Research Article
BibTex RIS Cite

Equilibrium, Kinetic Data, and Adsorptıon Mechanism for Lead Adsorptıon onto Polyacrylamıde Hydrogel

Year 2021, Volume: 8 Issue: 3, 731 - 748, 31.08.2021
https://doi.org/10.18596/jotcsa.912479

Abstract

The present study focuses on the effect of experimental parameters (pH, temperature, gel mass, metal concentration, contact time) on the performance of lead adsorption by polyacrylamide hydrogels. The results obtained showed that the retention of Pb2+ ions is closely linked to these parameters. The adsorbent gels equilibrate with the metal solution after 180 minutes, and the maximum adsorption capacity is 442.31 mg/g. In addition, the adsorption obeys the pseudo-second-order kinetics and Langmuir isotherm. Desorption of the micropollutant retained by the hydrogel was also studied using 0.1 M of HCl solution. The desorption was rapid, and the efficiency exceeded 90% after a contact time of 90 minutes.

Thanks

The authors gratefully acknowledge the Technical Support Units for Scientific Research (UATRS) under the National Center for Scientific and Technical Research (CNRST), especially to Hanae OUADDARI for the analytical services and instrumentations.

References

  • 1. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety. 2018 Feb;148:702–12. DOI: https://doi.org/10.1016/j.ecoenv.2017.11.034.
  • 2. Boudrahem F, Aissani-Benissad F, Soualah A. Adsorption of Lead(II) from Aqueous Solution by Using Leaves of Date Trees As an Adsorbent. J Chem Eng Data. 2011 May 12;56(5):1804–12. DOI: https://doi.org/10.1021/je100770j.
  • 3. Akpor O, Muchie M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int J Phys Sci. 2010;5(12):1807–17. DOI: https://doi.org/10.5897/IJPS.9000482.
  • 4. Es-sahbany H, Berradi M, Nkhili S, Hsissou R, Allaoui M, Loutfi M, et al. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Materials Today: Proceedings. 2019;13:866–75. DOI: https://doi.org/10.1016/j.matpr.2019.04.050.
  • 5. Dhir B, Kumar R. Adsorption of Heavy Metals by Salvinia Biomass and Agricultural Residues. International journal of environmental research (IJER). 2010;4(3):427–32. URL: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=182202.
  • 6. Es-sahbany H, Hsissou R, El Hachimi ML, Allaoui M, Nkhili S, Elyoubi MS. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Materials Today: Proceedings. 2021;45:7290–8. DOI: https://doi.org/10.1016/j.matpr.2020.12.1100.
  • 7. Siqueira DF, Reiter J, Breiner U, Stadler R, Stamm M. Competitive Adsorption of Functionalized Polymers. Langmuir. 1996 Jan;12(4):972–9. DOI: https://doi.org/10.1021/la950519m.
  • 8. Huang Y, Zhao W, Zhang X, Peng H, Gong Y. Thiol-ene synthesis of thioether/carboxyl-functionalized polymers for selective adsorption of silver (I) ions. Chemical Engineering Journal. 2019 Nov;375:121935. DOI: https://doi.org/10.1016/j.cej.2019.121935.
  • 9. Es-sahbany H, El Hachimi ML, Hsissou R, Belfaquir M, Es-sahbany K, Nkhili S, et al. Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima – Morocco region). Materials Today: Proceedings. 2021;45:7299–305. DOI: https://doi.org/10.1016/j.matpr.2020.12.1102.
  • 10. Kim S, Iyer G, Nadarajah A, Frantz J, Spongberg A. Polyacrylamide Hydrogel Properties for Horticultural Applications. Int J Polym Anal Chacter. 2010 Apr;15(5):307–18. DOI: https://doi.org/10.1080/1023666X.2010.493271.
  • 11. Kaşgöz H, Özgümüş S, Orbay M. Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer. 2003 Mar;44(6):1785–93. DOI: https://doi.org/10.1016/S0032-3861(03)00033-8.
  • 12. Lira LM, Martins KA, Torresi SIC de. Structural parameters of polyacrylamide hydrogels obtained by the Equilibrium Swelling Theory. European Polymer Journal. 2009 Apr;45(4):1232–8. DOI: https://doi.org/10.1016/j.eurpolymj.2008.12.022.
  • 13. Bertrand T, Peixinho J, Mukhopadhyay S, MacMinn CW. Dynamics of Swelling and Drying in a Spherical Gel. Phys Rev Applied. 2016 Dec;6(6):064010. DOI: https://doi.org/10.1103/PhysRevApplied.6.064010.
  • 14. Moreno-Sader K, García-Padilla A, Realpe A, Acevedo-Morantes M, Soares JBP. Removal of Heavy Metal Water Pollutants (Co 2+ and Ni 2+ ) Using Polyacrylamide/Sodium Montmorillonite (PAM/Na-MMT) Nanocomposites. ACS Omega. 2019 Jun 30;4(6):10834–44. DOI: https://doi.org/10.1021/acsomega.9b00981.
  • 15. Wiśniewska M, Fijałkowska G, Szewczuk-Karpisz K. The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions. Chemosphere. 2018 Nov;211:524–34. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.198.
  • 16. Ramadan H, Ghanem A, El-Rassy H. Mercury removal from aqueous solutions using silica, polyacrylamide and hybrid silica–polyacrylamide aerogels. Chemical Engineering Journal. 2010 May 1;159(1–3):107–15. DOI: https://doi.org/10.1016/j.cej.2010.02.051.
  • 17. Pal P, Banat F. Removal of Contaminants from Industrial Lean Amine Solvent Using Polyacrylamide Hydrogels Optimized by Response Surface Methodology. Adsorption Science & Technology. 2015 Jan;33(1):9–24. DOI: https://doi.org/10.1260/0263-6174.33.1.9.
  • 18. Moulay S, Bensacia N, Garin F, Fechete I, Boos A. Polyacrylamide-Based Sorbents for the Removal of Hazardous Metals. Adsorption Science & Technology. 2013 Aug;31(8):691–709. DOI: https://doi.org/10.1260/0263-6174.31.8.691.
  • 19. Ouass A, Essaadaoui Y, Kadiri L, Lebkiri I, Lafreme C, Cherkaoui M, et al. Adsorption of Cr (III) from aqueous solution by two forms of a superabsorbant polymer : parametric study and effect of activation mode. Boukdir A, El Mabrouki M, editors. E3S Web Conf. 2018;37:02001. DOI: https://doi.org/10.1051/e3sconf/20183702001.
  • 20. Kadiri L, Lebkiri A, Rifi EH, Ouass A, Essaadaoui Y, Lebkiri I, et al. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum). Boukdir A, El Mabrouki M, editors. E3S Web Conf. 2018;37:02005. DOI: https://doi.org/10.1051/e3sconf/20183702005.
  • 21. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898;24(4):1–39.
  • 22. Essaadaoui Y, Lebkiri A, Rifi EH, Kadiri L, Ouass A. Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus. Mediterr J Chem. 2018 Sep 15;7(2):145–55. DOI: https://doi.org/10.13171/mjc72/01808150945-essaadaoui.
  • 23. Essaadaoui Y, Lebkiri A, Rifi E, Kadiri L, Ouass A. Adsorption of lead by modified Eucalyptus camaldulensis barks: equilibrium, kinetic and thermodynamic studies. DWT. 2018;111:267–77. DOI: https://doi.org/10.5004/dwt.2018.22191.
  • 24. Freundlich H. Über die adsorption in lösungen. Z Phys Chem. 1907;57(1):385–470.
  • 25. Huang J, Liu Y, Jin Q, Wang X, Yang J. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay. Journal of Hazardous Materials. 2007 May;143(1–2):541–8. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.088.
  • 26. Chakir A, Bessiere J, Kacemi KEL, Marouf B. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. Journal of Hazardous Materials. 2002 Nov;95(1–2):29–46. DOI: https://doi.org/10.1016/S0304-3894(01)00382-X.
  • 27. Baron RI, Bercea M, Avadanei M, Lisa G, Biliuta G, Coseri S. Green route for the fabrication of self-healable hydrogels based on tricarboxy cellulose and poly(vinyl alcohol). International Journal of Biological Macromolecules. 2019 Feb;123:744–51. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.107.
  • 28. Kadiri L, Lebkiri A, Rifi E, Essaadaoui Y, Ouass A, Lebkiri I, et al. Characterization of coriander seeds “coriandrum sativum.” International Journal of Scientific and Engineering Research. 2017;8(7):2303–8.
  • 29. Yuan N, Xu L, Zhang L, Ye H, Zhao J, Liu Z, et al. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Materials Science and Engineering: C. 2016 Oct;67:221–30. DOI: https://doi.org/10.1016/j.msec.2016.04.074.
  • 30. Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem. 2012;22(28):14160. DOI: https://doi.org/10.1039/c2jm32541a.
  • 31. Zhou C, Wu Q, Lei T, Negulescu II. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal. 2014 Sep;251:17–24. DOI: https://doi.org/10.1016/j.cej.2014.04.034.
  • 32. Yang Z, Yang H, Jiang Z, Cai T, Li H, Li H, et al. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. Journal of Hazardous Materials. 2013 Jun;254–255:36–45. DOI: https://doi.org/10.1016/j.jhazmat.2013.03.053.
  • 33. Wei X, Tao J, Li M, Zhu B, Li X, Ma Z, et al. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property. Materials Chemistry and Physics. 2017 May;192:72–7. DOI: https://doi.org/10.1016/j.matchemphys.2017.01.064.
  • 34. Yang F, Li G, He Y-G, Ren F-X, Wang G. Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate Polymers. 2009 Aug;78(1):95–9. DOI: https://doi.org/10.1016/j.carbpol.2009.04.004.
  • 35. Ismi I, Rifi E, Lebkiri A, Oudda H. Spectral characterization of PA–Cu under two polymeric forms and their complex PA–Cu. J Mater Environ Sci. 2015;6(2):343–8.
  • 36. Vijayalakshmi K, Devi BM, Latha S, Gomathi T, Sudha PN, Venkatesan J, et al. Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. International Journal of Biological Macromolecules. 2017 Nov;104:1483–94. DOI: https://doi.org/10.1016/j.ijbiomac.2017.04.120.
  • 37. Anirudhan TS, Unnithan MR, Divya L, Senan P. Synthesis and characterization of polyacrylamide-grafted coconut coir pith having carboxylate functional group and adsorption ability for heavy metal ions. J Appl Polym Sci. 2007 Jun 15;104(6):3670–81. DOI: https://doi.org/10.1002/app.25002.
  • 38. Zendehdel M, Barati A, Alikhani H. Removal of heavy metals from aqueous solution by poly(acrylamide-co-acrylic acid) modified with porous materials. Polym Bull. 2011 Jul;67(2):343–60. DOI: https://doi.org/10.1007/s00289-011-0464-5.
  • 39. Li N, Bai R, Liu C. Enhanced and Selective Adsorption of Mercury Ions on Chitosan Beads Grafted with Polyacrylamide via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir. 2005 Dec;21(25):11780–7. DOI: https://doi.org/10.1021/la051551b.
  • 40. Cao J, Tan Y, Che Y, Xin H. Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: An effective adsorbent for the removal of heavy metal from aqueous solution. Bioresource Technology. 2010 Apr;101(7):2558–61. DOI: https://doi.org/10.1016/j.biortech.2009.10.069.
  • 41. Payne KB, Abdel-Fattah TM. Adsorption of Divalent Lead Ions by Zeolites and Activated Carbon: Effects of pH, Temperature, and Ionic Strength. Journal of Environmental Science and Health, Part A. 2004 Dec 27;39(9):2275–91. DOI: https://doi.org/10.1081/ESE-200026265.
  • 42. Xiao Y, Xue Y, Gao F, Mosa A. Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. Journal of the Taiwan Institute of Chemical Engineers. 2017 Nov;80:114–21. DOI: https://doi.org/10.1016/j.jtice.2017.08.035.
  • 43. El-Bayaa AA, Badawy NA, AlKhalik EA. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. Journal of Hazardous Materials. 2009 Oct 30;170(2–3):1204–9. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.100.
  • 44. Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL. The removal of heavy metals from aqueous solutions by sawdust adsorption — removal of lead and comparison of its adsorption with copper. Journal of Hazardous Materials. 2001 Jun;84(1):83–94. DOI: https://doi.org/10.1016/S0304-3894(01)00198-4.
  • 45. Deniz F, Saygideger SD. Investigation of adsorption characteristics of Basic Red 46 onto gypsum: Equilibrium, kinetic and thermodynamic studies. Desalination. 2010 Nov;262(1–3):161–5. DOI: https://doi.org/10.1016/j.desal.2010.05.062.
  • 46. Ouass A, Ismi I, Elaidi H, Lebkiri A, Cherkaoui M, Rifi E. Mathematical Modeling Of The Adsorption Of Trivalent Chromium By The Sodium Polyacrylate Beads. J Mater Environ Sci. 2017;8:3448–56.
  • 47. Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design. 2016 May;109:495–504. DOI: https://doi.org/10.1016/j.cherd.2016.02.006.
  • 48. Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science. 2004 Nov;279(2):307–13. DOI: https://doi.org/10.1016/j.jcis.2004.06.042.
  • 49. Robati D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostruct Chem. 2013 Dec;3(1):55. DOI: https://doi.org/10.1186/2193-8865-3-55.
  • 50. Özacar M, Şengil İA, Türkmenler H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal. 2008 Sep;143(1–3):32–42. DOI: https://doi.org/10.1016/j.cej.2007.12.005.
  • 51. Rathinam A, Maharshi B, Janardhanan SK, Jonnalagadda RR, Nair BU. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresource Technology. 2010 Mar;101(5):1466–70. DOI: https://doi.org/10.1016/j.biortech.2009.08.008.
  • 52. Fifi U, Winiarski T, Emmanuel E. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti. IJERPH. 2013 Nov 4;10(11):5830–43. DOI: https://doi.org/10.3390/ijerph10115830.
  • 53. Gomes PC, Fontes MPF, da Silva AG, de S. Mendonça E, Netto AR. Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils. Soil Sci Soc Am J. 2001 Jul;65(4):1115–21. DOI: https://doi.org/10.2136/sssaj2001.6541115x.
  • 54. Yan WL, Bai R. Adsorption of lead and humic acid on chitosan hydrogel beads. Water Research. 2005 Feb;39(4):688–98. DOI: https://doi.org/10.1016/j.watres.2004.11.007.
  • 55. Ju X-J, Zhang S-B, Zhou M-Y, Xie R, Yang L, Chu L-Y. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. Journal of Hazardous Materials. 2009 Aug 15;167(1–3):114–8. DOI: https://doi.org/10.1016/j.jhazmat.2008.12.089.
  • 56. Yao Q, Xie J, Liu J, Kang H, Liu Y. Adsorption of lead ions using a modified lignin hydrogel. J Polym Res. 2014 Jun;21(6):465. DOI: https://doi.org/10.1007/s10965-014-0465-9.
  • 57. Sun Y, Ma Y, Fang G, Li S, Fu Y. Synthesis of Acid Hydrolysis Lignin-g-Poly-(Acrylic Acid) Hydrogel Superabsorbent Composites and Adsorption of Lead Ions. BioResources. 2016 May;11(3):5731–42. URL: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/7960.
  • 58. Mohammadinezhad A, Marandi GB, Farsadrooh M, Javadian H. Synthesis of poly(acrylamide-co-itaconic acid)/MWCNTs superabsorbent hydrogel nanocomposite by ultrasound-assisted technique: Swelling behavior and Pb (II) adsorption capacity. Ultrasonics Sonochemistry. 2018 Dec;49:1–12. DOI: https://doi.org/10.1016/j.ultsonch.2017.12.028.
  • 59. Bulut Y, Akçay G, Elma D, Serhatlı IE. Synthesis of clay-based superabsorbent composite and its sorption capability. Journal of Hazardous Materials. 2009 Nov;171(1–3):717–23. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.067.
Year 2021, Volume: 8 Issue: 3, 731 - 748, 31.08.2021
https://doi.org/10.18596/jotcsa.912479

Abstract

References

  • 1. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety. 2018 Feb;148:702–12. DOI: https://doi.org/10.1016/j.ecoenv.2017.11.034.
  • 2. Boudrahem F, Aissani-Benissad F, Soualah A. Adsorption of Lead(II) from Aqueous Solution by Using Leaves of Date Trees As an Adsorbent. J Chem Eng Data. 2011 May 12;56(5):1804–12. DOI: https://doi.org/10.1021/je100770j.
  • 3. Akpor O, Muchie M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int J Phys Sci. 2010;5(12):1807–17. DOI: https://doi.org/10.5897/IJPS.9000482.
  • 4. Es-sahbany H, Berradi M, Nkhili S, Hsissou R, Allaoui M, Loutfi M, et al. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Materials Today: Proceedings. 2019;13:866–75. DOI: https://doi.org/10.1016/j.matpr.2019.04.050.
  • 5. Dhir B, Kumar R. Adsorption of Heavy Metals by Salvinia Biomass and Agricultural Residues. International journal of environmental research (IJER). 2010;4(3):427–32. URL: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=182202.
  • 6. Es-sahbany H, Hsissou R, El Hachimi ML, Allaoui M, Nkhili S, Elyoubi MS. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Materials Today: Proceedings. 2021;45:7290–8. DOI: https://doi.org/10.1016/j.matpr.2020.12.1100.
  • 7. Siqueira DF, Reiter J, Breiner U, Stadler R, Stamm M. Competitive Adsorption of Functionalized Polymers. Langmuir. 1996 Jan;12(4):972–9. DOI: https://doi.org/10.1021/la950519m.
  • 8. Huang Y, Zhao W, Zhang X, Peng H, Gong Y. Thiol-ene synthesis of thioether/carboxyl-functionalized polymers for selective adsorption of silver (I) ions. Chemical Engineering Journal. 2019 Nov;375:121935. DOI: https://doi.org/10.1016/j.cej.2019.121935.
  • 9. Es-sahbany H, El Hachimi ML, Hsissou R, Belfaquir M, Es-sahbany K, Nkhili S, et al. Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima – Morocco region). Materials Today: Proceedings. 2021;45:7299–305. DOI: https://doi.org/10.1016/j.matpr.2020.12.1102.
  • 10. Kim S, Iyer G, Nadarajah A, Frantz J, Spongberg A. Polyacrylamide Hydrogel Properties for Horticultural Applications. Int J Polym Anal Chacter. 2010 Apr;15(5):307–18. DOI: https://doi.org/10.1080/1023666X.2010.493271.
  • 11. Kaşgöz H, Özgümüş S, Orbay M. Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer. 2003 Mar;44(6):1785–93. DOI: https://doi.org/10.1016/S0032-3861(03)00033-8.
  • 12. Lira LM, Martins KA, Torresi SIC de. Structural parameters of polyacrylamide hydrogels obtained by the Equilibrium Swelling Theory. European Polymer Journal. 2009 Apr;45(4):1232–8. DOI: https://doi.org/10.1016/j.eurpolymj.2008.12.022.
  • 13. Bertrand T, Peixinho J, Mukhopadhyay S, MacMinn CW. Dynamics of Swelling and Drying in a Spherical Gel. Phys Rev Applied. 2016 Dec;6(6):064010. DOI: https://doi.org/10.1103/PhysRevApplied.6.064010.
  • 14. Moreno-Sader K, García-Padilla A, Realpe A, Acevedo-Morantes M, Soares JBP. Removal of Heavy Metal Water Pollutants (Co 2+ and Ni 2+ ) Using Polyacrylamide/Sodium Montmorillonite (PAM/Na-MMT) Nanocomposites. ACS Omega. 2019 Jun 30;4(6):10834–44. DOI: https://doi.org/10.1021/acsomega.9b00981.
  • 15. Wiśniewska M, Fijałkowska G, Szewczuk-Karpisz K. The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions. Chemosphere. 2018 Nov;211:524–34. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.198.
  • 16. Ramadan H, Ghanem A, El-Rassy H. Mercury removal from aqueous solutions using silica, polyacrylamide and hybrid silica–polyacrylamide aerogels. Chemical Engineering Journal. 2010 May 1;159(1–3):107–15. DOI: https://doi.org/10.1016/j.cej.2010.02.051.
  • 17. Pal P, Banat F. Removal of Contaminants from Industrial Lean Amine Solvent Using Polyacrylamide Hydrogels Optimized by Response Surface Methodology. Adsorption Science & Technology. 2015 Jan;33(1):9–24. DOI: https://doi.org/10.1260/0263-6174.33.1.9.
  • 18. Moulay S, Bensacia N, Garin F, Fechete I, Boos A. Polyacrylamide-Based Sorbents for the Removal of Hazardous Metals. Adsorption Science & Technology. 2013 Aug;31(8):691–709. DOI: https://doi.org/10.1260/0263-6174.31.8.691.
  • 19. Ouass A, Essaadaoui Y, Kadiri L, Lebkiri I, Lafreme C, Cherkaoui M, et al. Adsorption of Cr (III) from aqueous solution by two forms of a superabsorbant polymer : parametric study and effect of activation mode. Boukdir A, El Mabrouki M, editors. E3S Web Conf. 2018;37:02001. DOI: https://doi.org/10.1051/e3sconf/20183702001.
  • 20. Kadiri L, Lebkiri A, Rifi EH, Ouass A, Essaadaoui Y, Lebkiri I, et al. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum). Boukdir A, El Mabrouki M, editors. E3S Web Conf. 2018;37:02005. DOI: https://doi.org/10.1051/e3sconf/20183702005.
  • 21. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898;24(4):1–39.
  • 22. Essaadaoui Y, Lebkiri A, Rifi EH, Kadiri L, Ouass A. Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus. Mediterr J Chem. 2018 Sep 15;7(2):145–55. DOI: https://doi.org/10.13171/mjc72/01808150945-essaadaoui.
  • 23. Essaadaoui Y, Lebkiri A, Rifi E, Kadiri L, Ouass A. Adsorption of lead by modified Eucalyptus camaldulensis barks: equilibrium, kinetic and thermodynamic studies. DWT. 2018;111:267–77. DOI: https://doi.org/10.5004/dwt.2018.22191.
  • 24. Freundlich H. Über die adsorption in lösungen. Z Phys Chem. 1907;57(1):385–470.
  • 25. Huang J, Liu Y, Jin Q, Wang X, Yang J. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay. Journal of Hazardous Materials. 2007 May;143(1–2):541–8. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.088.
  • 26. Chakir A, Bessiere J, Kacemi KEL, Marouf B. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. Journal of Hazardous Materials. 2002 Nov;95(1–2):29–46. DOI: https://doi.org/10.1016/S0304-3894(01)00382-X.
  • 27. Baron RI, Bercea M, Avadanei M, Lisa G, Biliuta G, Coseri S. Green route for the fabrication of self-healable hydrogels based on tricarboxy cellulose and poly(vinyl alcohol). International Journal of Biological Macromolecules. 2019 Feb;123:744–51. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.107.
  • 28. Kadiri L, Lebkiri A, Rifi E, Essaadaoui Y, Ouass A, Lebkiri I, et al. Characterization of coriander seeds “coriandrum sativum.” International Journal of Scientific and Engineering Research. 2017;8(7):2303–8.
  • 29. Yuan N, Xu L, Zhang L, Ye H, Zhao J, Liu Z, et al. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Materials Science and Engineering: C. 2016 Oct;67:221–30. DOI: https://doi.org/10.1016/j.msec.2016.04.074.
  • 30. Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem. 2012;22(28):14160. DOI: https://doi.org/10.1039/c2jm32541a.
  • 31. Zhou C, Wu Q, Lei T, Negulescu II. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal. 2014 Sep;251:17–24. DOI: https://doi.org/10.1016/j.cej.2014.04.034.
  • 32. Yang Z, Yang H, Jiang Z, Cai T, Li H, Li H, et al. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. Journal of Hazardous Materials. 2013 Jun;254–255:36–45. DOI: https://doi.org/10.1016/j.jhazmat.2013.03.053.
  • 33. Wei X, Tao J, Li M, Zhu B, Li X, Ma Z, et al. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property. Materials Chemistry and Physics. 2017 May;192:72–7. DOI: https://doi.org/10.1016/j.matchemphys.2017.01.064.
  • 34. Yang F, Li G, He Y-G, Ren F-X, Wang G. Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate Polymers. 2009 Aug;78(1):95–9. DOI: https://doi.org/10.1016/j.carbpol.2009.04.004.
  • 35. Ismi I, Rifi E, Lebkiri A, Oudda H. Spectral characterization of PA–Cu under two polymeric forms and their complex PA–Cu. J Mater Environ Sci. 2015;6(2):343–8.
  • 36. Vijayalakshmi K, Devi BM, Latha S, Gomathi T, Sudha PN, Venkatesan J, et al. Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. International Journal of Biological Macromolecules. 2017 Nov;104:1483–94. DOI: https://doi.org/10.1016/j.ijbiomac.2017.04.120.
  • 37. Anirudhan TS, Unnithan MR, Divya L, Senan P. Synthesis and characterization of polyacrylamide-grafted coconut coir pith having carboxylate functional group and adsorption ability for heavy metal ions. J Appl Polym Sci. 2007 Jun 15;104(6):3670–81. DOI: https://doi.org/10.1002/app.25002.
  • 38. Zendehdel M, Barati A, Alikhani H. Removal of heavy metals from aqueous solution by poly(acrylamide-co-acrylic acid) modified with porous materials. Polym Bull. 2011 Jul;67(2):343–60. DOI: https://doi.org/10.1007/s00289-011-0464-5.
  • 39. Li N, Bai R, Liu C. Enhanced and Selective Adsorption of Mercury Ions on Chitosan Beads Grafted with Polyacrylamide via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir. 2005 Dec;21(25):11780–7. DOI: https://doi.org/10.1021/la051551b.
  • 40. Cao J, Tan Y, Che Y, Xin H. Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: An effective adsorbent for the removal of heavy metal from aqueous solution. Bioresource Technology. 2010 Apr;101(7):2558–61. DOI: https://doi.org/10.1016/j.biortech.2009.10.069.
  • 41. Payne KB, Abdel-Fattah TM. Adsorption of Divalent Lead Ions by Zeolites and Activated Carbon: Effects of pH, Temperature, and Ionic Strength. Journal of Environmental Science and Health, Part A. 2004 Dec 27;39(9):2275–91. DOI: https://doi.org/10.1081/ESE-200026265.
  • 42. Xiao Y, Xue Y, Gao F, Mosa A. Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. Journal of the Taiwan Institute of Chemical Engineers. 2017 Nov;80:114–21. DOI: https://doi.org/10.1016/j.jtice.2017.08.035.
  • 43. El-Bayaa AA, Badawy NA, AlKhalik EA. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. Journal of Hazardous Materials. 2009 Oct 30;170(2–3):1204–9. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.100.
  • 44. Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL. The removal of heavy metals from aqueous solutions by sawdust adsorption — removal of lead and comparison of its adsorption with copper. Journal of Hazardous Materials. 2001 Jun;84(1):83–94. DOI: https://doi.org/10.1016/S0304-3894(01)00198-4.
  • 45. Deniz F, Saygideger SD. Investigation of adsorption characteristics of Basic Red 46 onto gypsum: Equilibrium, kinetic and thermodynamic studies. Desalination. 2010 Nov;262(1–3):161–5. DOI: https://doi.org/10.1016/j.desal.2010.05.062.
  • 46. Ouass A, Ismi I, Elaidi H, Lebkiri A, Cherkaoui M, Rifi E. Mathematical Modeling Of The Adsorption Of Trivalent Chromium By The Sodium Polyacrylate Beads. J Mater Environ Sci. 2017;8:3448–56.
  • 47. Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design. 2016 May;109:495–504. DOI: https://doi.org/10.1016/j.cherd.2016.02.006.
  • 48. Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science. 2004 Nov;279(2):307–13. DOI: https://doi.org/10.1016/j.jcis.2004.06.042.
  • 49. Robati D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostruct Chem. 2013 Dec;3(1):55. DOI: https://doi.org/10.1186/2193-8865-3-55.
  • 50. Özacar M, Şengil İA, Türkmenler H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal. 2008 Sep;143(1–3):32–42. DOI: https://doi.org/10.1016/j.cej.2007.12.005.
  • 51. Rathinam A, Maharshi B, Janardhanan SK, Jonnalagadda RR, Nair BU. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresource Technology. 2010 Mar;101(5):1466–70. DOI: https://doi.org/10.1016/j.biortech.2009.08.008.
  • 52. Fifi U, Winiarski T, Emmanuel E. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti. IJERPH. 2013 Nov 4;10(11):5830–43. DOI: https://doi.org/10.3390/ijerph10115830.
  • 53. Gomes PC, Fontes MPF, da Silva AG, de S. Mendonça E, Netto AR. Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils. Soil Sci Soc Am J. 2001 Jul;65(4):1115–21. DOI: https://doi.org/10.2136/sssaj2001.6541115x.
  • 54. Yan WL, Bai R. Adsorption of lead and humic acid on chitosan hydrogel beads. Water Research. 2005 Feb;39(4):688–98. DOI: https://doi.org/10.1016/j.watres.2004.11.007.
  • 55. Ju X-J, Zhang S-B, Zhou M-Y, Xie R, Yang L, Chu L-Y. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. Journal of Hazardous Materials. 2009 Aug 15;167(1–3):114–8. DOI: https://doi.org/10.1016/j.jhazmat.2008.12.089.
  • 56. Yao Q, Xie J, Liu J, Kang H, Liu Y. Adsorption of lead ions using a modified lignin hydrogel. J Polym Res. 2014 Jun;21(6):465. DOI: https://doi.org/10.1007/s10965-014-0465-9.
  • 57. Sun Y, Ma Y, Fang G, Li S, Fu Y. Synthesis of Acid Hydrolysis Lignin-g-Poly-(Acrylic Acid) Hydrogel Superabsorbent Composites and Adsorption of Lead Ions. BioResources. 2016 May;11(3):5731–42. URL: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/7960.
  • 58. Mohammadinezhad A, Marandi GB, Farsadrooh M, Javadian H. Synthesis of poly(acrylamide-co-itaconic acid)/MWCNTs superabsorbent hydrogel nanocomposite by ultrasound-assisted technique: Swelling behavior and Pb (II) adsorption capacity. Ultrasonics Sonochemistry. 2018 Dec;49:1–12. DOI: https://doi.org/10.1016/j.ultsonch.2017.12.028.
  • 59. Bulut Y, Akçay G, Elma D, Serhatlı IE. Synthesis of clay-based superabsorbent composite and its sorption capability. Journal of Hazardous Materials. 2009 Nov;171(1–3):717–23. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.067.
There are 59 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

İmane Lebkiri 0000-0001-5668-1392

Brahim Abbou 0000-0002-2056-9187

Lamya Kadırı This is me 0000-0003-0233-3792

Abdelkarim Ouass This is me 0000-0003-2209-6288

Abdelhay Elamri This is me 0000-0002-2827-5423

Hanae Ouaddarı This is me 0000-0001-6716-2985

Omar Elkhattabi This is me 0000-0001-9125-3844

Ahmed Lebkiri This is me 0000-0003-0593-0074

El Houssine Rifi This is me 0000-0002-6436-4554

Publication Date August 31, 2021
Submission Date April 9, 2021
Acceptance Date June 15, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

Vancouver Lebkiri İ, Abbou B, Kadırı L, Ouass A, Elamri A, Ouaddarı H, Elkhattabi O, Lebkiri A, Rifi EH. Equilibrium, Kinetic Data, and Adsorptıon Mechanism for Lead Adsorptıon onto Polyacrylamıde Hydrogel. JOTCSA. 2021;8(3):731-48.

Cited By