Research Article
BibTex RIS Cite

Synthesis and characterization of azobenzene derived from 8-aminoquinoline in aqueous media

Year 2022, Volume: 9 Issue: 1, 85 - 114, 28.02.2022
https://doi.org/10.18596/jotcsa.1012453

Abstract

A series of novel 8-(aryldiazenyl)quinolones have been synthesized effectively with excellent yields by using 8-amimoquinoline and a variety of aryldiazonium salts containing electron donating and withdrawing moieties in aqueous media. The structure of the synthesized azo dyes have been characterized by NMR, FTIR, mass spectroscopy and UV–Vis techniques.

References

  • 1. Bafana A, Devi SS, Chakrabarti T. Azo dyes: past, present and the future. Environmental Reviews. 2011;19:350–71.
  • 2. Hunger K, Schmidt MU. Industrial Organic Pigments [Internet]. Wiley; 2018.
  • 3. Banghart MR, Mourot A, Fortin D, Yao JZ, Kramer RH, Trauner D. Photochromic Blockers of Voltage-Gated Potassium Channels. Angewandte Chemie International Edition. 2009;48(48):9097–101.
  • 4. Lim SY, Hong KH, Kim D Il, Kwon H, Kim HJ. Tunable Heptamethine–Azo Dye Conjugate as an NIR Fluorescent Probe for the Selective Detection of Mitochondrial Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society. 2014;136(19):7018–25.
  • 5. DiCesare N, Lakowicz JR. New Color Chemosensors for Monosaccharides Based on Azo Dyes. Organic Letters. 2001;3(24):3891–3.
  • 6. Chang KC, Su IH, Wang YY, Chung WS. A Bifunctional Chromogenic Calix[4]arene Chemosensor for Both Cations and Anions: A Potential Ca2+ and F- Switched Inhıbıt Logic Gate with a YES Logic Function. European Journal of Organic Chemistry. 2010;2010(24):4700–4.
  • 7. Leulescu M, Rotaru A, Moanţă A, Iacobescu G, Pălărie I, Cioateră N, et. al. Azorubine: physical, thermal and bioactive properties of the widely employed food, pharmaceutical and cosmetic red azo dye material. Journal of Thermal Analysis and Calorimetry. 2021;143(6):3945–67.
  • 8. Wang LH, Shu-Juan H. Studies on the voltammetric behavior of azo dyes and its determination in cosmetic products1. Russian Journal of Electrochemistry. 2010;46(12):1414–8.
  • 9. Rawat D, Sharma RS, Karmakar S, Arora LS, Mishra V. Ecotoxic potential of a presumably non-toxic azo dye. Ecotoxicology and Environmental Safety. 2018;148:528–37.
  • 10. Khaligh NG, Hamid SBA, Hazarkhani H. TiO 2 nanotubes and sonication: Synthesis of azo-linked xanthenes. Inorganic and Nano-Metal Chemistry. 2017;47(10):1468–74.
  • 11. Merino E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chemical Society Reviews. 2011;40(7):3835-53.
  • 12. Qıu F, Cao Y, Xu H, Jıang Y, Zhou Y, Lıu J. Synthesis and properties of polymer containing azo-dye chromophores for nonlinear optical applications. Dyes and Pigments. 2007;75(2):454–9.
  • 13. Çanakçı D, Serin S. Synthesis of new azo dye polymers based on naphthol by oxidative polycondensation: antimicrobial activity and fastness studies. Journal of Polymer Research. 2020;27(1):11.
  • 14. Çanakçı D. Synthesis, Spectroscopic, Thermodynamics and Kinetics Analysis Study of Novel Polymers Containing Various Azo Chromophore. Scientific Reports. 2020;10(1):477.
  • 15. Farghaly TA, Abdallah ZA. Synthesis, azo-hydrazone tautomerism and antitumor screening of N-(3-ethoxycarbonyl-4,5,6,7-tetrahydro-benzo[b]thien-2-yl)-2-arylhydrazono-3-oxo butanamide derivatives. Arkivoc. 2009;2008(17):295–305.
  • 16. Ali Y, Hamid SA, Rashid U. Biomedical Applications of Aromatic Azo Compounds. Mini-Reviews in Medicinal Chemistry. 2018;18(18):1548–58.
  • 17. Akram D, Elhaty IA, AlNeyadi SS. Synthesis and Antibacterial Activity of Rhodanine-Based Azo Dyes and Their Use as Spectrophotometric Chemosensor for Fe3+ Ions. Chemosensors. 2020;8(1):16.
  • 18. Unnisa A, Abouzied AS, Baratam A, Chenchu Lakshmi KNV, Hussain T, Kunduru RD, et. al. Design, synthesis, characterization, computational study and in-vitro antioxidant and anti-inflammatory activities of few novel 6-aryl substituted pyrimidine azo dyes. Arabian Journal of Chemistry. 2020;13(12):8638–49.
  • 19. Kennedy DA, Vembu N, Fronczek FR, Devocelle M. Synthesis of Mutual Azo Prodrugs of Anti-inflammatory Agents and Peptides Facilitated by α-Aminoisobutyric Acid. The Journal of Organic Chemistry. 2011;76(23):9641–7.
  • 20. Adu JK, Amengor CDK, Mohammed Ibrahim N, Amaning-Danquah C, Owusu Ansah C, Gbadago DD, vd. Synthesis and In Vitro Antimicrobial and Anthelminthic Evaluation of Naphtholic and Phenolic Azo Dyes. Journal of Tropical Medicine. 2020;2020:1–8.
  • 21. Shaki H, Gharanjig K, Khosravi A. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides. Biotechnology Progress. 2015;31(4):1086–95.
  • 22. Saeed AM, AlNeyadi SS, Abdou IM. Anticancer activity of novel Schiff bases and azo dyes derived from 3-amino-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione. Heterocyclic Communications. 2020;26(1):192–205.
  • 23. Abd-El-Aziz AS, Alsaggaf A, Assirey E, Naqvi A, Okasha RM, Afifi TH, et. al. A New Family of Benzo[h]Chromene Based Azo Dye: Synthesis, In-Silico and DFT Studies with In Vitro Antimicrobial and Antiproliferative Assessment. International Journal of Molecular Sciences. 2021;22(6):2807.
  • 24. Tahir T, Shahzad MI, Tabassum R, Rafiq M, Ashfaq M, Hassan M, et. al. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: synthesis, in vitro , kinetic and docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021;36(1):1509–20.
  • 25. Mallikarjuna NM, Keshavayya J. Synthesis, spectroscopic characterization and pharmacological studies on novel sulfamethaxazole based azo dyes. Journal of King Saud University - Science. 2020;32(1):251–9.
  • 26. Dusan M, Biljana BN, Bozıc B, Kovrlıja I, Ladarevıc J, Uscumlıc G. Synthesis, solvatochromism, and biological activity of novel azo dyes bearing 2-pyridone and benzimidazole moieties. Turkish Journal Of Chemistry. 2018;42(3).
  • 27. Surucu O, Abaci S, Seferoğlu Z. Electrochemical characterization of azo dye (E)-1-(4-((4-(phenylamino)phenyl)diazenyl)phenyl)ethanone (DPA). Electrochimica Acta. 2016;195:175–83.
  • 28. Harisha S, Keshavayya J, Kumara Swamy BE, Viswanath CC. Synthesis, characterization and electrochemical studies of azo dyes derived from barbituric acid. Dyes and Pigments. 2017;136:742–53.
  • 29. Grand View Research. Dyes & Pigments Market Size, Share & Trends Analysis Report [Internet]. 2021.
  • 30. Carliell CM, Barclay SJ, Shaw C, Wheatley AD, Buckley CA. The Effect of Salts Used in Textile Dyeing on Microbial Decolourisation of a Reactive Azo Dye. Environmental Technology. 1998;19(11):1133–7.
  • 31. He Y, Zhao N, Qiu L, Zhang X, Fan X. Regio- and Chemoselective Mono- and Bisnitration of 8-Amino quinoline Amides with Fe(NO3)3·9H2O as Promoter and Nitro Source. Organic Letters. 2016;18(23):6054–7.
  • 32. Nanayakkara NPD, Ager AL, Bartlett MS, Yardley V, Croft SL, Khan IA, et. al. Antiparasitic Activities and Toxicities of Individual Enantiomers of the 8-Aminoquinoline 8-[(4-Amino-1-Methylbutyl)Amino]-6-Methoxy-4-Methyl-5-[3,4-Dichlorophenoxy]Quinoline Succinate. Antimicrobial Agents and Chemotherapy. 2008;52(6):2130–7.
  • 33. Warhurst DC. Understanding resistance to antimalarial 4-aminoquinolines, cinchona alkaloids and the highly hydrophobic arylaminoalcohols. Current Science. 2007;92:1556–60.
  • 34. Bray P, Park B, Asadollaly E, Biagini G, Jeyadevan J, Berry N, et. al. A Medicinal Chemistry Perspective on 4-Aminoquinoline Antimalarial Drugs. Current Topics in Medicinal Chemistry. 2006;6(5):479–507.
  • 35. Golden EB, Cho H-Y, Hofman FM, Louie SG, Schönthal AH, Chen TC. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurgical Focus. 2015;38(3):E12.
  • 36. Vandekerckhove S, D’hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorganic & Medicinal Chemistry. 2015;23(16):5098–119.
  • 37. Foley M, Tilley L. Quinoline antimalarials: Mechanisms of action and resistance. International Journal for Parasitology. 1997;27(2):231–40.
  • 38. Egan TJ, Ncokazi KK. Quinoline antimalarials decrease the rate of β-hematin formation. Journal of Inorganic Biochemistry. 2005;99(7):1532–9.
  • 39. Kaur K, Jain M, Reddy RP, Jain R. Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry. 2010;45(8):3245–64.
  • 40. Oliphant CM, Green GM. Quinolones: a comprehensive review. American Family Physician. 2002;65(3):455–64.
  • 41. Romero AH. Role of Trifluoromethyl Substitution in Design of Antimalarial Quinolones: a Comprehensive Review. Topics in Current Chemistry. 2019;377(2):9.
  • 42. King DE, Malone R, Lilley SH. New classification and update on the quinolone antibiotics. American Family Physician. 2000;61(9):2741–8.
  • 43. Prachayasittikul V, Prachayasittikul V, Prachayasittikul S, Ruchirawat S. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Design, Development and Therapy. 2013;1157.
  • 44. Zhu C, Wang Y, Mao Q, Li F, Li Y, Chen C. Two 8-Hydroxyquinolinate Based Supramolecular Coordination Compounds: Synthesis, Structures and Spectral Properties. Materials. 2017;10(3):313.
  • 45. Kuchárová V, Kuchár J, Zaric M, Canovic P, Arsenijevic N, Volarevic V, et. al. Low-dimensional compounds containing bioactive ligands. Part XI: Synthesis, structures, spectra, in vitro anti-tumor and antimicrobial activities of 3d metal complexes with 8-hydroxyquinoline-5-sulfonic acid. Inorganica Chimica Acta. 2019;497:119062.
  • 46. DiMauro EF, Mamai A, Kozlowski MC. Synthesis, Characterization, and Metal Complexes of a Salen Ligand Containing a Quinoline Base. Organometallics. 2003;22(4):850–5.
  • 47. Allu S, Swamy KCK. Ruthenium-catalyzed synthesis of isoquinolones with 8-aminoquinoline as a bidentate directing group in C-H functionalization. The Journal of organic chemistry. 2014;79 9:3963–72.
  • 48. Reddy BVS, Reddy LR, Corey EJ. Novel acetoxylation and C-C coupling reactions at unactivated positions in alpha-amino acid derivatives. Organic Letters. 2006;8(15):3391–4.
  • 49. Pedron J, Boudot C, Hutter S, Bourgeade-Delmas S, Stigliani JL, Sournia-Saquet A, et. al. Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study. European Journal Of Medicinal Chemistry. 2018;155:135–52.
  • 50. Ferlin MG, Chiarelotto G, Castagliuolo I. Synthesis and characterization of some N -mannich bases of [1,2,3]triazoloquinolines. Journal of Heterocyclic Chemistry. 2002;39(4):631–8.
  • 51. Hari DP, Schroll P, König B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. Journal of the American Chemical Society. 2012;134 6:2958–61.
  • 52. Ouyang X, Zeng H, Xie Y. Synthesis and photoluminescence properties of 8-hydroxyquinoline derivatives and their metallic complexes. Frontiers of Chemistry in China. 2007;2(4):407–13.
  • 53. Elangovan A, Yang SW, Lin JH, Kao KM, Ho TI. Synthesis and electrogenerated chemiluminescence of donor-substituted phenylquinolinylethynes and phenylisoquinolinylethynes: effect of positional isomerism. Organic & Biomolecular Chemistry. 2004;2(11):1597.
  • 54. Slodek A, Filapek M, Szafraniec G, Grudzka I, Pisarski WA, Malecki JG, et. al. Synthesis, Electrochemistry, Crystal Structures, and Optical Properties of Quinoline Derivatives with a 2,2′-Bithiophene Motif. European Journal of Organic Chemistry. 2014;2014(24):5256–64.
Year 2022, Volume: 9 Issue: 1, 85 - 114, 28.02.2022
https://doi.org/10.18596/jotcsa.1012453

Abstract

Supporting Institution

Gebze Teknik Üniversitesi

References

  • 1. Bafana A, Devi SS, Chakrabarti T. Azo dyes: past, present and the future. Environmental Reviews. 2011;19:350–71.
  • 2. Hunger K, Schmidt MU. Industrial Organic Pigments [Internet]. Wiley; 2018.
  • 3. Banghart MR, Mourot A, Fortin D, Yao JZ, Kramer RH, Trauner D. Photochromic Blockers of Voltage-Gated Potassium Channels. Angewandte Chemie International Edition. 2009;48(48):9097–101.
  • 4. Lim SY, Hong KH, Kim D Il, Kwon H, Kim HJ. Tunable Heptamethine–Azo Dye Conjugate as an NIR Fluorescent Probe for the Selective Detection of Mitochondrial Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society. 2014;136(19):7018–25.
  • 5. DiCesare N, Lakowicz JR. New Color Chemosensors for Monosaccharides Based on Azo Dyes. Organic Letters. 2001;3(24):3891–3.
  • 6. Chang KC, Su IH, Wang YY, Chung WS. A Bifunctional Chromogenic Calix[4]arene Chemosensor for Both Cations and Anions: A Potential Ca2+ and F- Switched Inhıbıt Logic Gate with a YES Logic Function. European Journal of Organic Chemistry. 2010;2010(24):4700–4.
  • 7. Leulescu M, Rotaru A, Moanţă A, Iacobescu G, Pălărie I, Cioateră N, et. al. Azorubine: physical, thermal and bioactive properties of the widely employed food, pharmaceutical and cosmetic red azo dye material. Journal of Thermal Analysis and Calorimetry. 2021;143(6):3945–67.
  • 8. Wang LH, Shu-Juan H. Studies on the voltammetric behavior of azo dyes and its determination in cosmetic products1. Russian Journal of Electrochemistry. 2010;46(12):1414–8.
  • 9. Rawat D, Sharma RS, Karmakar S, Arora LS, Mishra V. Ecotoxic potential of a presumably non-toxic azo dye. Ecotoxicology and Environmental Safety. 2018;148:528–37.
  • 10. Khaligh NG, Hamid SBA, Hazarkhani H. TiO 2 nanotubes and sonication: Synthesis of azo-linked xanthenes. Inorganic and Nano-Metal Chemistry. 2017;47(10):1468–74.
  • 11. Merino E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chemical Society Reviews. 2011;40(7):3835-53.
  • 12. Qıu F, Cao Y, Xu H, Jıang Y, Zhou Y, Lıu J. Synthesis and properties of polymer containing azo-dye chromophores for nonlinear optical applications. Dyes and Pigments. 2007;75(2):454–9.
  • 13. Çanakçı D, Serin S. Synthesis of new azo dye polymers based on naphthol by oxidative polycondensation: antimicrobial activity and fastness studies. Journal of Polymer Research. 2020;27(1):11.
  • 14. Çanakçı D. Synthesis, Spectroscopic, Thermodynamics and Kinetics Analysis Study of Novel Polymers Containing Various Azo Chromophore. Scientific Reports. 2020;10(1):477.
  • 15. Farghaly TA, Abdallah ZA. Synthesis, azo-hydrazone tautomerism and antitumor screening of N-(3-ethoxycarbonyl-4,5,6,7-tetrahydro-benzo[b]thien-2-yl)-2-arylhydrazono-3-oxo butanamide derivatives. Arkivoc. 2009;2008(17):295–305.
  • 16. Ali Y, Hamid SA, Rashid U. Biomedical Applications of Aromatic Azo Compounds. Mini-Reviews in Medicinal Chemistry. 2018;18(18):1548–58.
  • 17. Akram D, Elhaty IA, AlNeyadi SS. Synthesis and Antibacterial Activity of Rhodanine-Based Azo Dyes and Their Use as Spectrophotometric Chemosensor for Fe3+ Ions. Chemosensors. 2020;8(1):16.
  • 18. Unnisa A, Abouzied AS, Baratam A, Chenchu Lakshmi KNV, Hussain T, Kunduru RD, et. al. Design, synthesis, characterization, computational study and in-vitro antioxidant and anti-inflammatory activities of few novel 6-aryl substituted pyrimidine azo dyes. Arabian Journal of Chemistry. 2020;13(12):8638–49.
  • 19. Kennedy DA, Vembu N, Fronczek FR, Devocelle M. Synthesis of Mutual Azo Prodrugs of Anti-inflammatory Agents and Peptides Facilitated by α-Aminoisobutyric Acid. The Journal of Organic Chemistry. 2011;76(23):9641–7.
  • 20. Adu JK, Amengor CDK, Mohammed Ibrahim N, Amaning-Danquah C, Owusu Ansah C, Gbadago DD, vd. Synthesis and In Vitro Antimicrobial and Anthelminthic Evaluation of Naphtholic and Phenolic Azo Dyes. Journal of Tropical Medicine. 2020;2020:1–8.
  • 21. Shaki H, Gharanjig K, Khosravi A. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides. Biotechnology Progress. 2015;31(4):1086–95.
  • 22. Saeed AM, AlNeyadi SS, Abdou IM. Anticancer activity of novel Schiff bases and azo dyes derived from 3-amino-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione. Heterocyclic Communications. 2020;26(1):192–205.
  • 23. Abd-El-Aziz AS, Alsaggaf A, Assirey E, Naqvi A, Okasha RM, Afifi TH, et. al. A New Family of Benzo[h]Chromene Based Azo Dye: Synthesis, In-Silico and DFT Studies with In Vitro Antimicrobial and Antiproliferative Assessment. International Journal of Molecular Sciences. 2021;22(6):2807.
  • 24. Tahir T, Shahzad MI, Tabassum R, Rafiq M, Ashfaq M, Hassan M, et. al. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: synthesis, in vitro , kinetic and docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021;36(1):1509–20.
  • 25. Mallikarjuna NM, Keshavayya J. Synthesis, spectroscopic characterization and pharmacological studies on novel sulfamethaxazole based azo dyes. Journal of King Saud University - Science. 2020;32(1):251–9.
  • 26. Dusan M, Biljana BN, Bozıc B, Kovrlıja I, Ladarevıc J, Uscumlıc G. Synthesis, solvatochromism, and biological activity of novel azo dyes bearing 2-pyridone and benzimidazole moieties. Turkish Journal Of Chemistry. 2018;42(3).
  • 27. Surucu O, Abaci S, Seferoğlu Z. Electrochemical characterization of azo dye (E)-1-(4-((4-(phenylamino)phenyl)diazenyl)phenyl)ethanone (DPA). Electrochimica Acta. 2016;195:175–83.
  • 28. Harisha S, Keshavayya J, Kumara Swamy BE, Viswanath CC. Synthesis, characterization and electrochemical studies of azo dyes derived from barbituric acid. Dyes and Pigments. 2017;136:742–53.
  • 29. Grand View Research. Dyes & Pigments Market Size, Share & Trends Analysis Report [Internet]. 2021.
  • 30. Carliell CM, Barclay SJ, Shaw C, Wheatley AD, Buckley CA. The Effect of Salts Used in Textile Dyeing on Microbial Decolourisation of a Reactive Azo Dye. Environmental Technology. 1998;19(11):1133–7.
  • 31. He Y, Zhao N, Qiu L, Zhang X, Fan X. Regio- and Chemoselective Mono- and Bisnitration of 8-Amino quinoline Amides with Fe(NO3)3·9H2O as Promoter and Nitro Source. Organic Letters. 2016;18(23):6054–7.
  • 32. Nanayakkara NPD, Ager AL, Bartlett MS, Yardley V, Croft SL, Khan IA, et. al. Antiparasitic Activities and Toxicities of Individual Enantiomers of the 8-Aminoquinoline 8-[(4-Amino-1-Methylbutyl)Amino]-6-Methoxy-4-Methyl-5-[3,4-Dichlorophenoxy]Quinoline Succinate. Antimicrobial Agents and Chemotherapy. 2008;52(6):2130–7.
  • 33. Warhurst DC. Understanding resistance to antimalarial 4-aminoquinolines, cinchona alkaloids and the highly hydrophobic arylaminoalcohols. Current Science. 2007;92:1556–60.
  • 34. Bray P, Park B, Asadollaly E, Biagini G, Jeyadevan J, Berry N, et. al. A Medicinal Chemistry Perspective on 4-Aminoquinoline Antimalarial Drugs. Current Topics in Medicinal Chemistry. 2006;6(5):479–507.
  • 35. Golden EB, Cho H-Y, Hofman FM, Louie SG, Schönthal AH, Chen TC. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurgical Focus. 2015;38(3):E12.
  • 36. Vandekerckhove S, D’hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorganic & Medicinal Chemistry. 2015;23(16):5098–119.
  • 37. Foley M, Tilley L. Quinoline antimalarials: Mechanisms of action and resistance. International Journal for Parasitology. 1997;27(2):231–40.
  • 38. Egan TJ, Ncokazi KK. Quinoline antimalarials decrease the rate of β-hematin formation. Journal of Inorganic Biochemistry. 2005;99(7):1532–9.
  • 39. Kaur K, Jain M, Reddy RP, Jain R. Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry. 2010;45(8):3245–64.
  • 40. Oliphant CM, Green GM. Quinolones: a comprehensive review. American Family Physician. 2002;65(3):455–64.
  • 41. Romero AH. Role of Trifluoromethyl Substitution in Design of Antimalarial Quinolones: a Comprehensive Review. Topics in Current Chemistry. 2019;377(2):9.
  • 42. King DE, Malone R, Lilley SH. New classification and update on the quinolone antibiotics. American Family Physician. 2000;61(9):2741–8.
  • 43. Prachayasittikul V, Prachayasittikul V, Prachayasittikul S, Ruchirawat S. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Design, Development and Therapy. 2013;1157.
  • 44. Zhu C, Wang Y, Mao Q, Li F, Li Y, Chen C. Two 8-Hydroxyquinolinate Based Supramolecular Coordination Compounds: Synthesis, Structures and Spectral Properties. Materials. 2017;10(3):313.
  • 45. Kuchárová V, Kuchár J, Zaric M, Canovic P, Arsenijevic N, Volarevic V, et. al. Low-dimensional compounds containing bioactive ligands. Part XI: Synthesis, structures, spectra, in vitro anti-tumor and antimicrobial activities of 3d metal complexes with 8-hydroxyquinoline-5-sulfonic acid. Inorganica Chimica Acta. 2019;497:119062.
  • 46. DiMauro EF, Mamai A, Kozlowski MC. Synthesis, Characterization, and Metal Complexes of a Salen Ligand Containing a Quinoline Base. Organometallics. 2003;22(4):850–5.
  • 47. Allu S, Swamy KCK. Ruthenium-catalyzed synthesis of isoquinolones with 8-aminoquinoline as a bidentate directing group in C-H functionalization. The Journal of organic chemistry. 2014;79 9:3963–72.
  • 48. Reddy BVS, Reddy LR, Corey EJ. Novel acetoxylation and C-C coupling reactions at unactivated positions in alpha-amino acid derivatives. Organic Letters. 2006;8(15):3391–4.
  • 49. Pedron J, Boudot C, Hutter S, Bourgeade-Delmas S, Stigliani JL, Sournia-Saquet A, et. al. Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study. European Journal Of Medicinal Chemistry. 2018;155:135–52.
  • 50. Ferlin MG, Chiarelotto G, Castagliuolo I. Synthesis and characterization of some N -mannich bases of [1,2,3]triazoloquinolines. Journal of Heterocyclic Chemistry. 2002;39(4):631–8.
  • 51. Hari DP, Schroll P, König B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. Journal of the American Chemical Society. 2012;134 6:2958–61.
  • 52. Ouyang X, Zeng H, Xie Y. Synthesis and photoluminescence properties of 8-hydroxyquinoline derivatives and their metallic complexes. Frontiers of Chemistry in China. 2007;2(4):407–13.
  • 53. Elangovan A, Yang SW, Lin JH, Kao KM, Ho TI. Synthesis and electrogenerated chemiluminescence of donor-substituted phenylquinolinylethynes and phenylisoquinolinylethynes: effect of positional isomerism. Organic & Biomolecular Chemistry. 2004;2(11):1597.
  • 54. Slodek A, Filapek M, Szafraniec G, Grudzka I, Pisarski WA, Malecki JG, et. al. Synthesis, Electrochemistry, Crystal Structures, and Optical Properties of Quinoline Derivatives with a 2,2′-Bithiophene Motif. European Journal of Organic Chemistry. 2014;2014(24):5256–64.
There are 54 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section Articles
Authors

İdris Karakaya 0000-0002-3590-7206

Publication Date February 28, 2022
Submission Date October 20, 2021
Acceptance Date December 6, 2021
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

Vancouver Karakaya İ. Synthesis and characterization of azobenzene derived from 8-aminoquinoline in aqueous media. JOTCSA. 2022;9(1):85-114.