Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Yıl 2021, Cilt 8, Sayı 4, 1025 - 1034, 30.11.2021
https://doi.org/10.18596/jotcsa.832628

Öz

Kaynakça

  • 1. L'her M, Pondaven A, in The Porphyrin Handbook, ed. Kadish KM, Smith KM, Guilard R, Academic Press, Amsterdam, 2003; 117-169.
  • 2. van Staden JF, Application of Phthalocyanines in Flow- and Sequential-Injection Analysis and Microfluidics Systems: A review. Talanta 2015; 139: 75-88.
  • 3. Kumar KVA, Raghavendra S, Rao SV, Hamad S, Dharmaprakash SM, Structural, linear and nonlinear optical study of zinc tetra-tert-butyl phthalocyanine thin film, Optik 2015; 126: 5918-5922.
  • 4. Morishige K, Tomoyasu S, Iwani G. Adsorption of CO, O2, NO2, and NH3 by Metallophthalocyanine Monolayers Supported on Graphite, Langmuir 1997; 13: 5184-5184.
  • 5. David DO, Nyokong T, Prinsloo E. Photophysicochemical properties of nanoconjugates of zinc(II) 2(3)-mono-2-(4-oxy)phenoxy)acetic acid phthalocyanine with cysteamine capped silver and silver–gold nanoparticles, Polyhedron 2016; 119: 434–444.
  • 6. Sheng N, Yuan Z, Wang J, Chen W. Sun J, Bian Y. Third-order nonlinear optical properties of sandwich-type mixed (phthalocyaninato)(porphyrinato) europium double- and triple-decker complexes, Dyes Pigm. 2012; 95: 627-631.
  • 7. Allen CM, Sharman WM, van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer, J. Porphy. Phthalocy. 2001; 5: 161-169.
  • 8. Detty MR, Gibson SI, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy, J. Med Chem. 2004; 47: 3897-3915.
  • 9. Dougherty TJ, Mang TS. Characterization of intra-tumoral porphyrin following injection of hematoporphyrin derivative or its purified component. Photochem. Photobiol. 1987; 46: 67-70.
  • 10. Canti G, Lattuada D, Morelli S, Nicolin A, Cubeddu R, Taroni P, Valentini G. Efficacy of photodynamic therapy against doxorubicin-resistant murine tumors. Cancer Lett. 1995; 93: 255-259.
  • 11. Lofgren LA, Hallgren S, Nilsson E, Westerborn A, Nilsson C, Reizenstein J. Photodynamic therapy for recurrent nasopharyngeal cancer. Arch. Otolaryngol. Head Neck Surg. 1995; 121: 997-1002.
  • 12. Furuyama T, Miyaji Y, Maeda K, Maeda H, Segi M. Extremely Photostable Electron‐Deficient Phthalocyanines that Generate High Levels of Singlet Oxygen, Chem. Eur. J. 2019; 25(7): 1678-1682.
  • 13. Dougherty TJ. Photosensitizers: therapy and detection of malignant tumors. Photochem. Photobiol. 1987; 45: 879-889.
  • 14. Dougherty TJ, Grindey GB, Fiel R, Weishaupt K, Boyle DG. Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl. Can. Inst. 1975; 55: 115-119.
  • 15. Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy J. Porphyrins Phthalocyanines 2001; 5: 105-129.
  • 16. Braun A, Tcherniac T. Uber die Producte der Einwirkung von Acetanhydrid auf Phatalamid, Ber. Deutsch. Chem. Ges. 1907; 40: 2709.
  • 17. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci. 2011; 10: 822-831.
  • 18. Cetin I, Topcul MR. In vitro antiproliferative effects of nab-paclitaxel with liposomal cisplatin on MDA-MB-231 and MCF-7 breast cancer cell lines. JBUON 2017; 22: 347-354.
  • 19. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J. Chem. Ed., 1999; 76: 1260-1264.
  • 20. Fu J, Li X-Y, Dennis K, Ng P, Wu C. Encapsulation of Phthalocyanines in Biodegradable Poly(sebacic anhydride) NanoparticlesLangmuir 2002; 18: 3843-3847.
  • 21. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J. Mol Struct., 2003; 650: 131-140.
  • 22.Tau P, Ogunsipe A, Maree S, Maree MD, Nyokong T. Influence of cyclodextrins on the fluorescence, photostability and singlet oxygen quantum yields of zinc phthalocyanine and naphthalocyanine complexes. J. Porphyr. Phtalocyan., 2003; 7: 439-446.
  • 23. Seotsanyana-Mokhosi I, Kutnetsova N, Nyokong T. J. Photochem. Photobiol. A Chem. 2001; 140: 215-222.
  • 24.Ogunsipe A, Chen JY, Nyokong T. Photophysical and photochemical studies of zinc (II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem. 2004; 28: 822-827.
  • 25. Hsiao SH, Yang CP, Chu KY. Synthesis and Properties of Poly(ether imide)s Having Ortho-Linked Aromatic Units in the Main Chain. Macromolecules, 1997; 30: 165-170.
  • 26. Cetin I, Topcul MR. Triple Negative Breast Cancer. Asian Pac J Cancer Prev. 2014; 15: 2427-2431.
  • 27. Topcul M, Çetin I, Ozbaş Turan S, Kolusayın Ozar MO. In vitro cytotoxic effect of PARP inhibitor alone and in combination with nab-paclitaxel on triple-negative and luminal A breast cancer cells. Oncology Reports. 2018; 40: 527-535.
  • 28. Kuznetsova NA, Gretsova NS, Kalmykova EA, Makarova EA, Dashkevich SN, Negrimovskii VM, Kaliya OL, Lukʼyanets EA. Relationship between the photochemical properties and structure of pophyrins and related compounds. Russ. J. Gen. Chem. 2000; 70: 133-140.
  • 29. Jacques P, Braun AM. Laser flash photolysis of phthalocyanines in solution and microemulsion. Helv. Chim. Acta 1981; 64: 1800-1806.
  • 30. Freyer W, Mueller S, Teuchner K. Photophysical properties of benzoannelated metal-free Phthalocyanines. J. Photochem. Photobiol. A: Chem 2004; 163: 231-240.
  • 31. Bonnett. R. Chemical Aspects of Photodynamic Therapy. Gordon and Breach Science Publishers: Netherlands, 2000; 1.
  • 32. Canlica M. 3, 5-di-tert-butyl substituted phthalocyanines: Synthesis and specific properties. J. Mol. Struct. 2020; 1214: 128160.
  • 33. Manisova B, Binder S, Malina L, Jiravova J, Langova K, Kolarova H. Phthalocyanine-mediated photodynamic treatment of tumoural and non-tumoural cell lines. Anticancer Research. 2015; 35: 3943-3951.
  • 34. Mehraban N, Musich PR, Freeman HS. Synthesis and encapsulation of a new zinc phthalocyanine photosensitizer into polymeric nanoparticles to enhance cell uptake and Phototoxicity. Appl Sci. 2019; 9: 401-414.

Anticancer activities of a metal-free phthalocyanine on MCF-7 and MDA-MB-231 cells and singlet oxygen production as a photosensitizer in PDT

Yıl 2021, Cilt 8, Sayı 4, 1025 - 1034, 30.11.2021
https://doi.org/10.18596/jotcsa.832628

Öz

Cancer, which is often described as an uncontrollable rapid proliferation of cells, is currently the leading cause of death in the world together with cardiac disease. Therefore, the main purpose of the current research work was to study the anticancer effects of a first-time-synthesized phthalocyanine (Pc) as photosensitizer in PDT against cancer and evaluate its effects on human cells in vitro. Quantum yields of singlet oxygen photogeneration were in air using the relative method with standard-ZnPc as reference and DPBF as chemical quencher for singlet oxygen. The concentration of DPBF was prepared almost 3 x 10-5 molar to avoid chain reactions induced by DPBF in the presence of singlet oxygen. Solutions of Pc as sensitizer (absorbance = 2.0 at the irradiation wavelength) containing DPBF were prepared in the dark and irradiated in the Q band region using the setup described. DPBF degradation at 417 nm was monitored with UV-Vis spectrophotometry. For in vitro studies, nine different MFPc-1 concentrations (0.2 µM- 0.4 µM- 0.8 µM- 1.6 µM- 3.2 µM- 6.4 µM- 12.8 µM- 25.6 µM- 51.2 µM) applied to MCF-7 and MDA-MB-231 breast cancer cell lines for 24 hours and MTT assay was carried out. After determination of optimum concentration, mitotic index, and apoptotic index values of cell lines were determined with administration of these concentrations. Singlet oxygen quantum yield (Φ), which is a measure of the efficiency, of MFPc-1 was found 0.50, although MFPc-1 is being metal-free phthalocyanine. For in vitro studies after the application of different concentrations to MCF-7 and MDA-MB-231 for 24 hours, the optimum concentration was determined as 12 µM for both cell lines by the MTT assay. After application of the determined optimum concentration for 24, 48 and 72 hours, there was a significant decrease in the mitotic index values and significant increase in the apoptotic index values of both MCF-7 and MDA-MB-231 breast cancer cell lines.

Kaynakça

  • 1. L'her M, Pondaven A, in The Porphyrin Handbook, ed. Kadish KM, Smith KM, Guilard R, Academic Press, Amsterdam, 2003; 117-169.
  • 2. van Staden JF, Application of Phthalocyanines in Flow- and Sequential-Injection Analysis and Microfluidics Systems: A review. Talanta 2015; 139: 75-88.
  • 3. Kumar KVA, Raghavendra S, Rao SV, Hamad S, Dharmaprakash SM, Structural, linear and nonlinear optical study of zinc tetra-tert-butyl phthalocyanine thin film, Optik 2015; 126: 5918-5922.
  • 4. Morishige K, Tomoyasu S, Iwani G. Adsorption of CO, O2, NO2, and NH3 by Metallophthalocyanine Monolayers Supported on Graphite, Langmuir 1997; 13: 5184-5184.
  • 5. David DO, Nyokong T, Prinsloo E. Photophysicochemical properties of nanoconjugates of zinc(II) 2(3)-mono-2-(4-oxy)phenoxy)acetic acid phthalocyanine with cysteamine capped silver and silver–gold nanoparticles, Polyhedron 2016; 119: 434–444.
  • 6. Sheng N, Yuan Z, Wang J, Chen W. Sun J, Bian Y. Third-order nonlinear optical properties of sandwich-type mixed (phthalocyaninato)(porphyrinato) europium double- and triple-decker complexes, Dyes Pigm. 2012; 95: 627-631.
  • 7. Allen CM, Sharman WM, van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer, J. Porphy. Phthalocy. 2001; 5: 161-169.
  • 8. Detty MR, Gibson SI, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy, J. Med Chem. 2004; 47: 3897-3915.
  • 9. Dougherty TJ, Mang TS. Characterization of intra-tumoral porphyrin following injection of hematoporphyrin derivative or its purified component. Photochem. Photobiol. 1987; 46: 67-70.
  • 10. Canti G, Lattuada D, Morelli S, Nicolin A, Cubeddu R, Taroni P, Valentini G. Efficacy of photodynamic therapy against doxorubicin-resistant murine tumors. Cancer Lett. 1995; 93: 255-259.
  • 11. Lofgren LA, Hallgren S, Nilsson E, Westerborn A, Nilsson C, Reizenstein J. Photodynamic therapy for recurrent nasopharyngeal cancer. Arch. Otolaryngol. Head Neck Surg. 1995; 121: 997-1002.
  • 12. Furuyama T, Miyaji Y, Maeda K, Maeda H, Segi M. Extremely Photostable Electron‐Deficient Phthalocyanines that Generate High Levels of Singlet Oxygen, Chem. Eur. J. 2019; 25(7): 1678-1682.
  • 13. Dougherty TJ. Photosensitizers: therapy and detection of malignant tumors. Photochem. Photobiol. 1987; 45: 879-889.
  • 14. Dougherty TJ, Grindey GB, Fiel R, Weishaupt K, Boyle DG. Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl. Can. Inst. 1975; 55: 115-119.
  • 15. Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy J. Porphyrins Phthalocyanines 2001; 5: 105-129.
  • 16. Braun A, Tcherniac T. Uber die Producte der Einwirkung von Acetanhydrid auf Phatalamid, Ber. Deutsch. Chem. Ges. 1907; 40: 2709.
  • 17. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci. 2011; 10: 822-831.
  • 18. Cetin I, Topcul MR. In vitro antiproliferative effects of nab-paclitaxel with liposomal cisplatin on MDA-MB-231 and MCF-7 breast cancer cell lines. JBUON 2017; 22: 347-354.
  • 19. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J. Chem. Ed., 1999; 76: 1260-1264.
  • 20. Fu J, Li X-Y, Dennis K, Ng P, Wu C. Encapsulation of Phthalocyanines in Biodegradable Poly(sebacic anhydride) NanoparticlesLangmuir 2002; 18: 3843-3847.
  • 21. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J. Mol Struct., 2003; 650: 131-140.
  • 22.Tau P, Ogunsipe A, Maree S, Maree MD, Nyokong T. Influence of cyclodextrins on the fluorescence, photostability and singlet oxygen quantum yields of zinc phthalocyanine and naphthalocyanine complexes. J. Porphyr. Phtalocyan., 2003; 7: 439-446.
  • 23. Seotsanyana-Mokhosi I, Kutnetsova N, Nyokong T. J. Photochem. Photobiol. A Chem. 2001; 140: 215-222.
  • 24.Ogunsipe A, Chen JY, Nyokong T. Photophysical and photochemical studies of zinc (II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem. 2004; 28: 822-827.
  • 25. Hsiao SH, Yang CP, Chu KY. Synthesis and Properties of Poly(ether imide)s Having Ortho-Linked Aromatic Units in the Main Chain. Macromolecules, 1997; 30: 165-170.
  • 26. Cetin I, Topcul MR. Triple Negative Breast Cancer. Asian Pac J Cancer Prev. 2014; 15: 2427-2431.
  • 27. Topcul M, Çetin I, Ozbaş Turan S, Kolusayın Ozar MO. In vitro cytotoxic effect of PARP inhibitor alone and in combination with nab-paclitaxel on triple-negative and luminal A breast cancer cells. Oncology Reports. 2018; 40: 527-535.
  • 28. Kuznetsova NA, Gretsova NS, Kalmykova EA, Makarova EA, Dashkevich SN, Negrimovskii VM, Kaliya OL, Lukʼyanets EA. Relationship between the photochemical properties and structure of pophyrins and related compounds. Russ. J. Gen. Chem. 2000; 70: 133-140.
  • 29. Jacques P, Braun AM. Laser flash photolysis of phthalocyanines in solution and microemulsion. Helv. Chim. Acta 1981; 64: 1800-1806.
  • 30. Freyer W, Mueller S, Teuchner K. Photophysical properties of benzoannelated metal-free Phthalocyanines. J. Photochem. Photobiol. A: Chem 2004; 163: 231-240.
  • 31. Bonnett. R. Chemical Aspects of Photodynamic Therapy. Gordon and Breach Science Publishers: Netherlands, 2000; 1.
  • 32. Canlica M. 3, 5-di-tert-butyl substituted phthalocyanines: Synthesis and specific properties. J. Mol. Struct. 2020; 1214: 128160.
  • 33. Manisova B, Binder S, Malina L, Jiravova J, Langova K, Kolarova H. Phthalocyanine-mediated photodynamic treatment of tumoural and non-tumoural cell lines. Anticancer Research. 2015; 35: 3943-3951.
  • 34. Mehraban N, Musich PR, Freeman HS. Synthesis and encapsulation of a new zinc phthalocyanine photosensitizer into polymeric nanoparticles to enhance cell uptake and Phototoxicity. Appl Sci. 2019; 9: 401-414.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Mevlude CANLİCA (Sorumlu Yazar)
Yildiz Technical University
0000-0002-5851-5651
Türkiye


İdil ÇETİN
İSTANBUL ÜNİVERSİTESİ
0000-0002-3961-6422
Türkiye

Destekleyen Kurum Tubitak-BİDEB-2219 International Postdoctoral Research Scholarship Programme
Proje Numarası 1059B191401081
Teşekkür This work was funded by the Tubitak-BİDEB-2219 International Postdoctoral Research Scholarship Programme, Number: 1059B191401081, and the Yildiz Technical University in Istanbul, Turkey and the University of Illinois at Urbana-Champaign in the USA. The author is thankful to Prof. Kenneth K. Suslick for providing lab space to synthesize the compounds used in this study.
Yayımlanma Tarihi 30 Kasım 2021
Başvuru Tarihi 27 Kasım 2020
Kabul Tarihi 27 Ağustos 2021
Yayınlandığı Sayı Yıl 2021, Cilt 8, Sayı 4

Kaynak Göster

Vancouver Canlica M. , Çetin İ. Anticancer activities of a metal-free phthalocyanine on MCF-7 and MDA-MB-231 cells and singlet oxygen production as a photosensitizer in PDT. Journal of the Turkish Chemical Society Section A: Chemistry. 2021; 8(4): 1025-1034.
J. Turk. Chem. Soc., Sect. A: Chem.