Synthesis, characterization, DFT calculations, and catalytic epoxidation of two oxovanadium(IV) Schiff base complexes
Year 2022,
Volume: 9 Issue: 1, 163 - 208, 28.02.2022
Asha Wady
Mohammed Khalid
,
Mohammed Alotaibi
Yusuf Ahmed
Abstract
The present paper reports the synthesis, characterization, and DFT calculations of two oxovanadium (IV) Schiff base complexes symbolized as VOL1 and VOL2, which prepared by the reaction of bivalent tridentate Schiff base ligands (E)-2-((5-chloro-2-hydroxybenzylidene)amino)acetic acid and (E)-2-((2-hydoxy-5-nitrobenzylidene)amino)acetic acid and VO(acac)2 as vanadium source. The Schiff base ligands and its oxovanadium (IV) complexes were characterized by the elemental analysis (C, H, N), FTIR, 1H NMR and 13C NMR, DFT calculations were performed to derive some of their molecular properties. Schiff base ligands coordinated to vanadium center via nitrogen from the azomethine group and one oxygen from the hydroxyl attached to the benzene ring and one oxygen from hydroxyl of carboxyl group. The catalytic activity of the two complexes were tested against cyclooctene and found that both complexes were highly effective and selective in optimized conditions when used as cyclooctene epoxidation catalysts with the conversion percentage of 91.85% (with VOL1) and 87.40% (with VOL2) at 78 °C within a period of ten hours. To understand the structural properties of the two complexes, the two complexes were well optimized at B3LYP/6-31G(d,p) level of theory, structural parameters such as electron affinity, global electrophilicity, global hardness, electronegativity, ionization potential, and electron chemical potential based on HOMO and LUMO energy values were calculated.
Supporting Institution
University of Khartoum
Project Number
The German Academic Exchange Services under Grant No A/14/93672
Thanks
The Author like to thank The German Academic Exchange Services for funding this research, and the author like to thank the Gamess Us Company and Orca company for providing free academic software.
References
- 1. Drozdzak R, Allaert B, Ledoux N, Dragutan I, Dragutan V, Verpoort F. Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. Coordination Chemistry Reviews. 2005 Dec;249(24):3055–74.
- 2. Pariya C, Jayaprakash KN, Sarkar A. Alkene metathesis: new developments in catalyst design and application. Coordination Chemistry Reviews. 1998 Jan;168:1–48.
- 3. Gan C, Lai G, Zhang Z, Wang Z, Zhou M-M. Efficient and enantioselective nitroaldol reaction catalyzed by copper Schiff-base complexes. Tetrahedron: Asymmetry. 2006 Mar;17(5):725–8.
- 4. Liu D-F, Lü X-Q, Lu R. Homogeneous and heterogeneous styrene epoxidation catalyzed by copper(II) and nickel(II) Schiff base complexes. Transition Met Chem. 2014 Sep;39(6):705–12.
- 5. Ray A, Rosair GM, Pilet G, Dede B, Gómez-García CJ, Signorella S, et al. Preferential azido bridging regulating the structural aspects in cobalt(III) and copper(II)–Schiff base complexes: Syntheses, magnetostructural correlations and catalytic studies. Inorganica Chimica Acta. 2011 Sep;375(1):20–30.
- 6. de Vries JG, Roelfes G, Green R. Ruthenium catalysed redox transformation of cinnamaldehyde to 3-phenylpropionic acid and methyl ester. Tetrahedron Letters. 1998 Nov;39(45):8329–32.
- 7. Odenkirk W, Rheingold AL, Bosnich B. Homogeneous catalysis: a ruthenium-based Lewis-acid catalyst for the Diels-Alder reaction. J Am Chem Soc. 1992 Jul;114(16):6392–8.
- 8. Kardanpour R, Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Zadehahmadi F. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework. Journal of Solid State Chemistry. 2015 Mar;226:262–72.
- 9. Sabater MJ, Corma A, Domenech A, Fornés V, García H. Chiral salen manganese complex encapsulated within zeolite Y: a heterogeneous enantioselective catalyst for the epoxidation of alkenes. Chem Commun. 1997;(14):1285–6.
- 10. Srikanth A, Nagendrappa G, Chandrasekaran S. Catalytic epoxidation of cyclic vinylsilanes by ruthenium(II) complexes under aerobic conditions. Tetrahedron. 2003 Sep;59(39):7761–5.
- 11. de Clercq B, Verpoort F. Assessing the Scope of the Introduction of Schiff Bases as Co-Ligands for Monometallic and Homobimetallic Ruthenium Ring-Opening Metathesis Polymerisation and Ring-Closing Metathesis Initiators. Adv Synth Catal. 2002 Aug;344(6–7):639–48.
- 12. Xi Z, Wang H, Sun Y, Zhou N, Cao G, Li M. Direct epoxidation of olefins catalyzed by heteropolyoxometalates with molecular oxygen and recyclable reductant. Journal of Molecular Catalysis A: Chemical. 2001 Mar;168(1–2):299–301.
- 13. Canali L, Sherrington DC. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem Soc Rev. 1999;28(2):85–93.
- 14. Berkessel A, Frauenkron M, Schwenkreis T, Steinmetz A. Pentacoordinated manganese complexes as biomimetic catalysts for asymmetric epoxidations with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical. 1997 Mar;117(1–3):339–46.
- 15. Ho C-W, Cheng W-C, Cheng M-C, Peng S-M, Cheng K-F, Che C-M. Preparation and reactivities of chiral manganese(III) and copper(II) complexes of binaphthyl Schiff bases. J Chem Soc, Dalton Trans. 1996;(4):405.
- 16. Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chem Rev. 1996 Jan 1;96(7):2563–606.
- 17. Judmaier ME, Holzer C, Volpe M, Mösch-Zanetti NC. Molybdenum(VI) Dioxo Complexes Employing Schiff Base Ligands with an Intramolecular Donor for Highly Selective Olefin Epoxidation. Inorg Chem. 2012 Sep 17;51(18):9956–66.
- 18. Lu X-H, Lei J, Wei X-L, Ma X-T, Zhang T-J, Hu W, et al. Selectively catalytic epoxidation of α-pinene with dry air over the composite catalysts of Co–MOR(L) with Schiff-base ligands. Journal of Molecular Catalysis A: Chemical. 2015 May;400:71–80.
- 19. Pasayat S, Böhme M, Dhaka S, Dash SP, Majumder S, Maurya MR, et al. Synthesis, Theoretical Study and Catalytic Application of Oxidometal (Mo or V) Complexes: Unexpected Coordination Due to Ligand Rearrangement through Metal‐Mediated C–C Bond Formation. Eur J Inorg Chem. 2016 Apr;2016(10):1604–18.
- 20. Wei FY. A mononuclear nickel(II) complex and a dinuclear manganese(III) complex derived from N,N’-bis(5-methoxysalicylidene)-1,2-ethanediamine: Synthesis, crystal structures and catalytic epoxidation property. Russ J Coord Chem. 2016 Jan;42(1):44–9.
- 21. Adhikary C, Bera R, Dutta B, Jana S, Bocelli G, Cantoni A, et al. Catalytic efficacy of Schiff-base copper(II) complexes: Synthesis, X-ray structure and olefin oxidation. Polyhedron. 2008 Apr;27(6):1556–62.
- 22. Koola JD, Kochi JK. Nickel catalysis of olefin epoxidation. Inorg Chem. 1987 Mar;26(6):908–16.
- 23. Groves JT, Watanabe Yoshihito. The mechanism of olefin epoxidation by oxo-iron porphyrins. Direct observation of an intermediate. J Am Chem Soc. 1986 Feb;108(3):507–8.
- 24. Maschmeyer T, Rey F, Sankar G, Thomas JM. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature. 1995 Nov;378(6553):159–62.
- 25. Mohajer D, Tangestaninejad S. Efficient catalytic epoxidation of alkenes by a manganese porphyrin and periodate in the presence of imidazole. J Chem Soc, Chem Commun. 1993;(3):240.
- 26. Martos-Calvente R, de la Peña O’Shea VA, Campos-Martin JM, Fierro JLG, Gutiérrez-Puebla E. Synthesis of bis[N,O-{2′-pyridyl-methanolate}]dioxomolybdenum(VI) epoxidation catalyst and novel crystal structure derived from X-ray diffraction and DFT calculations. Journal of Molecular Catalysis A: Chemical. 2004 Jun;214(2):269–72.
- 27. Herrmann WA, Fischer RW, Marz DW. Methyltrioxorhenium as Catalyst for Olefin Oxidation. Angew Chem Int Ed Engl. 1991 Dec;30(12):1638–41.
- 28. Copéret C, Adolfsson H, Sharpless KB. A simple and efficient method for epoxidation of terminal alkenes. Chem Commun. 1997;(16):1565–6.
- 29. De Vos DE, Sels BF, Reynaers M, Subba Rao YV, Jacobs PA. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters. 1998 May;39(20):3221–4.
- 30. Palucki M, Pospisil PJ, Zhang W, Jacobsen EN. Highly Enantioselective, Low-Temperature Epoxidation of Styrene. J Am Chem Soc. 1994 Oct;116(20):9333–4.
- 31. Jiang J, Ma K, Zheng Y, Cai S, Li R, Ma J. Cobalt salophen complex immobilized into montmorillonite as catalyst for the epoxidation of cyclohexene by air. Applied Clay Science. 2009 Jul;45(3):117–22.
- 32. Yang Y, Zhang Y, Hao S, Guan J, Ding H, Shang F, et al. Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Applied Catalysis A: General. 2010 Jun;381(1–2):274–81.
- 33. Janssen KBM, Laquiere I, Dehaen W, Parton RF, Vankelecom IFJ, Jacobs PA. A dimeric form of Jacobsen’s catalyst for improved retention in a polydimethylsiloxane membrane. Tetrahedron: Asymmetry. 1997 Oct;8(20):3481–7.
- 34. Feng H-X, Wang R-M, He Y-F, Lei Z-Q, Wang Y-P, Xia C-G, et al. Preparation and catalysis of porous silica supported metal Schiff-base complex. Journal of Molecular Catalysis A: Chemical. 2000 Sep;159(1):25–9.
- 35. Katsuki T. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coordination Chemistry Reviews. 1995 Mar;140:189–214.
- 36. Bolm C, Bienewald F. Asymmetric Sulfide Oxidation with Vanadium Catalysts and H2O2. Angew Chem Int Ed Engl. 1996 Jan 5;34(2324):2640–2.
- 37. Dichmann K, Hamer G, Nyburg SC, Reynolds WF. The 2:1 vanadyl acetylacetonate:1,4-dioxan complex. A nuclear magnetic resonance and X-ray crystal structure study. J Chem Soc D. 1970;(20):1295.
- 38. Hwang D-R, Chen C-P, Uang B-J. Aerobic catalytic oxidative coupling of 2-naphthols and phenols by VO(acac)2. Chem Commun. 1999;(13):1207–8.
- 39. Grivani G, Bruno G, Rudbari HA, Khalaji AD, Pourteimouri P. Synthesis, characterization and crystal structure determination of a new oxovanadium(IV) Schiff base complex: The catalytic activity in the epoxidation of cyclooctene. Inorganic Chemistry Communications. 2012 Apr;18:15–20.
- 40. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J. Gaussian 16 Rev. C. 01. Gaussian, Inc., Wallingford, CT; 2016.
- 41. Becke AD. A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics. 1993 Jan 15;98(2):1372–7.
- 42. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988 Jan 15;37(2):785–9.
- 43. Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models. Chem Rev. 2005 Aug 1;105(8):2999–3094.
- 44. Anonymous. Chemcraft - graphical software for visualization of quantum chemistry computations. [Internet]. ChemCraft.
- 45. Dennington R, Keith T. Gaussview, version 6.1 [Internet]. Gaussview software. 2019 [cited 2022 Jan 1].
- 46. Hait D, Head-Gordon M. How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. J Chem Theory Comput. 2018 Apr 10;14(4):1969–81.
- 47. Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci [Internet]. 2018 Jan [cited 2022 Jan 1];8(1).
- 48. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993 Nov;14(11):1347–63.
- 49. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012 Dec;4(1):17.
- 50. O’Boyle NM, Tenderholt AL, Langner KM. cclib: A library for package-independent computational chemistry algorithms. J Comput Chem. 2008 Apr 15;29(5):839–45.
- 51. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics. 1985 Jan;82(1):270–83.
- 52. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics. 1985 Jan;82(1):284–98.
- 53. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics. 1985 Jan;82(1):299–310.
- 54. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996 Oct 28;77(18):3865–8.
- 55. Goodgame M, Hayward PJ. Infrared spectra (1650–400 cm. –1 ) of γ-picoline metal co-ordination complexes. J Chem Soc A. 1966;0(0):632–4.
- 56. Syamal A, Kale KS. Magnetic and spectral properties of oxovanadium(IV) complexes of ONO donor tridentate, dibasic Schiff bases derived from salicylaldehyde or substituted salicylaldehyde and o-hydroxybenzylamine. Inorg Chem. 1979 Apr;18(4):992–5.
- 57. Selbin J. The Chemistry of Oxovanadium(IV). Chem Rev. 1965 Apr 1;65(2):153–75.
- 58. Selbin J. Oxovanadium(IV) complexes. Coordination Chemistry Reviews. 1966 Aug;1(3):293–314.
- 59. Dinda R, Sengupta P, Ghosh S, Mak TCW. Valence Delocalization in a Mixed-Oxidation Divanadium (IV, V) Complex Electrogenerated from Its Structurally Characterized Divanadium (V) Analogue with a Tridentate (ONO) Ligand. Inorg Chem. 2002 Mar 1;41(6):1684–8.
- 60. Vergopoulos V, Priebsch W, Fritzsche M, Rehder D. Binding of L-histidine to vanadium. Structure of exo-[VO2{N-(2-oxidonaphthal)-His}]. Inorg Chem. 1993 Apr;32(9):1844–9.
- 61. Abrarin S, Ahmed MJ. A highly sensitive and selective spectrophotometric method for the determination of vanadium at nanotrace levels in some environmental, biological, soil, food, and pharmaceutical samples using salicylaldehyde-benzoylhydrazone. Eur J Chem. 2020 Dec 31;11(4):385–95.
- 62. Keramidas AD, Papaioannou AB, Vlahos A, Kabanos TA, Bonas G, Makriyannis A, et al. Model Investigations for Vanadium−Protein Interactions. Synthetic, Structural, and Physical Studies of Vanadium(III) and Oxovanadium(IV/V) Complexes with Amidate Ligands. Inorg Chem. 1996 Jan 1;35(2):357–67.
- 63. Schmidt A-C, Hermsen M, Rominger F, Dehn R, Teles JH, Schäfer A, et al. Synthesis of Mono- and Dinuclear Vanadium Complexes and Their Reactivity toward Dehydroperoxidation of Alkyl Hydroperoxides. Inorg Chem. 2017 Feb 6;56(3):1319–32.
- 64. Maurya RC, Chourasia J, Rajak D, Malik BA, Mir JM, Jain N, et al. Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling of some oxovanadium(IV) complexes involving O, N-donor environment of salicylaldehyde-based sulfa drug Schiff bases. Arabian Journal of Chemistry. 2016 Nov;9:S1084–100.
- 65. Politzer P, Laurence PR, Jayasuriya K. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental Health Perspectives. 1985 Sep;61:191–202.
- 66. Frenking G, Shaik S, editors. The chemical bond. 1: Fundamental aspects of chemical bonding. Weinheim: Wiley-VCH; 2014. 411 p. ISBN: 978-3-527-33314-1.
- 67. Parr RG, Szentpály L v., Liu S. Electrophilicity Index. J Am Chem Soc. 1999 Mar 1;121(9):1922–4.
- 68. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1934 Jan;1(1–6):104–13.
- 69. Ayers PW. The physical basis of the hard/soft acid/base principle. Faraday Discuss. 2007;135:161–90.
- 70. Chattaraj PK, Sarkar U, Roy DR. Electrophilicity Index. Chem Rev. 2006 Jun 1;106(6):2065–91.
- 71. Rayati S, Koliaei M, Ashouri F, Mohebbi S, Wojtczak A, Kozakiewicz A. Oxovanadium(IV) Schiff base complexes derived from 2,2′-dimethylpropandiamine: A homogeneous catalyst for cyclooctene and styrene oxidation. Applied Catalysis A: General. 2008 Aug;346(1–2):65–71.
- 72. Madeira F, Barroso S, Namorado S, Reis PM, Royo B, Martins AM. Epoxidation of cis-cyclooctene using diamine bis(phenolate) vanadium, molybdenum and tungsten complexes as catalysts. Inorganica Chimica Acta. 2012 Mar;383:152–6.
- 73. Conte V, Coletti A, Floris B, Licini G, Zonta C. Mechanistic aspects of vanadium catalysed oxidations with peroxides. Coordination Chemistry Reviews. 2011 Oct;255(19–20):2165–77.
- 74. Maurya MR, Sarkar B, Avecilla F, Correia I. Vanadium( iv and v ) complexes of pyrazolone based ligands: Synthesis, structural characterization and catalytic applications. Dalton Trans. 2016;45(43):17343–64.
- 75. Marcoline F, Grabe M, Nayak S, Zahnley T, Oster G, Robert M. Berkeley Madonna version 10.1.2 [Internet]. Berkeley Madonna version 10.1.2. 2017.
- 76. Mathavan A, Ramdass A, Rajagopal S. Kinetic study of the oxovanadium(IV)–salen-catalyzed H2O2 oxidation of phenols. Transition Met Chem. 2015 May;40(4):355–62.
Year 2022,
Volume: 9 Issue: 1, 163 - 208, 28.02.2022
Asha Wady
Mohammed Khalid
,
Mohammed Alotaibi
Yusuf Ahmed
Project Number
The German Academic Exchange Services under Grant No A/14/93672
References
- 1. Drozdzak R, Allaert B, Ledoux N, Dragutan I, Dragutan V, Verpoort F. Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. Coordination Chemistry Reviews. 2005 Dec;249(24):3055–74.
- 2. Pariya C, Jayaprakash KN, Sarkar A. Alkene metathesis: new developments in catalyst design and application. Coordination Chemistry Reviews. 1998 Jan;168:1–48.
- 3. Gan C, Lai G, Zhang Z, Wang Z, Zhou M-M. Efficient and enantioselective nitroaldol reaction catalyzed by copper Schiff-base complexes. Tetrahedron: Asymmetry. 2006 Mar;17(5):725–8.
- 4. Liu D-F, Lü X-Q, Lu R. Homogeneous and heterogeneous styrene epoxidation catalyzed by copper(II) and nickel(II) Schiff base complexes. Transition Met Chem. 2014 Sep;39(6):705–12.
- 5. Ray A, Rosair GM, Pilet G, Dede B, Gómez-García CJ, Signorella S, et al. Preferential azido bridging regulating the structural aspects in cobalt(III) and copper(II)–Schiff base complexes: Syntheses, magnetostructural correlations and catalytic studies. Inorganica Chimica Acta. 2011 Sep;375(1):20–30.
- 6. de Vries JG, Roelfes G, Green R. Ruthenium catalysed redox transformation of cinnamaldehyde to 3-phenylpropionic acid and methyl ester. Tetrahedron Letters. 1998 Nov;39(45):8329–32.
- 7. Odenkirk W, Rheingold AL, Bosnich B. Homogeneous catalysis: a ruthenium-based Lewis-acid catalyst for the Diels-Alder reaction. J Am Chem Soc. 1992 Jul;114(16):6392–8.
- 8. Kardanpour R, Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Zadehahmadi F. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework. Journal of Solid State Chemistry. 2015 Mar;226:262–72.
- 9. Sabater MJ, Corma A, Domenech A, Fornés V, García H. Chiral salen manganese complex encapsulated within zeolite Y: a heterogeneous enantioselective catalyst for the epoxidation of alkenes. Chem Commun. 1997;(14):1285–6.
- 10. Srikanth A, Nagendrappa G, Chandrasekaran S. Catalytic epoxidation of cyclic vinylsilanes by ruthenium(II) complexes under aerobic conditions. Tetrahedron. 2003 Sep;59(39):7761–5.
- 11. de Clercq B, Verpoort F. Assessing the Scope of the Introduction of Schiff Bases as Co-Ligands for Monometallic and Homobimetallic Ruthenium Ring-Opening Metathesis Polymerisation and Ring-Closing Metathesis Initiators. Adv Synth Catal. 2002 Aug;344(6–7):639–48.
- 12. Xi Z, Wang H, Sun Y, Zhou N, Cao G, Li M. Direct epoxidation of olefins catalyzed by heteropolyoxometalates with molecular oxygen and recyclable reductant. Journal of Molecular Catalysis A: Chemical. 2001 Mar;168(1–2):299–301.
- 13. Canali L, Sherrington DC. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem Soc Rev. 1999;28(2):85–93.
- 14. Berkessel A, Frauenkron M, Schwenkreis T, Steinmetz A. Pentacoordinated manganese complexes as biomimetic catalysts for asymmetric epoxidations with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical. 1997 Mar;117(1–3):339–46.
- 15. Ho C-W, Cheng W-C, Cheng M-C, Peng S-M, Cheng K-F, Che C-M. Preparation and reactivities of chiral manganese(III) and copper(II) complexes of binaphthyl Schiff bases. J Chem Soc, Dalton Trans. 1996;(4):405.
- 16. Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chem Rev. 1996 Jan 1;96(7):2563–606.
- 17. Judmaier ME, Holzer C, Volpe M, Mösch-Zanetti NC. Molybdenum(VI) Dioxo Complexes Employing Schiff Base Ligands with an Intramolecular Donor for Highly Selective Olefin Epoxidation. Inorg Chem. 2012 Sep 17;51(18):9956–66.
- 18. Lu X-H, Lei J, Wei X-L, Ma X-T, Zhang T-J, Hu W, et al. Selectively catalytic epoxidation of α-pinene with dry air over the composite catalysts of Co–MOR(L) with Schiff-base ligands. Journal of Molecular Catalysis A: Chemical. 2015 May;400:71–80.
- 19. Pasayat S, Böhme M, Dhaka S, Dash SP, Majumder S, Maurya MR, et al. Synthesis, Theoretical Study and Catalytic Application of Oxidometal (Mo or V) Complexes: Unexpected Coordination Due to Ligand Rearrangement through Metal‐Mediated C–C Bond Formation. Eur J Inorg Chem. 2016 Apr;2016(10):1604–18.
- 20. Wei FY. A mononuclear nickel(II) complex and a dinuclear manganese(III) complex derived from N,N’-bis(5-methoxysalicylidene)-1,2-ethanediamine: Synthesis, crystal structures and catalytic epoxidation property. Russ J Coord Chem. 2016 Jan;42(1):44–9.
- 21. Adhikary C, Bera R, Dutta B, Jana S, Bocelli G, Cantoni A, et al. Catalytic efficacy of Schiff-base copper(II) complexes: Synthesis, X-ray structure and olefin oxidation. Polyhedron. 2008 Apr;27(6):1556–62.
- 22. Koola JD, Kochi JK. Nickel catalysis of olefin epoxidation. Inorg Chem. 1987 Mar;26(6):908–16.
- 23. Groves JT, Watanabe Yoshihito. The mechanism of olefin epoxidation by oxo-iron porphyrins. Direct observation of an intermediate. J Am Chem Soc. 1986 Feb;108(3):507–8.
- 24. Maschmeyer T, Rey F, Sankar G, Thomas JM. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature. 1995 Nov;378(6553):159–62.
- 25. Mohajer D, Tangestaninejad S. Efficient catalytic epoxidation of alkenes by a manganese porphyrin and periodate in the presence of imidazole. J Chem Soc, Chem Commun. 1993;(3):240.
- 26. Martos-Calvente R, de la Peña O’Shea VA, Campos-Martin JM, Fierro JLG, Gutiérrez-Puebla E. Synthesis of bis[N,O-{2′-pyridyl-methanolate}]dioxomolybdenum(VI) epoxidation catalyst and novel crystal structure derived from X-ray diffraction and DFT calculations. Journal of Molecular Catalysis A: Chemical. 2004 Jun;214(2):269–72.
- 27. Herrmann WA, Fischer RW, Marz DW. Methyltrioxorhenium as Catalyst for Olefin Oxidation. Angew Chem Int Ed Engl. 1991 Dec;30(12):1638–41.
- 28. Copéret C, Adolfsson H, Sharpless KB. A simple and efficient method for epoxidation of terminal alkenes. Chem Commun. 1997;(16):1565–6.
- 29. De Vos DE, Sels BF, Reynaers M, Subba Rao YV, Jacobs PA. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters. 1998 May;39(20):3221–4.
- 30. Palucki M, Pospisil PJ, Zhang W, Jacobsen EN. Highly Enantioselective, Low-Temperature Epoxidation of Styrene. J Am Chem Soc. 1994 Oct;116(20):9333–4.
- 31. Jiang J, Ma K, Zheng Y, Cai S, Li R, Ma J. Cobalt salophen complex immobilized into montmorillonite as catalyst for the epoxidation of cyclohexene by air. Applied Clay Science. 2009 Jul;45(3):117–22.
- 32. Yang Y, Zhang Y, Hao S, Guan J, Ding H, Shang F, et al. Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Applied Catalysis A: General. 2010 Jun;381(1–2):274–81.
- 33. Janssen KBM, Laquiere I, Dehaen W, Parton RF, Vankelecom IFJ, Jacobs PA. A dimeric form of Jacobsen’s catalyst for improved retention in a polydimethylsiloxane membrane. Tetrahedron: Asymmetry. 1997 Oct;8(20):3481–7.
- 34. Feng H-X, Wang R-M, He Y-F, Lei Z-Q, Wang Y-P, Xia C-G, et al. Preparation and catalysis of porous silica supported metal Schiff-base complex. Journal of Molecular Catalysis A: Chemical. 2000 Sep;159(1):25–9.
- 35. Katsuki T. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coordination Chemistry Reviews. 1995 Mar;140:189–214.
- 36. Bolm C, Bienewald F. Asymmetric Sulfide Oxidation with Vanadium Catalysts and H2O2. Angew Chem Int Ed Engl. 1996 Jan 5;34(2324):2640–2.
- 37. Dichmann K, Hamer G, Nyburg SC, Reynolds WF. The 2:1 vanadyl acetylacetonate:1,4-dioxan complex. A nuclear magnetic resonance and X-ray crystal structure study. J Chem Soc D. 1970;(20):1295.
- 38. Hwang D-R, Chen C-P, Uang B-J. Aerobic catalytic oxidative coupling of 2-naphthols and phenols by VO(acac)2. Chem Commun. 1999;(13):1207–8.
- 39. Grivani G, Bruno G, Rudbari HA, Khalaji AD, Pourteimouri P. Synthesis, characterization and crystal structure determination of a new oxovanadium(IV) Schiff base complex: The catalytic activity in the epoxidation of cyclooctene. Inorganic Chemistry Communications. 2012 Apr;18:15–20.
- 40. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J. Gaussian 16 Rev. C. 01. Gaussian, Inc., Wallingford, CT; 2016.
- 41. Becke AD. A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics. 1993 Jan 15;98(2):1372–7.
- 42. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988 Jan 15;37(2):785–9.
- 43. Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models. Chem Rev. 2005 Aug 1;105(8):2999–3094.
- 44. Anonymous. Chemcraft - graphical software for visualization of quantum chemistry computations. [Internet]. ChemCraft.
- 45. Dennington R, Keith T. Gaussview, version 6.1 [Internet]. Gaussview software. 2019 [cited 2022 Jan 1].
- 46. Hait D, Head-Gordon M. How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. J Chem Theory Comput. 2018 Apr 10;14(4):1969–81.
- 47. Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci [Internet]. 2018 Jan [cited 2022 Jan 1];8(1).
- 48. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993 Nov;14(11):1347–63.
- 49. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012 Dec;4(1):17.
- 50. O’Boyle NM, Tenderholt AL, Langner KM. cclib: A library for package-independent computational chemistry algorithms. J Comput Chem. 2008 Apr 15;29(5):839–45.
- 51. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics. 1985 Jan;82(1):270–83.
- 52. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics. 1985 Jan;82(1):284–98.
- 53. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics. 1985 Jan;82(1):299–310.
- 54. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996 Oct 28;77(18):3865–8.
- 55. Goodgame M, Hayward PJ. Infrared spectra (1650–400 cm. –1 ) of γ-picoline metal co-ordination complexes. J Chem Soc A. 1966;0(0):632–4.
- 56. Syamal A, Kale KS. Magnetic and spectral properties of oxovanadium(IV) complexes of ONO donor tridentate, dibasic Schiff bases derived from salicylaldehyde or substituted salicylaldehyde and o-hydroxybenzylamine. Inorg Chem. 1979 Apr;18(4):992–5.
- 57. Selbin J. The Chemistry of Oxovanadium(IV). Chem Rev. 1965 Apr 1;65(2):153–75.
- 58. Selbin J. Oxovanadium(IV) complexes. Coordination Chemistry Reviews. 1966 Aug;1(3):293–314.
- 59. Dinda R, Sengupta P, Ghosh S, Mak TCW. Valence Delocalization in a Mixed-Oxidation Divanadium (IV, V) Complex Electrogenerated from Its Structurally Characterized Divanadium (V) Analogue with a Tridentate (ONO) Ligand. Inorg Chem. 2002 Mar 1;41(6):1684–8.
- 60. Vergopoulos V, Priebsch W, Fritzsche M, Rehder D. Binding of L-histidine to vanadium. Structure of exo-[VO2{N-(2-oxidonaphthal)-His}]. Inorg Chem. 1993 Apr;32(9):1844–9.
- 61. Abrarin S, Ahmed MJ. A highly sensitive and selective spectrophotometric method for the determination of vanadium at nanotrace levels in some environmental, biological, soil, food, and pharmaceutical samples using salicylaldehyde-benzoylhydrazone. Eur J Chem. 2020 Dec 31;11(4):385–95.
- 62. Keramidas AD, Papaioannou AB, Vlahos A, Kabanos TA, Bonas G, Makriyannis A, et al. Model Investigations for Vanadium−Protein Interactions. Synthetic, Structural, and Physical Studies of Vanadium(III) and Oxovanadium(IV/V) Complexes with Amidate Ligands. Inorg Chem. 1996 Jan 1;35(2):357–67.
- 63. Schmidt A-C, Hermsen M, Rominger F, Dehn R, Teles JH, Schäfer A, et al. Synthesis of Mono- and Dinuclear Vanadium Complexes and Their Reactivity toward Dehydroperoxidation of Alkyl Hydroperoxides. Inorg Chem. 2017 Feb 6;56(3):1319–32.
- 64. Maurya RC, Chourasia J, Rajak D, Malik BA, Mir JM, Jain N, et al. Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling of some oxovanadium(IV) complexes involving O, N-donor environment of salicylaldehyde-based sulfa drug Schiff bases. Arabian Journal of Chemistry. 2016 Nov;9:S1084–100.
- 65. Politzer P, Laurence PR, Jayasuriya K. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental Health Perspectives. 1985 Sep;61:191–202.
- 66. Frenking G, Shaik S, editors. The chemical bond. 1: Fundamental aspects of chemical bonding. Weinheim: Wiley-VCH; 2014. 411 p. ISBN: 978-3-527-33314-1.
- 67. Parr RG, Szentpály L v., Liu S. Electrophilicity Index. J Am Chem Soc. 1999 Mar 1;121(9):1922–4.
- 68. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1934 Jan;1(1–6):104–13.
- 69. Ayers PW. The physical basis of the hard/soft acid/base principle. Faraday Discuss. 2007;135:161–90.
- 70. Chattaraj PK, Sarkar U, Roy DR. Electrophilicity Index. Chem Rev. 2006 Jun 1;106(6):2065–91.
- 71. Rayati S, Koliaei M, Ashouri F, Mohebbi S, Wojtczak A, Kozakiewicz A. Oxovanadium(IV) Schiff base complexes derived from 2,2′-dimethylpropandiamine: A homogeneous catalyst for cyclooctene and styrene oxidation. Applied Catalysis A: General. 2008 Aug;346(1–2):65–71.
- 72. Madeira F, Barroso S, Namorado S, Reis PM, Royo B, Martins AM. Epoxidation of cis-cyclooctene using diamine bis(phenolate) vanadium, molybdenum and tungsten complexes as catalysts. Inorganica Chimica Acta. 2012 Mar;383:152–6.
- 73. Conte V, Coletti A, Floris B, Licini G, Zonta C. Mechanistic aspects of vanadium catalysed oxidations with peroxides. Coordination Chemistry Reviews. 2011 Oct;255(19–20):2165–77.
- 74. Maurya MR, Sarkar B, Avecilla F, Correia I. Vanadium( iv and v ) complexes of pyrazolone based ligands: Synthesis, structural characterization and catalytic applications. Dalton Trans. 2016;45(43):17343–64.
- 75. Marcoline F, Grabe M, Nayak S, Zahnley T, Oster G, Robert M. Berkeley Madonna version 10.1.2 [Internet]. Berkeley Madonna version 10.1.2. 2017.
- 76. Mathavan A, Ramdass A, Rajagopal S. Kinetic study of the oxovanadium(IV)–salen-catalyzed H2O2 oxidation of phenols. Transition Met Chem. 2015 May;40(4):355–62.