacci C, Vismarra A, Barilli E, Pioli M, Orsoni N, et al. Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues. Journal of Inorganic Biochemistry. 2020 Feb;203:110888.
  • 27. Singh NK, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potency of copper(II) complexes of thiosemicarbazones. Journal of Inorganic Biochemistry. 2020 Sep;210:111134.
  • 28. Subasi E, Atalay EB, Erdogan D, Sen B, Pakyapan B, Kayali HA. Synthesis and characterization of thiosemicarbazone-functionalized organoruthenium (II)-arene complexes: Investigation of antitumor characteristics in colorectal cancer cell lines. Materials Science and Engineering: C. 2020 Jan;106:110152.
  • 29. de Oliveira JF, da Silva AL, Vendramini-Costa DB, da Cruz Amorim CA, Campos JF, Ribeiro AG, et al. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. European Journal of Medicinal Chemistry. 2015 Nov;104:148–56.
  • 30. Anonymous. Bruker, APEX2 & SAINT. AXS Inc., Madison, WI; 2004.
  • 31. Sheldrick G. Program for Crystal Structure Refinement. University of Göttingen, Germany; 2014.
  • 32. Sheldrick GM. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv. 2015 Jan 1;71(1):3–8.
  • 33. Yamazaki C. The Structure of Isothiosemicarbazones. Can J Chem. 1975 Feb 15;53(4):610–5.
  • 34. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J Agric Food Chem. 2004 Dec;52(26):7970–81.
  • 35. Dekar S, Ouari K, Bendia S, Hannachi D, Weiss J. Mononuclear oxovanadium(IV) Schiff base complex: Synthesis, spectroscopy, electrochemistry, DFT calculation and catalytic activity. Journal of Organometallic Chemistry. 2018 Jul;866:165–76.
  • 36. Jeyaraman P, Alagarraj A, Natarajan R. In silico and in vitro studies of transition metal complexes derived from curcumin–isoniazid Schiff base. Journal of Biomolecular Structure and Dynamics. 2020 Jan 22;38(2):488–99.
  • 37. Abu-Dief AM, Nassr LAE. Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde. J IRAN CHEM SOC. 2015 Jun;12(6):943–55. 38. İlhan-Ceylan B. Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2′-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chimica Acta. 2021 Mar;517:120186.
  • 39. Ilhan Ceylan B. Oxovanadıum(IV)-containing N2O2 chelate complex ; crystal structure determination and DFT. J Turk Chem Soc, Sect A: Chem [Internet]. 2016 Sep 30 [cited 2021 Apr 7];3(3). Available from: http://dergipark.gov.tr/doi/10.18596/jotcsa.33245
  • 40. Ze-hua L, Chun-ying D, Ji-hui L, Yong-jiang L, Yu-hua M, Xiao-zeng Y. Structural dependence of π–π interactions in dithiocarbazato and thiosemicarbazato nickel complexes. New J Chem. 2000;24(12):1057–62.
  • 41. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC. Synthesis, structure, and spectroscopic properties of copper( II ) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper( II ) perchlorate. J Chem Soc, Dalton Trans. 1984;(7):1349–56.
  • 42. Menati S, Rudbari HA, Khorshidifard M, Jalilian F. A new oxovanadium(IV) complex containing an O,N-bidentate Schiff base ligand: Synthesis at ambient temperature, characterization, crystal structure and catalytic performance in selective oxidation of sulfides to sulfones using H2O2 under solvent-free conditions. Journal of Molecular Structure. 2016 Jan;1103:94–102.
  • 43. Dekar S, Ouari K, Bendia S, Hannachi D, Weiss J. Mononuclear oxovanadium(IV) Schiff base complex: Synthesis, spectroscopy, electrochemistry, DFT calculation and catalytic activity. Journal of Organometallic Chemistry. 2018 Jul;866:165–76.
  • 44. Kurt Y, İlhan-Ceylan B, Açıkgöz M, Tüzün E, Atun G, Ülküseven B. N2O2-complexes of oxovanadium(IV) with 2,2′-dihydroxybenzophenone thiosemicarbazones: Synthesis, EPR and electrochemical studies. Polyhedron. 2013 Nov;65:67–72.
  • 45. Kurt Y, Koca A, Akkurt M, Ülküseven B. Iron(III) and nickel(II) complexes of O,N,N,O-chelating benzophenone thiosemicarbazone: Electrochemistry and in situ spectroelectrochemistry. Inorganica Chimica Acta. 2012 Jun;388:148–56.
  • 46. Aranha PE, Souza JM, Romera S, Ramos LA, dos Santos MP, Dockal ER, et al. Thermal behavior of vanadyl complexes with Schiff bases derived from trans-N,N′-bis(salicylidene)-1,2-cyclohexadiamine (t-Salcn). Thermochimica Acta. 2007 Jan;453(1):9–13.
  • 47. Asadi M, Asadi Z, Savaripoor N, Dusek M, Eigner V, Shorkaei MR, et al. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Feb;136:625–34.
  • 48. Maurya MR, Kumar A, Abid M, Azam A. Dioxovanadium(V) and μ-oxo bis[oxovanadium(V)] complexes containing thiosemicarbazone based ONS donor set and their antiamoebic activity. Inorganica Chimica Acta. 2006 May;359(8):2439–47.
  • 49. Ilhan-Ceylan B, Tuzun E, Kurt Y, Acikgoz M, Kahraman S, Atun G, Ulkuseven B, “Oxovanadium(IV) complexes based on S-alkyl-thiosemicarbazidato ligands. Synthesis, characterization, electrochemical, and antioxidant studies”, Journal of Sulfur Chemistry. 2015; 36: 434–449.
There are 48 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Berat İlhan Ceylan 0000-0002-9646-279X

Project Number 34846
Publication Date May 31, 2021
Submission Date April 7, 2021
Acceptance Date April 23, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

Vancouver İlhan Ceylan B. Oxovanadium(IV) template derived from benzophenone S-allyl thiosemicarbazone: Synthesis, crystal structure, antioxidant activity and electrochemistry. JOTCSA. 2021;8(2):593-608.