Adsorption of Methylene Blue and Methyl Orange from Aqueous Solution using Orange Peel and CTAB-Modified Orange Peel
Year 2022,
Volume: 9 Issue: 1, 237 - 246, 28.02.2022
Aulia Dewi Rosanti
,
Yuly Kusumawati
,
Fahmi Hidayat
,
Arif Fadlan
Anggita R.k. Wardani
,
Herlina Agusyanti Anggraeni
Abstract
Cationic and anionic dyes are frequently used in industrial sectors and cause many environmental and health problems. Orange peel has the potential to absorb dye as an adsorbent. This study aimed to explore the adsorption of methylene blue (MB) as a cationic dye and methyl orange (MO) as an anionic dye using orange peel (OP) and its modification using cetyltrimethylammonium bromide (CTAB). OP and OP-CTAB biomass materials were characterized using FT-IR (Fourier transform infrared), surface area analysis using BET (Brunauer-Emmett-Teller) and SEM EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy). Based on the study results, OP has a microporous skin structure and OP-CTAB mesopores. Based on the effect of contact time, it is known that the best adsorption process on MB was to use OP adsorbent with the optimum amount of dye adsorbed produced at 50th minute that was 5.881 ppm, while the best adsorption process on MO was using OP-CTAB adsorbent with the optimum amount of dye was at 50th that was equal to 13.34 ppm. Based on the adsorption kinetics data, the adsorption of MO and MB dyes by OP and OP-CTAB followed the pseudo second order reaction kinetics model. The adsorption of MO and MB by both OP and OP-CTAB followed Langmuir's adsorption isotherm, meaning that the adsorption process in both MO and MB using OP and OP-CTAB appeared on homogeneous surface sites, while there was no interaction between adsorbate molecules and adjacent locations that means the adsorption process only occurred physically.
Thanks
The authors gratefully acknowledge the Indonesian Ministry Education, Culture, Research and Technology for financial support for this research and Universitas Islam Kadiri for the facilities.
References
- 1. Sayed Ahmed SA, Khalil LB, El-Nabarawy T. Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel. Carbon letters. 2012 Ekim;13(4):212–20.
- 2. Krishnan A, George D. Methylene blue removal using orange peel. International Journal of Scientific & Engineering Research. 2016;7(4):250–2.
- 3. Yuningrat NW, Retug N, Gunamantha IM. Fotodegradası Methyl Orange Dalam Reaktor Fixed Bed Batu Apung-Semen. J Sains Teknologi [Internet]. 2016 Aug 5;5(1): 692-701.
- 4. Cristina PM, Mu’nisatun S, Saptaaji R. Studi Pendahuluan Mengenai Degradasi Zat Warna Azo (Metil Orange) Dalam Pelarut Air Menggunakan Mesin Berkas Elektron 350 keV/10 mA. Jurnal Forum Nuklir. 2007 May 1;1(1):31.
- 5. Huda T, Yulitaningtyas TK. Kajian Adsorpsi Methylene Blue Menggunakan Selulosa dari Alang-Alang. Ind J Chem Anal [Internet]. 2018 Sep 20 [cited 2022 Jan 21];1(01): 9-19.
- 6. Yulianti Z, Munasir. Nanopartikel Fe3O4/SiO2 Berbasis Bahan Alam Sebagai Material Pengadsorpsi Pewarna dalam Air. J Inov Fis Indones. 2020;9(1):1–4.
- 7. Nandi R, Laskar S, Saha B. Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Res Chem Intermed. 2017 Mar;43(3):1619–34.
- 8. Mukherjee K, Saha R, Ghosh A, Ghosh SK, Maji PK, Saha B. Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueous extract of sugarcane bagasse. Res Chem Intermed. 2014 Apr;40(4):1727–34.
- 9. Rahadi B, Robbaniyah A, Pertanian T, Brawijaya U, Veteran J. Analysis of Methyl Orange Concentration Reduction Using Musa Acuminata Cv. Cavendish Banana Peel as Biosorbent. J Sumberd Alam dan Linkungan. 2019;6(2):29–35.
- 10. Hanif Z. Pengembangan Agribisnis Jeruk Nusantara. Iptek Hortikultura. 2020;16-N(Gambar 2):27–30.
- 11. Munagapati VS, Kim D-S. Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder. Journal of Molecular Liquids. 2016 Aug;220:540–8.
- 12. do Nascimento GE, Duarte MMMB, Campos NF, Rocha ORS da, Silva VL da. Adsorption of azo dyes using peanut hull and orange peel: a comparative study. Environmental Technology. 2014 Jun 3;35(11):1436–53.
- 13. Namasivayam C, Muniasamy N, Gayatri K, Rani M, Ranganathan K. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology. 1996 Jul;57(1):37–43.
- 14. Sivaraj R, Namasivayam C, Kadirvelu K. Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions. Waste Management. 2001;21(1):105–10.
- 15. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS. Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. Journal of Colloid and Interface Science. 2005 Aug;288(2):371–6.
- 16. Salman T, Ali M. Eriochrome Black T dye adsorption onto natural and modified orange peel. Res J Chem Environ. 2019;23(1):155–69.
- 17. Ansari R, Seyghali B, Mohammad-khah A, Zanjanchi MA. Highly Efficient Adsorption of Anionic Dyes from Aqueous Solutions Using Sawdust Modified by Cationic Surfactant of Cetyltrimethylammonium Bromide. J Surfact Deterg. 2012 Sep;15(5):557–65.
- 18. Mohamed Pauzan AS, Ahad N. Biomass Modification Using Cationic Surfactant Cetyltrimethylammonium Bromide (CTAB) to Remove Palm-Based Cooking Oil. Journal of Chemistry. 2018 Dec 24;2018:1–7.
- 19. Ai F, Zhao G, Lv W, Lin J. Facile synthesis of cetyltrimethylammonium bromide-loaded mesoporous silica nanoparticles for efficient inhibition of hepatocellular carcinoma cell proliferation. Materials Research Express. 2020 Aug;7(8):085008.
- 20. del Caño R, Gisbert-González JM, González-Rodríguez J, Sánchez-Obrero G, Madueño R, Blázquez M, et al. Effective replacement of cetyltrimethylammonium bromide (CTAB) by mercaptoalkanoic acids on gold nanorod (AuNR) surfaces in aqueous solutions. Nanoscale. 2020;12(2):658–68.
- 21. Che Ismail NH, Ahmad Bakhtiar NSA, Md. Akil H. Effects of cetyltrimethylammonium bromide (CTAB) on the structural characteristic of non-expandable muscovite. Materials Chemistry and Physics. 2017 Aug;196:324–32.
- 22. Campbell RA, Parker SRW, Day JPR, Bain CD. External Reflection FTIR Spectroscopy of the Cationic Surfactant Hexadecyltrimethylammonium Bromide (CTAB) on an Overflowing Cylinder. Langmuir. 2004 Sep 1;20(20):8740–53.
- 23. Azmiyawati C, Sawitri E, Siahaan P, Darmawan A, Suyati L. Preparation of magnetite-silica–cetyltrimethylammonium for phenol removal based on adsolubilization. Open Chemistry. 2020 Apr 21;18(1):369–76.
- 24. Febiyanti IA, Suseno A, Priyono P. Pengaruh Konsentrasi Surfaktan CTAB (Cetyltrimethylammonium bromide) pada Modifikasi Lempung dengan Oksida Besi sebagai Pemilar. J Kim Sains Apl. 2013 Dec 1;16(3):79–83.
- 25. Feng N, Guo X, Liang S. Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials. 2009 May 30;164(2–3):1286–92.
- 26. Anas NAA, Fen YW, Yusof NA, Omar NAS, Ramdzan NSM, Daniyal WMEMM. Investigating the Properties of Cetyltrimethylammonium Bromide/Hydroxylated Graphene Quantum Dots Thin Film for Potential Optical Detection of Heavy Metal Ions. Materials. 2020 Jun 6;13(11):2591.
- 27. Purbaningtias TE, Kurniawati P, Wiyantoko B, Prasetyoko D, Suprapto S. Pengaruh Waktu Aging Pada Modifikasi Pori Zeolit Alam Dengan Ctabr. J Sains Teknologi. 2017 Nov 27;6(2):321.
- 28. Badriyah L, Putri M. Kinetika Adsorpsi Cangkang Telur pada Zat Warna Metilen Biru. Alchemy. 2017;5(3):85–91.
- 29. Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere. 2020 Nov;258:127279.
- 30. Fadli A, Komalasari M, Amir D, Sari, Siburian R. Model Kesetimbangan Adsorpsi Zn+2 dengan Kaolin. Reaktor. 2004;8(2):59–62.
Year 2022,
Volume: 9 Issue: 1, 237 - 246, 28.02.2022
Aulia Dewi Rosanti
,
Yuly Kusumawati
,
Fahmi Hidayat
,
Arif Fadlan
Anggita R.k. Wardani
,
Herlina Agusyanti Anggraeni
References
- 1. Sayed Ahmed SA, Khalil LB, El-Nabarawy T. Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel. Carbon letters. 2012 Ekim;13(4):212–20.
- 2. Krishnan A, George D. Methylene blue removal using orange peel. International Journal of Scientific & Engineering Research. 2016;7(4):250–2.
- 3. Yuningrat NW, Retug N, Gunamantha IM. Fotodegradası Methyl Orange Dalam Reaktor Fixed Bed Batu Apung-Semen. J Sains Teknologi [Internet]. 2016 Aug 5;5(1): 692-701.
- 4. Cristina PM, Mu’nisatun S, Saptaaji R. Studi Pendahuluan Mengenai Degradasi Zat Warna Azo (Metil Orange) Dalam Pelarut Air Menggunakan Mesin Berkas Elektron 350 keV/10 mA. Jurnal Forum Nuklir. 2007 May 1;1(1):31.
- 5. Huda T, Yulitaningtyas TK. Kajian Adsorpsi Methylene Blue Menggunakan Selulosa dari Alang-Alang. Ind J Chem Anal [Internet]. 2018 Sep 20 [cited 2022 Jan 21];1(01): 9-19.
- 6. Yulianti Z, Munasir. Nanopartikel Fe3O4/SiO2 Berbasis Bahan Alam Sebagai Material Pengadsorpsi Pewarna dalam Air. J Inov Fis Indones. 2020;9(1):1–4.
- 7. Nandi R, Laskar S, Saha B. Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Res Chem Intermed. 2017 Mar;43(3):1619–34.
- 8. Mukherjee K, Saha R, Ghosh A, Ghosh SK, Maji PK, Saha B. Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueous extract of sugarcane bagasse. Res Chem Intermed. 2014 Apr;40(4):1727–34.
- 9. Rahadi B, Robbaniyah A, Pertanian T, Brawijaya U, Veteran J. Analysis of Methyl Orange Concentration Reduction Using Musa Acuminata Cv. Cavendish Banana Peel as Biosorbent. J Sumberd Alam dan Linkungan. 2019;6(2):29–35.
- 10. Hanif Z. Pengembangan Agribisnis Jeruk Nusantara. Iptek Hortikultura. 2020;16-N(Gambar 2):27–30.
- 11. Munagapati VS, Kim D-S. Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder. Journal of Molecular Liquids. 2016 Aug;220:540–8.
- 12. do Nascimento GE, Duarte MMMB, Campos NF, Rocha ORS da, Silva VL da. Adsorption of azo dyes using peanut hull and orange peel: a comparative study. Environmental Technology. 2014 Jun 3;35(11):1436–53.
- 13. Namasivayam C, Muniasamy N, Gayatri K, Rani M, Ranganathan K. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology. 1996 Jul;57(1):37–43.
- 14. Sivaraj R, Namasivayam C, Kadirvelu K. Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions. Waste Management. 2001;21(1):105–10.
- 15. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS. Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. Journal of Colloid and Interface Science. 2005 Aug;288(2):371–6.
- 16. Salman T, Ali M. Eriochrome Black T dye adsorption onto natural and modified orange peel. Res J Chem Environ. 2019;23(1):155–69.
- 17. Ansari R, Seyghali B, Mohammad-khah A, Zanjanchi MA. Highly Efficient Adsorption of Anionic Dyes from Aqueous Solutions Using Sawdust Modified by Cationic Surfactant of Cetyltrimethylammonium Bromide. J Surfact Deterg. 2012 Sep;15(5):557–65.
- 18. Mohamed Pauzan AS, Ahad N. Biomass Modification Using Cationic Surfactant Cetyltrimethylammonium Bromide (CTAB) to Remove Palm-Based Cooking Oil. Journal of Chemistry. 2018 Dec 24;2018:1–7.
- 19. Ai F, Zhao G, Lv W, Lin J. Facile synthesis of cetyltrimethylammonium bromide-loaded mesoporous silica nanoparticles for efficient inhibition of hepatocellular carcinoma cell proliferation. Materials Research Express. 2020 Aug;7(8):085008.
- 20. del Caño R, Gisbert-González JM, González-Rodríguez J, Sánchez-Obrero G, Madueño R, Blázquez M, et al. Effective replacement of cetyltrimethylammonium bromide (CTAB) by mercaptoalkanoic acids on gold nanorod (AuNR) surfaces in aqueous solutions. Nanoscale. 2020;12(2):658–68.
- 21. Che Ismail NH, Ahmad Bakhtiar NSA, Md. Akil H. Effects of cetyltrimethylammonium bromide (CTAB) on the structural characteristic of non-expandable muscovite. Materials Chemistry and Physics. 2017 Aug;196:324–32.
- 22. Campbell RA, Parker SRW, Day JPR, Bain CD. External Reflection FTIR Spectroscopy of the Cationic Surfactant Hexadecyltrimethylammonium Bromide (CTAB) on an Overflowing Cylinder. Langmuir. 2004 Sep 1;20(20):8740–53.
- 23. Azmiyawati C, Sawitri E, Siahaan P, Darmawan A, Suyati L. Preparation of magnetite-silica–cetyltrimethylammonium for phenol removal based on adsolubilization. Open Chemistry. 2020 Apr 21;18(1):369–76.
- 24. Febiyanti IA, Suseno A, Priyono P. Pengaruh Konsentrasi Surfaktan CTAB (Cetyltrimethylammonium bromide) pada Modifikasi Lempung dengan Oksida Besi sebagai Pemilar. J Kim Sains Apl. 2013 Dec 1;16(3):79–83.
- 25. Feng N, Guo X, Liang S. Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials. 2009 May 30;164(2–3):1286–92.
- 26. Anas NAA, Fen YW, Yusof NA, Omar NAS, Ramdzan NSM, Daniyal WMEMM. Investigating the Properties of Cetyltrimethylammonium Bromide/Hydroxylated Graphene Quantum Dots Thin Film for Potential Optical Detection of Heavy Metal Ions. Materials. 2020 Jun 6;13(11):2591.
- 27. Purbaningtias TE, Kurniawati P, Wiyantoko B, Prasetyoko D, Suprapto S. Pengaruh Waktu Aging Pada Modifikasi Pori Zeolit Alam Dengan Ctabr. J Sains Teknologi. 2017 Nov 27;6(2):321.
- 28. Badriyah L, Putri M. Kinetika Adsorpsi Cangkang Telur pada Zat Warna Metilen Biru. Alchemy. 2017;5(3):85–91.
- 29. Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere. 2020 Nov;258:127279.
- 30. Fadli A, Komalasari M, Amir D, Sari, Siburian R. Model Kesetimbangan Adsorpsi Zn+2 dengan Kaolin. Reaktor. 2004;8(2):59–62.