Araştırma Makalesi
BibTex RIS Kaynak Göster

Adsorption of Nitrogen on Mn(II) Metal-organic Framework Nanoparticles

Yıl 2021, Cilt: 8 Sayı: 3, 941 - 952, 31.08.2021
https://doi.org/10.18596/jotcsa.901593

Öz

Adsorption of N2 on mixed-ligand benzoic acid and 1, 10-phenanthroline ligand of Mn(II) metal-organic framework (MOF)–nanoparticles were demonstrated. The synthesized nanostructures are characterized by techniques such as scanning electron microscopy (SEM), fourier-transform infrared spectroscopy (FT-IR), and UV-visible spectrophotometry (UV-Vis). The pore size distribution and adsorption capacity of the synthesized MOF were investigated experimentally by measuring the N2 adsorption isotherm at 77.3 K, and the resulting data were fitted to Brunauer-Emmett-Teller (BET), de Boer, Dubinin-Radushkevich (DR), Banet-Joyner-Halenda (BJH), Horvath-Kawazoe (HK), and also applied to Density Functional Theory (DFT) models. Excitation of the Mn-MOF nanostructure resulted in an emission at 400 nm. The DSC study reveals that this molecule has a good chemical stability. The FTIR measurement shows a variety of functional groups that are highly coordinated. Moreover, the adsorption properties evaluated by several adsorption models compared with current adsorbent materials show Mn-MOF has superior thermal stability, a high surface area, and pore openings. Because of these findings, Mn-MOF appears to be a viable material for storing gases and energy, whether at low or high pressures.

Destekleyen Kurum

Tertiary Education Trust Fund, Nigeria.

Proje Numarası

(RE: FUPRE/TO/RESR/2017/01)

Teşekkür

i thank the Editor-in-Chief for giving me this opportunity to publish in the quality and upheld standard journal

Kaynakça

  • 1. Chakrabarty R, Mukherjee PS, Stang PJ. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem Rev. 2011 Nov 9;111(11):6810–918.
  • 2. Agthe M, Høydalsvik K, Mayence A, Karvinen P, Liebi M, Bergström L, et al. Controlling Orientational and Translational Order of Iron Oxide Nanocubes by Assembly in Nanofluidic Containers. Langmuir. 2015 Nov 17;31(45):12537–43.
  • 3. Sun Y, Zhang F, Jiang S, Wang Z, Ni R, Wang H, et al. Assembly of Metallacages into Soft Suprastructures with Dimensions of up to Micrometers and the Formation of Composite Materials. J Am Chem Soc. 2018 Dec 12;140(49):17297–307.
  • 4. Shoji S, Ogawa T, Matsubara S, Tamiaki H. Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies. Sci Rep. 2019 Dec;9(1):14006.
  • 5. Jin Y, Wang Q, Taynton P, Zhang W. Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers. Acc Chem Res. 2014 May 20;47(5):1575–86.
  • 6. Ion AE, Nica S, Madalan AM, Shova S, Vallejo J, Julve M, et al. Two-Dimensional Coordination Polymers Constructed Using, Simultaneously, Linear and Angular Spacers and Cobalt(II) Nodes. New Examples of Networks of Single-Ion Magnets. Inorg Chem. 2015 Jan 5;54(1):16–8.
  • 7. Springer MA, Liu T-J, Kuc A, Heine T. Topological two-dimensional polymers. Chem Soc Rev. 2020;49(7):2007–19.
  • 8. Bandosz TJ, Petit C. MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption. 2011 Feb;17(1):5–16.
  • 9. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003 Oct;21(10):1171–8.
  • 10. Guo J, Tardy BL, Christofferson AJ, Dai Y, Richardson JJ, Zhu W, et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotech. 2016 Dec;11(12):1105–11.
  • 11. Piot M, Abécassis B, Brouri D, Troufflard C, Proust A, Izzet G. Control of the hierarchical self-assembly of polyoxometalate-based metallomacrocycles by redox trigger and solvent composition. Proc Natl Acad Sci USA. 2018 Sep 4;115(36):8895–900.
  • 12. Bose A, Mal P. Mechanochemistry of supramolecules. Beilstein J Org Chem. 2019 Apr 12;15:881–900.
  • 13. Kupgan G, Abbott LJ, Hart KE, Colina CM. Modeling Amorphous Microporous Polymers for CO 2 Capture and Separations. Chem Rev. 2018 Jun 13;118(11):5488–538.
  • 14. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, et al. From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. J Am Chem Soc. 2011 Aug 10;133(31):11854–7.
  • 15. Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, et al. Metal organic frameworks for energy storage and conversion. Energy Storage Materials. 2016 Jan;2:35–62.
  • 16. Wu HB, Lou XW (David). Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci Adv. 2017 Dec;3(12):eaap9252.
  • 17. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Feb 1;70(1):3–10.
  • 18. Aizuddin M MA, Yin C-Y, Mikhail Sa R. Analysis of the Textural Characteristics and Pore Size Distribution of a Commercial Zeolite using Various Adsorption Models. J of Applied Sciences. 2011 Oct 15;11(21):3650–4.
  • 19. Seredych M, Bandosz TJ. Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions. Microporous and Mesoporous Materials. 2012 Mar;150:55–63.
  • 20. Landers J, Gor GYu, Neimark AV. Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013 Nov;437:3–32.
  • 21. Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV. Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N 2 , Ar, and CO 2 Adsorption Isotherms †. Langmuir. 2000 Mar;16(5):2311–20.
  • 22. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal. 2010 Jan 1;156(1):2–10.
  • 23. Wang LH, Li PF. Synthesis, Structure, and Catalytic Activity of A New Mn(II) Complex with 1,4-Phenylenediacetic Acid and 1,10-Phenanthroline. Bull Chem React Eng Catal. 2018 Apr 2;13(1):1.
  • 24. Li L-J, Lau DSP, De Gendt S, Ren F. Properties and Applications of 2-Dimensional Layered Materials. ECS J Solid State Sci Technol. 2016;5(11):Y7–Y7.
  • 25. Jiang J, Yaghi OM. Brønsted Acidity in Metal–Organic Frameworks. Chem Rev. 2015 Jul 22;115(14):6966–97.
  • 26. Lowell S, Shields J, Thomas M, Thommes M, editors. Characterization of porous solids and powders: surface area, pore size and density. 4. ed., 1. reprint with some corr. Dordrecht: Springer; 2006. 347 p. (Particle technology series).
  • 27. Lv Y, Shi P, Shen W, Chen X, Zhao G. A series of novel Zn(II) and Mn(II) metal-organic frameworks constructed by 2,4-bis-oxyacetate-benzoic acid: syntheses, structures and photoluminescence. Sci China Chem. 2015 Mar;58(3):448–56.
  • 28. Gawas UB, Verenkar VMS, Mojumdar SC. Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method: Synthesis, characterization and studies of magnetic and electrical properties. J Therm Anal Calorim. 2012 Jun;108(3):865–70.
  • 29. Sasmal HS, Halder A, Kunjattu H S, Dey K, Nadol A, Ajithkumar TG, et al. Covalent Self-Assembly in Two Dimensions: Connecting Covalent Organic Framework Nanospheres into Crystalline and Porous Thin Films. J Am Chem Soc. 2019 Dec 26;141(51):20371–9.
  • 30. Mokhatab S, Poe WA, Mak JY. Handbook of natural gas transmission and processing: principles and practices. Fourth edition. Cambridge, MA: Gulf Professional Publishing; 2019. 826 p.
  • 31. Li Y-L, Zhao Y, Wang P, Kang Y-S, Liu Q, Zhang X-D, et al. Multifunctional Metal–Organic Frameworks with Fluorescent Sensing and Selective Adsorption Properties. Inorg Chem. 2016 Nov 21;55(22):11821–30.
  • 32. Balzer C, Cimino RT, Gor GY, Neimark AV, Reichenauer G. Deformation of Microporous Carbons during N 2 , Ar, and CO 2 Adsorption: Insight from the Density Functional Theory. Langmuir. 2016 Aug 16;32(32):8265–74.
  • 33. Mabayoje O, Seredych M, Bandosz TJ. Enhanced adsorption of hydrogen sulfide on mixed zinc/cobalt hydroxides: Effect of morphology and an increased number of surface hydroxyl groups. Journal of Colloid and Interface Science. 2013 Sep;405:218–25.
  • 34. Tahier T, Oliver CL. In situ variable-temperature single crystal X-ray diffraction studies of the single-crystal-to-single-crystal dehydration and rehydration of a mixed-ligand 2D zinc metal–organic framework using trimesate and 4,4′-bipyridine- N , N ′-dioxide as ligands. CrystEngComm. 2015;17(46):8946–56.
  • 35. Justina Mbonu I. Synthesis, Crystal Structure and Photoluminescence Properties of Diaquabis (1,10Phenanthroline, κ,N,N’)(Benzoato-κ,O) Manganese(II)Dihydrate. OMCIJ [Internet]. 2020 Jul 28 [cited 2021 Aug 10];9(5): 555773.
Yıl 2021, Cilt: 8 Sayı: 3, 941 - 952, 31.08.2021
https://doi.org/10.18596/jotcsa.901593

Öz

Proje Numarası

(RE: FUPRE/TO/RESR/2017/01)

Kaynakça

  • 1. Chakrabarty R, Mukherjee PS, Stang PJ. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem Rev. 2011 Nov 9;111(11):6810–918.
  • 2. Agthe M, Høydalsvik K, Mayence A, Karvinen P, Liebi M, Bergström L, et al. Controlling Orientational and Translational Order of Iron Oxide Nanocubes by Assembly in Nanofluidic Containers. Langmuir. 2015 Nov 17;31(45):12537–43.
  • 3. Sun Y, Zhang F, Jiang S, Wang Z, Ni R, Wang H, et al. Assembly of Metallacages into Soft Suprastructures with Dimensions of up to Micrometers and the Formation of Composite Materials. J Am Chem Soc. 2018 Dec 12;140(49):17297–307.
  • 4. Shoji S, Ogawa T, Matsubara S, Tamiaki H. Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies. Sci Rep. 2019 Dec;9(1):14006.
  • 5. Jin Y, Wang Q, Taynton P, Zhang W. Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers. Acc Chem Res. 2014 May 20;47(5):1575–86.
  • 6. Ion AE, Nica S, Madalan AM, Shova S, Vallejo J, Julve M, et al. Two-Dimensional Coordination Polymers Constructed Using, Simultaneously, Linear and Angular Spacers and Cobalt(II) Nodes. New Examples of Networks of Single-Ion Magnets. Inorg Chem. 2015 Jan 5;54(1):16–8.
  • 7. Springer MA, Liu T-J, Kuc A, Heine T. Topological two-dimensional polymers. Chem Soc Rev. 2020;49(7):2007–19.
  • 8. Bandosz TJ, Petit C. MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption. 2011 Feb;17(1):5–16.
  • 9. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003 Oct;21(10):1171–8.
  • 10. Guo J, Tardy BL, Christofferson AJ, Dai Y, Richardson JJ, Zhu W, et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotech. 2016 Dec;11(12):1105–11.
  • 11. Piot M, Abécassis B, Brouri D, Troufflard C, Proust A, Izzet G. Control of the hierarchical self-assembly of polyoxometalate-based metallomacrocycles by redox trigger and solvent composition. Proc Natl Acad Sci USA. 2018 Sep 4;115(36):8895–900.
  • 12. Bose A, Mal P. Mechanochemistry of supramolecules. Beilstein J Org Chem. 2019 Apr 12;15:881–900.
  • 13. Kupgan G, Abbott LJ, Hart KE, Colina CM. Modeling Amorphous Microporous Polymers for CO 2 Capture and Separations. Chem Rev. 2018 Jun 13;118(11):5488–538.
  • 14. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, et al. From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. J Am Chem Soc. 2011 Aug 10;133(31):11854–7.
  • 15. Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, et al. Metal organic frameworks for energy storage and conversion. Energy Storage Materials. 2016 Jan;2:35–62.
  • 16. Wu HB, Lou XW (David). Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci Adv. 2017 Dec;3(12):eaap9252.
  • 17. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Feb 1;70(1):3–10.
  • 18. Aizuddin M MA, Yin C-Y, Mikhail Sa R. Analysis of the Textural Characteristics and Pore Size Distribution of a Commercial Zeolite using Various Adsorption Models. J of Applied Sciences. 2011 Oct 15;11(21):3650–4.
  • 19. Seredych M, Bandosz TJ. Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions. Microporous and Mesoporous Materials. 2012 Mar;150:55–63.
  • 20. Landers J, Gor GYu, Neimark AV. Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013 Nov;437:3–32.
  • 21. Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV. Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N 2 , Ar, and CO 2 Adsorption Isotherms †. Langmuir. 2000 Mar;16(5):2311–20.
  • 22. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal. 2010 Jan 1;156(1):2–10.
  • 23. Wang LH, Li PF. Synthesis, Structure, and Catalytic Activity of A New Mn(II) Complex with 1,4-Phenylenediacetic Acid and 1,10-Phenanthroline. Bull Chem React Eng Catal. 2018 Apr 2;13(1):1.
  • 24. Li L-J, Lau DSP, De Gendt S, Ren F. Properties and Applications of 2-Dimensional Layered Materials. ECS J Solid State Sci Technol. 2016;5(11):Y7–Y7.
  • 25. Jiang J, Yaghi OM. Brønsted Acidity in Metal–Organic Frameworks. Chem Rev. 2015 Jul 22;115(14):6966–97.
  • 26. Lowell S, Shields J, Thomas M, Thommes M, editors. Characterization of porous solids and powders: surface area, pore size and density. 4. ed., 1. reprint with some corr. Dordrecht: Springer; 2006. 347 p. (Particle technology series).
  • 27. Lv Y, Shi P, Shen W, Chen X, Zhao G. A series of novel Zn(II) and Mn(II) metal-organic frameworks constructed by 2,4-bis-oxyacetate-benzoic acid: syntheses, structures and photoluminescence. Sci China Chem. 2015 Mar;58(3):448–56.
  • 28. Gawas UB, Verenkar VMS, Mojumdar SC. Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method: Synthesis, characterization and studies of magnetic and electrical properties. J Therm Anal Calorim. 2012 Jun;108(3):865–70.
  • 29. Sasmal HS, Halder A, Kunjattu H S, Dey K, Nadol A, Ajithkumar TG, et al. Covalent Self-Assembly in Two Dimensions: Connecting Covalent Organic Framework Nanospheres into Crystalline and Porous Thin Films. J Am Chem Soc. 2019 Dec 26;141(51):20371–9.
  • 30. Mokhatab S, Poe WA, Mak JY. Handbook of natural gas transmission and processing: principles and practices. Fourth edition. Cambridge, MA: Gulf Professional Publishing; 2019. 826 p.
  • 31. Li Y-L, Zhao Y, Wang P, Kang Y-S, Liu Q, Zhang X-D, et al. Multifunctional Metal–Organic Frameworks with Fluorescent Sensing and Selective Adsorption Properties. Inorg Chem. 2016 Nov 21;55(22):11821–30.
  • 32. Balzer C, Cimino RT, Gor GY, Neimark AV, Reichenauer G. Deformation of Microporous Carbons during N 2 , Ar, and CO 2 Adsorption: Insight from the Density Functional Theory. Langmuir. 2016 Aug 16;32(32):8265–74.
  • 33. Mabayoje O, Seredych M, Bandosz TJ. Enhanced adsorption of hydrogen sulfide on mixed zinc/cobalt hydroxides: Effect of morphology and an increased number of surface hydroxyl groups. Journal of Colloid and Interface Science. 2013 Sep;405:218–25.
  • 34. Tahier T, Oliver CL. In situ variable-temperature single crystal X-ray diffraction studies of the single-crystal-to-single-crystal dehydration and rehydration of a mixed-ligand 2D zinc metal–organic framework using trimesate and 4,4′-bipyridine- N , N ′-dioxide as ligands. CrystEngComm. 2015;17(46):8946–56.
  • 35. Justina Mbonu I. Synthesis, Crystal Structure and Photoluminescence Properties of Diaquabis (1,10Phenanthroline, κ,N,N’)(Benzoato-κ,O) Manganese(II)Dihydrate. OMCIJ [Internet]. 2020 Jul 28 [cited 2021 Aug 10];9(5): 555773.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Organik Kimya
Bölüm Makaleler
Yazarlar

Idongesıt Mbonu 0000-0003-1056-5702

Olusegun Abiola Bu kişi benim 0000-0002-9095-4371

Proje Numarası (RE: FUPRE/TO/RESR/2017/01)
Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 23 Mart 2021
Kabul Tarihi 9 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 3

Kaynak Göster

Vancouver Mbonu I, Abiola O. Adsorption of Nitrogen on Mn(II) Metal-organic Framework Nanoparticles. JOTCSA. 2021;8(3):941-52.