Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, and Spectral Characterization of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose Derivatives

Yıl 2021, Cilt: 8 Sayı: 4, 1003 - 1024, 30.11.2021
https://doi.org/10.18596/jotcsa.929996

Öz

Site selective acylation of monosaccharides and oligosaccharides are very necessary for the preparation of both natural and novel synthetic carbohydrate compounds, synthetic intermediates, postglycosylation modifications, and for the preparation of therapeutic agents including research tools for glycobiology. Hence, site selective octanoylation of 1,2-O-isopropylidene-α-D-glucofuranose was conducted. Under low temperature in anhydrous pyridine direct unimolar octanoylation of this glucofuranose without any catalyst exhibited selectivity at C-6 hydroxyl group. The C-6 O-octanoylglucofuranose, thus obtained, was then used for the preparation of three 3,5-di-O-acyl esters in a similar direct method to get novel esters of glucofuranose. Characterization of all the glucofuranose esters by 1D and 2D spectroscopic technique is also discussed herein.

Destekleyen Kurum

Ministry of Science and Technology, Bangladesh

Proje Numarası

Phys 535, 2020-21

Teşekkür

We are grateful to the Ministry of Science and Technology, Bangladesh for financial support (Phys 535, 2020-21) to conduct this research work.

Kaynakça

  • 1. Plat T, Linhardt RJ. Syntheses and applications of sucrose-based esters. J Surfact Deterg. 2001 Oct;4(4):415–21.
  • 2. Zhao L, Zhang H, Hao T, Li S. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chemistry. 2015 Nov;187:370–7.
  • 3. Lucarini S, Fagioli L, Campana R, Cole H, Duranti A, Baffone W, et al. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity. European Journal of Pharmaceutics and Biopharmaceutics. 2016 Oct;107:88–96.
  • 4. Shao S-Y, Shi Y-G, Wu Y, Bian L-Q, Zhu Y-J, Huang X-Y, et al. Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria. Molecules. 2018 May 8;23(5):1118.
  • 5. Matin MM, Bhattacharjee SC, Chakraborty P, Alam MS. Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydrate Research. 2019 Nov;485:107812.
  • 6. Tarahomjoo S, Alemzadeh I. Surfactant production by an enzymatic method. Enzyme and Microbial Technology. 2003 Jul;33(1):33–7.
  • 7. Szűts A, Pallagi E, Regdon G, Aigner Z, Szabó-Révész P. Study of thermal behaviour of sugar esters. International Journal of Pharmaceutics. 2007 May;336(2):199–207.
  • 8. Marshall DL, Bullerman L. Antimicrobial properties of sucrose fatty acid esters. Carbohydrate polyesters as fat substitutes. 1994;149–67. ISBN: 0824790626.
  • 9. Kabara JJ, Conley AJ, Swieczkowski DM, Ismail IA, Jie MLK, Gunstone FD. Antimicrobial action of isomeric fatty acids on group A Streptococcus. J Med Chem. 1973 Sep;16(9):1060–3. <DOI>
  • 10. Kobayashi T, Takahashi T, Adachi S. Synthesis of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose by Lipase-catalyzed Esterification in an Organic Solvent. J Oleo Sci. 2012;61(2):75–9.
  • 11. Allen DK, Tao BY. Carbohydrate-alkyl ester derivatives as biosurfactants. J Surfact Deterg. 1999 Jul;2(3):383–90.
  • 12. Matin MM, Chakraborty P, Alam MS, Islam MM, Hanee U. Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydrate Research. 2020 Oct;496:108130.
  • 13. Matin MM, Bhuiyan MMH, Kabir E, Sanaullah AFM, Rahman MA, Hossain ME, et al. Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. Journal of Molecular Structure. 2019 Nov;1195:189–97.
  • 14. Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports. 2019 Dec;24:e00370.
  • 15. Mati̇n MM, Islam N, Si̇ddi̇ka A, Bhattacharjee SC. Regioselective Synthesis of Some Rhamnopyranoside Esters for PASS Predication, and ADMET Studies. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Feb 28;8(1):363–74.
  • 16. Matin MM, Bhuiyan MMH, Azad AKMS, Akther N. Design and synthesis of benzyl 4-O-lauroyl-α-L-rhamnopyranoside derivatives as antimicrobial agents. 105267/j.ccl. 2017;31–40.
  • 17. Yang X-D, Li Z-Y, Mei S-X, Zhao J-F, Zhang H-B, Li L. Two new phenylpropanoid esters of rhamnose from Lagotis yunnanensis. Journal of Asian Natural Products Research. 2003 Sep;5(3):223–6.
  • 18. Matin MM, Iqbal MdZ. Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, Characterization, and Thermodynamic Studies. Orbital: Electron J Chem. 2021 Mar 30;13(1):19–27. <DOI>.
  • 19. Matin MM, Bhuiyan MMH, Azad AKMS, Rashid MHO. Synthesis of 6-O-Stearoyl-1, 2-O-isopropylidene-[alpha]-D-glucofuranose derivatives for antimicrobial evaluation. Journal of Physical Science. 2015;26(1):1.
  • 20. Nilsson H, Andersen J. New glucofuranose esters and glucopyranose esters of alkyl-fumarates useful for treating psoriasis and other hyperliferative, inflammatory and autoimmune disorders [Internet]. Kopenhagen; WO 2007/006308 Al, 2007. <URL>.
  • 21. Rong YW, Zhang QH, Wang W, Li BL. A Simple and Clean Method for O-Isopropylidenation of Carbohydrates. Bulletin of the Korean Chemical Society. 2014 Jul 20;35(7):2165–8.
  • 22. Lugiņina J, Vasiļjevs D, Ivanovs I, Mishnev A, Turks M. Diastereoselective aza-Michael addition for synthesis of carbohydrate-derived spiropiperazinones. Monatsh Chem. 2019 Jan;150(1):21–8.
  • 23. Dhavale DD, Matin MM, Sharma T, Sabharwal SG. Synthesis and evaluation of glycosidase inhibitory activity of octahydro-2H-pyrido[1,2-a]pyrimidine and octahydro-imidazo[1,2-a]pyridine bicyclic diazasugars. Bioorganic & Medicinal Chemistry. 2004 Aug 1;12(15):4039–44.
  • 24. Dhavale DD, Matin MM. Selective sulfonylation of 4-C-hydroxymethyl-β-l-threo-pento-1,4-furanose: synthesis of bicyclic diazasugars. Tetrahedron. 2004 May;60(19):4275–81. <DOI>.
  • 25. Arora S. Solvent-free synthesis of 1,2:5,6-di-O-isopropylidene-3-O-3’ -(N’,N’-dimethylamino-n-propyl)-alpha,D-glucofuranose and 1,2:5,6-di-O-isopropylidene-3-O-heptyl-alpha,D-glucofuranose [Internet]. Philadelphia; 1995. <URL>.
  • 26. Kobayashi T, Ehara T, Mizuoka T, Adachi S. Efficient synthesis of 6-O-palmitoyl-1,2-O-isopropylidene-α-d-glucofuranose in an organic solvent system by lipase-catalyzed esterification. Biotechnol Lett. 2010 Nov;32(11):1679–84. <DOI>
  • 27. Catelani G, Osti F, Bianchi N, Bergonzi MC, D’Andrea F, Gambari R. Induction of erythroid differentiation of human K562 cells by 3-O-acyl-1,2-O-isopropylidene-D-glucofuranose derivatives. Bioorganic & Medicinal Chemistry Letters. 1999 Nov;9(21):3153–8.
  • 28. Matin M, Bhuiyan M, Azad A, Bhattacharjee S, Rashid M. Synthesis and antimicrobial studies of 6-O-lauroyl-1, 2-O-isopropylidene-α-D-gluco-furanose derivatives. Chem Biol Interface. 2014;4(4):223–31.
  • 29. Matin M, Bhuiyan M, Debnath D, Manchur M. Synthesis and comparative antimicrobial studies of some acylated d-glucofuranose and d-glucopyranose derivatives. Int J Biosci. 2013 Aug 22;3(8):279–87.
  • 30. Kolodiazhnyi OI, Grishkun EV. Asymmetrıc Inductıon In The Reactıon Of Nonsymmetrıcal Phosphinic And Phosphinous Acıd Clorıdes With Derivatıves Of D-Glucofuranose. Phosphorus, Sulfur, and Silicon and the Related Elements. 1996 Aug 1;115(1):115–24.
  • 31. Ridley D, Smal M. Preparation of arenesulfinic esters of 1,2:5,6-Di-O-cyclohexylidene-α-D-glucofuranose, and their conversion into optically active sulfoxides. Aust J Chem. 1982;35(3):495.
  • 32. Sheville J, Berndt D, Wagner T, Norris P. Crystal structure of 1,2;5,6-di-O-isopropylidene-3-O-(phenylacetyl)-D-glucofuranose. Journal of Chemical Crystallography. 2003;33(5/6):409–12.
  • 33. Matin MM, Hasan MdS, Uzzaman M, Bhuiyan MdMH, Kibria SM, Hossain MdE, et al. Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. Journal of Molecular Structure. 2020 Dec;1222:128821.
  • 34. Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev. 2018 Dec 12;118(23):11457–517.
  • 35. Sugihara JM. Relative Reactivities of Hydroxyl Groups of Carbohydrates. In: Advances in Carbohydrate Chemistry [Internet]. Elsevier; 1953 [cited 2021 Aug 26]. p. 1–44. <URL>.
  • 36. Haines AH. Relative Reactivities of Hydroxyl Groups in Carbohydrates. In: Advances in Carbohydrate Chemistry and Biochemistry [Internet]. Elsevier; 1976 [cited 2021 Aug 26]. p. 11–109. <URL>.
  • 37. Lawandi J, Rocheleau S, Moitessier N. Regioselective acylation, alkylation, silylation and glycosylation of monosaccharides. Tetrahedron. 2016 Oct;72(41):6283–319.
  • 38. Jäger M, Minnaard AJ. Regioselective modification of unprotected glycosides. Chem Commun. 2016;52(4):656–64.
  • 39. Kurahashi T, Mizutani T, Yoshida J. Effect of intramolecular hydrogen-bonding network on the relative reactivities of carbohydrate OH groups †. J Chem Soc, Perkin Trans 1. 1999;(4):465–74.
  • 40. Jiang L, Chan T-H. Regioselective Acylation of Hexopyranosides with Pivaloyl Chloride. The Journal of organic chemistry. 1998;63(17):6035–8.
  • 41. Matin MM. Synthesis of some silyl protected 1, 4-galactonolactone derivatives. Journal of Applied Sciences Research. 2006;2(10):753–6.
  • 42. Matin MM, Priyanka Chakraborty P. Synthesis, PASS Predication, Antimicrobial, DFT, and ADMET Studies of Some Novel Mannopyranoside Esters. JASPE. 2020 Oct 30;7(2):572–86.
  • 43. Matin M, Azad A. Synthesis of some protected 6-O-acyl-galactopyranose derivatives. J Appli Sci Res. 2006;2(12):1199–202.
  • 44. Kabir A, Matin MM. Regioselective acylation of a derivative of L-rhamonse using the dibutyltin oxide method. J Bangladesh Chem Soc. 1994;7(1):73–9.
  • 45. Kabir A, Matin MM. Regioselective monoacylation of a derivative of L-rhamnose. JOURNAL-BANGLADESH ACADEMY OF SCIENCES. 1997;21:83–8.
  • 46. Matin M, Nath A, Saad O, Bhuiyan M, Kadir F, Abd Hamid S, et al. Synthesis, PASS-Predication and in Vitro Antimicrobial Activity of Benzyl 4-O-benzoyl-α-l-rhamnopyranoside Derivatives. IJMS. 2016 Aug 27;17(9):1412.
  • 47. Matin M, Ibrahim M. Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. JACR. 2010;6(10):1527–32.
  • 48. Staroń J, Dąbrowski JM, Cichoń E, Guzik M. Lactose esters: synthesis and biotechnological applications. Critical Reviews in Biotechnology. 2018 Feb 17;38(2):245–58.
  • 49. Richel A, Laurent P, Wathelet B, Wathelet J-P, Paquot M. Microwave-assisted conversion of carbohydrates. State of the art and outlook. Comptes Rendus Chimie. 2011 Feb;14(2–3):224–34.
  • 50. Furniss B, Hannaford A, Smith P, Tatchell A. Vogel’s textbook of practical organic chemistry. New. ed., 5. ed., rev. [Nachdr.]. Furniss B, Vogel A, editors. Harlow: Pearson/Prentice Hall; 1996. 1514 p. ISBN: 978-0-582-46236-6.
  • 51. Gramera RE, Park A, Whistler RL. A Convenient Preparation of 1,2-Mono-O-isopropylidene-α-D-glucofuranose. J Org Chem. 1963 Nov;28(11):3230–1.
  • 52. De Luca D, De Nino A, Liguori A, Procopio A, Sindona G. Nonionic surfactants. Regioselective synthesis of fatty acid esters of α- and β-glucopyranose. Lipids. 1997 May;32(5):559–63.
Yıl 2021, Cilt: 8 Sayı: 4, 1003 - 1024, 30.11.2021
https://doi.org/10.18596/jotcsa.929996

Öz

Proje Numarası

Phys 535, 2020-21

Kaynakça

  • 1. Plat T, Linhardt RJ. Syntheses and applications of sucrose-based esters. J Surfact Deterg. 2001 Oct;4(4):415–21.
  • 2. Zhao L, Zhang H, Hao T, Li S. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chemistry. 2015 Nov;187:370–7.
  • 3. Lucarini S, Fagioli L, Campana R, Cole H, Duranti A, Baffone W, et al. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity. European Journal of Pharmaceutics and Biopharmaceutics. 2016 Oct;107:88–96.
  • 4. Shao S-Y, Shi Y-G, Wu Y, Bian L-Q, Zhu Y-J, Huang X-Y, et al. Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria. Molecules. 2018 May 8;23(5):1118.
  • 5. Matin MM, Bhattacharjee SC, Chakraborty P, Alam MS. Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydrate Research. 2019 Nov;485:107812.
  • 6. Tarahomjoo S, Alemzadeh I. Surfactant production by an enzymatic method. Enzyme and Microbial Technology. 2003 Jul;33(1):33–7.
  • 7. Szűts A, Pallagi E, Regdon G, Aigner Z, Szabó-Révész P. Study of thermal behaviour of sugar esters. International Journal of Pharmaceutics. 2007 May;336(2):199–207.
  • 8. Marshall DL, Bullerman L. Antimicrobial properties of sucrose fatty acid esters. Carbohydrate polyesters as fat substitutes. 1994;149–67. ISBN: 0824790626.
  • 9. Kabara JJ, Conley AJ, Swieczkowski DM, Ismail IA, Jie MLK, Gunstone FD. Antimicrobial action of isomeric fatty acids on group A Streptococcus. J Med Chem. 1973 Sep;16(9):1060–3. <DOI>
  • 10. Kobayashi T, Takahashi T, Adachi S. Synthesis of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose by Lipase-catalyzed Esterification in an Organic Solvent. J Oleo Sci. 2012;61(2):75–9.
  • 11. Allen DK, Tao BY. Carbohydrate-alkyl ester derivatives as biosurfactants. J Surfact Deterg. 1999 Jul;2(3):383–90.
  • 12. Matin MM, Chakraborty P, Alam MS, Islam MM, Hanee U. Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydrate Research. 2020 Oct;496:108130.
  • 13. Matin MM, Bhuiyan MMH, Kabir E, Sanaullah AFM, Rahman MA, Hossain ME, et al. Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. Journal of Molecular Structure. 2019 Nov;1195:189–97.
  • 14. Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports. 2019 Dec;24:e00370.
  • 15. Mati̇n MM, Islam N, Si̇ddi̇ka A, Bhattacharjee SC. Regioselective Synthesis of Some Rhamnopyranoside Esters for PASS Predication, and ADMET Studies. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Feb 28;8(1):363–74.
  • 16. Matin MM, Bhuiyan MMH, Azad AKMS, Akther N. Design and synthesis of benzyl 4-O-lauroyl-α-L-rhamnopyranoside derivatives as antimicrobial agents. 105267/j.ccl. 2017;31–40.
  • 17. Yang X-D, Li Z-Y, Mei S-X, Zhao J-F, Zhang H-B, Li L. Two new phenylpropanoid esters of rhamnose from Lagotis yunnanensis. Journal of Asian Natural Products Research. 2003 Sep;5(3):223–6.
  • 18. Matin MM, Iqbal MdZ. Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, Characterization, and Thermodynamic Studies. Orbital: Electron J Chem. 2021 Mar 30;13(1):19–27. <DOI>.
  • 19. Matin MM, Bhuiyan MMH, Azad AKMS, Rashid MHO. Synthesis of 6-O-Stearoyl-1, 2-O-isopropylidene-[alpha]-D-glucofuranose derivatives for antimicrobial evaluation. Journal of Physical Science. 2015;26(1):1.
  • 20. Nilsson H, Andersen J. New glucofuranose esters and glucopyranose esters of alkyl-fumarates useful for treating psoriasis and other hyperliferative, inflammatory and autoimmune disorders [Internet]. Kopenhagen; WO 2007/006308 Al, 2007. <URL>.
  • 21. Rong YW, Zhang QH, Wang W, Li BL. A Simple and Clean Method for O-Isopropylidenation of Carbohydrates. Bulletin of the Korean Chemical Society. 2014 Jul 20;35(7):2165–8.
  • 22. Lugiņina J, Vasiļjevs D, Ivanovs I, Mishnev A, Turks M. Diastereoselective aza-Michael addition for synthesis of carbohydrate-derived spiropiperazinones. Monatsh Chem. 2019 Jan;150(1):21–8.
  • 23. Dhavale DD, Matin MM, Sharma T, Sabharwal SG. Synthesis and evaluation of glycosidase inhibitory activity of octahydro-2H-pyrido[1,2-a]pyrimidine and octahydro-imidazo[1,2-a]pyridine bicyclic diazasugars. Bioorganic & Medicinal Chemistry. 2004 Aug 1;12(15):4039–44.
  • 24. Dhavale DD, Matin MM. Selective sulfonylation of 4-C-hydroxymethyl-β-l-threo-pento-1,4-furanose: synthesis of bicyclic diazasugars. Tetrahedron. 2004 May;60(19):4275–81. <DOI>.
  • 25. Arora S. Solvent-free synthesis of 1,2:5,6-di-O-isopropylidene-3-O-3’ -(N’,N’-dimethylamino-n-propyl)-alpha,D-glucofuranose and 1,2:5,6-di-O-isopropylidene-3-O-heptyl-alpha,D-glucofuranose [Internet]. Philadelphia; 1995. <URL>.
  • 26. Kobayashi T, Ehara T, Mizuoka T, Adachi S. Efficient synthesis of 6-O-palmitoyl-1,2-O-isopropylidene-α-d-glucofuranose in an organic solvent system by lipase-catalyzed esterification. Biotechnol Lett. 2010 Nov;32(11):1679–84. <DOI>
  • 27. Catelani G, Osti F, Bianchi N, Bergonzi MC, D’Andrea F, Gambari R. Induction of erythroid differentiation of human K562 cells by 3-O-acyl-1,2-O-isopropylidene-D-glucofuranose derivatives. Bioorganic & Medicinal Chemistry Letters. 1999 Nov;9(21):3153–8.
  • 28. Matin M, Bhuiyan M, Azad A, Bhattacharjee S, Rashid M. Synthesis and antimicrobial studies of 6-O-lauroyl-1, 2-O-isopropylidene-α-D-gluco-furanose derivatives. Chem Biol Interface. 2014;4(4):223–31.
  • 29. Matin M, Bhuiyan M, Debnath D, Manchur M. Synthesis and comparative antimicrobial studies of some acylated d-glucofuranose and d-glucopyranose derivatives. Int J Biosci. 2013 Aug 22;3(8):279–87.
  • 30. Kolodiazhnyi OI, Grishkun EV. Asymmetrıc Inductıon In The Reactıon Of Nonsymmetrıcal Phosphinic And Phosphinous Acıd Clorıdes With Derivatıves Of D-Glucofuranose. Phosphorus, Sulfur, and Silicon and the Related Elements. 1996 Aug 1;115(1):115–24.
  • 31. Ridley D, Smal M. Preparation of arenesulfinic esters of 1,2:5,6-Di-O-cyclohexylidene-α-D-glucofuranose, and their conversion into optically active sulfoxides. Aust J Chem. 1982;35(3):495.
  • 32. Sheville J, Berndt D, Wagner T, Norris P. Crystal structure of 1,2;5,6-di-O-isopropylidene-3-O-(phenylacetyl)-D-glucofuranose. Journal of Chemical Crystallography. 2003;33(5/6):409–12.
  • 33. Matin MM, Hasan MdS, Uzzaman M, Bhuiyan MdMH, Kibria SM, Hossain MdE, et al. Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. Journal of Molecular Structure. 2020 Dec;1222:128821.
  • 34. Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev. 2018 Dec 12;118(23):11457–517.
  • 35. Sugihara JM. Relative Reactivities of Hydroxyl Groups of Carbohydrates. In: Advances in Carbohydrate Chemistry [Internet]. Elsevier; 1953 [cited 2021 Aug 26]. p. 1–44. <URL>.
  • 36. Haines AH. Relative Reactivities of Hydroxyl Groups in Carbohydrates. In: Advances in Carbohydrate Chemistry and Biochemistry [Internet]. Elsevier; 1976 [cited 2021 Aug 26]. p. 11–109. <URL>.
  • 37. Lawandi J, Rocheleau S, Moitessier N. Regioselective acylation, alkylation, silylation and glycosylation of monosaccharides. Tetrahedron. 2016 Oct;72(41):6283–319.
  • 38. Jäger M, Minnaard AJ. Regioselective modification of unprotected glycosides. Chem Commun. 2016;52(4):656–64.
  • 39. Kurahashi T, Mizutani T, Yoshida J. Effect of intramolecular hydrogen-bonding network on the relative reactivities of carbohydrate OH groups †. J Chem Soc, Perkin Trans 1. 1999;(4):465–74.
  • 40. Jiang L, Chan T-H. Regioselective Acylation of Hexopyranosides with Pivaloyl Chloride. The Journal of organic chemistry. 1998;63(17):6035–8.
  • 41. Matin MM. Synthesis of some silyl protected 1, 4-galactonolactone derivatives. Journal of Applied Sciences Research. 2006;2(10):753–6.
  • 42. Matin MM, Priyanka Chakraborty P. Synthesis, PASS Predication, Antimicrobial, DFT, and ADMET Studies of Some Novel Mannopyranoside Esters. JASPE. 2020 Oct 30;7(2):572–86.
  • 43. Matin M, Azad A. Synthesis of some protected 6-O-acyl-galactopyranose derivatives. J Appli Sci Res. 2006;2(12):1199–202.
  • 44. Kabir A, Matin MM. Regioselective acylation of a derivative of L-rhamonse using the dibutyltin oxide method. J Bangladesh Chem Soc. 1994;7(1):73–9.
  • 45. Kabir A, Matin MM. Regioselective monoacylation of a derivative of L-rhamnose. JOURNAL-BANGLADESH ACADEMY OF SCIENCES. 1997;21:83–8.
  • 46. Matin M, Nath A, Saad O, Bhuiyan M, Kadir F, Abd Hamid S, et al. Synthesis, PASS-Predication and in Vitro Antimicrobial Activity of Benzyl 4-O-benzoyl-α-l-rhamnopyranoside Derivatives. IJMS. 2016 Aug 27;17(9):1412.
  • 47. Matin M, Ibrahim M. Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. JACR. 2010;6(10):1527–32.
  • 48. Staroń J, Dąbrowski JM, Cichoń E, Guzik M. Lactose esters: synthesis and biotechnological applications. Critical Reviews in Biotechnology. 2018 Feb 17;38(2):245–58.
  • 49. Richel A, Laurent P, Wathelet B, Wathelet J-P, Paquot M. Microwave-assisted conversion of carbohydrates. State of the art and outlook. Comptes Rendus Chimie. 2011 Feb;14(2–3):224–34.
  • 50. Furniss B, Hannaford A, Smith P, Tatchell A. Vogel’s textbook of practical organic chemistry. New. ed., 5. ed., rev. [Nachdr.]. Furniss B, Vogel A, editors. Harlow: Pearson/Prentice Hall; 1996. 1514 p. ISBN: 978-0-582-46236-6.
  • 51. Gramera RE, Park A, Whistler RL. A Convenient Preparation of 1,2-Mono-O-isopropylidene-α-D-glucofuranose. J Org Chem. 1963 Nov;28(11):3230–1.
  • 52. De Luca D, De Nino A, Liguori A, Procopio A, Sindona G. Nonionic surfactants. Regioselective synthesis of fatty acid esters of α- and β-glucopyranose. Lipids. 1997 May;32(5):559–63.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Organik Kimya
Bölüm Makaleler
Yazarlar

Puja Devi 0000-0002-1288-3176

Mohammed Mahbubul Matin 0000-0003-4965-2280

Md. Mosharef Hossain Bhuiyan 0000-0003-4279-151X

Md. Emdad Hossain Bu kişi benim 0000-0003-1398-2851

Proje Numarası Phys 535, 2020-21
Yayımlanma Tarihi 30 Kasım 2021
Gönderilme Tarihi 30 Nisan 2021
Kabul Tarihi 25 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

Vancouver Devi P, Matin MM, Bhuiyan MMH, Hossain ME. Synthesis, and Spectral Characterization of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose Derivatives. JOTCSA. 2021;8(4):1003-24.