Exploration of Role of Concentration on Sensing Activities using Novel unsymmetrical Schiff bases
Year 2022,
Volume: 9 Issue: 2, 465 - 478, 31.05.2022
Saranya Dhasarathan
,
Selvaraj Shunmugaperumal
,
Kamatchi Selvaraj P
Abstract
Simultaneous condensation reaction of thiocarbohydrazide with simple aromatic aldehyde and highly reactive ferrocenecarboxaldehyde resulted with unusual unsymmentric Schiff bases associated with multi metal ion sensing property. Spectral characterization methods indicate the formation of the new materials. Guest- host relationship established between various metal ions and receptors changes the electronic spectra drastically and for the addition of Cu2+ ions, formation of MLCT charge transfer band responsible for the coordination of metal ion with receptor has been noticed. Data calculated from the results of responses recorded for the applied potential to the metal added and metal free receptor solution exposes the concentration of metal ions required for the effective sensing process.
Thanks
The support extended by Dr. K. Pandian, Professor of Inorganic Chemistry, at the University of Madras is gratefully acknowledged. The research scholar, D.Saranya wishes to record her thanks to the State Government of Tamil Nadu, India for the annual research assistant grant.
References
- 1a. Malik LA, Bashir A, Qureashi A, Pandith AH. Detection and removal of heavy metal ions: a review. Environ Chem Lett. 2019 Dec;17(4):1495–521. 1b. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010 Sep;8(3):199–216.
- 2a. Bansod B, Kumar T, Thakur R, Rana S, Singh I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics. 2017 Aug;94:443–55. 2b. Gong T, Liu J, Liu X, Liu J, Xiang J, Wu Y. A sensitive and selective sensing platform based on CdTe QDs in the presence of l -cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chemistry. 2016 Dec;213:306–12.
- 3. Tian M, Fang L, Yan X, Xiao W, Row KH. Determination of Heavy Metal Ions and Organic Pollutants in Water Samples Using Ionic Liquids and Ionic Liquid-Modified Sorbents. Journal of Analytical Methods in Chemistry. 2019 Oct 31;2019:1–19.
- 4a. Zhang M, Shi J, Liao C, Tian Q, Wang C, Chen S, et al. Perylene Imide-Based Optical Chemosensors for Vapor Detection. Chemosensors. 2020 Dec 22;9(1):1. 4b. Elke K, Jermann E, Begerow J, Dunemann L. Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and high-resolution gas chromatography–flame ionization detection. Journal of Chromatography A. 1998 Nov;826(2):191–200.
- 5. Berhanu AL, Gaurav, Mohiuddin I, Malik AK, Aulakh JS, Kumar V, et al. A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends in Analytical Chemistry. 2019 Jul;116:74–91.
- 6. Borah N, De S, Gogoi A, Das G. A series of benzothiazole-based Schiff bases for the colorimetric sensing of fluoride and acetate ions: acetate-induced turn-on fluorescence for selectivity. New J Chem. 2020;44(43):18703–13.
- 7. Abu-Dief AM, Mohamed IMA. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef University Journal of Basic and Applied Sciences. 2015 Jun;4(2):119–33.
- 8. Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxidants & Redox Signaling. 2018 Jun 20;28(18):1669–703.
- 9. Jain R, Singh SK, Advani U, Kohli S, Sharma N. Mercury toxicity and its management. Int Res J Pharm. 2013 Sep 9;4(8):38–41.
- 10. Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochemistry International. 2013 Apr;62(5):575–94.
- 11. Qi X, Jun EJ, Xu L, Kim S-J, Joong Hong JS, Yoon YJ, et al. New BODIPY Derivatives as OFF−ON Fluorescent Chemosensor and Fluorescent Chemodosimeter for Cu 2+ : Cooperative Selectivity Enhancement toward Cu 2+. J Org Chem. 2006 Mar 31;71(7):2881–4.
- 12. Taylor AA, Tsuji JS, Garry MR, McArdle ME, Goodfellow WL, Adams WJ, et al. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environmental Management. 2020 Jan;65(1):131–59.
- 13. Bao J, Xing Y, Feng C, Kou S, Jiang H, Li X. Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus. Sci Rep. 2020 Dec;10(1):16700.
- 14. Brewer GJ. Copper toxicity in the general population. Clinical Neurophysiology. 2010 Apr;121(4):459–60.
- 15. Chakraborty S, Rayalu S. Detection of nickel by chemo and fluoro sensing technologies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021 Jan;245:118915.
- 16. Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology. 2017 Dec;392:47–54.
- 17. Das KK, Reddy RC, Bagoji IB, Das S, Bagali S, Mullur L, et al. Primary concept of nickel toxicity – an overview. Journal of Basic and Clinical Physiology and Pharmacology. 2019 Mar 26;30(2):141–52.
- 18a. Erikson KM, Syversen T, Aschner JL, Aschner M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environmental Toxicology and Pharmacology. 2005 May;19(3):415–21. 18b. Peres TV, Aschner M. Nutritional, Genetic, and Molecular Aspects of Manganese Intoxication. In: Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals [Internet]. Elsevier; 2017 [cited 2022 Mar 11]. p. 367–76.
- 19. Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, et al. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front Neurosci. 2019 Jun 26;13:654.
- 20. Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, et al. “Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies.” BMC Pharmacol Toxicol. 2016 Dec;17(1):57.
- 21. Peres TV, Aschner M. Nutritional, Genetic, and Molecular Aspects of Manganese Intoxication. In: Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals [Internet]. Elsevier; 2017 [cited 2022 Mar 11]. p. 367–76.
- 22. Guilarte TR. Manganese and Parkinson’s Disease: A Critical Review and New Findings. Environ Health Perspect. 2010 Aug;118(8):1071–80.
- 23. Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, et al. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Front Plant Sci [Internet]. 2017 Feb 28 [cited 2022 Mar 11];8.
- 24. Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environment International. 2018 Nov;120:404–20. .
- 25a. Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdisciplinary Toxicology. 2015 Jun 1;8(2):55–64. 25b. Mani MS, Nayak DG, Dsouza HS. Challenges in diagnosing lead poisoning: A review of occupationally and nonoccupationally exposed cases reported in India. Toxicol Ind Health. 2020 May;36(5):346–55.
- 26. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. IJERPH. 2020 May 26;17(11):3782.
- 27. Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia A. Cadmium toxicity and treatment: An update. Caspian J Intern Med [Internet]. 2017 Jun [cited 2022 Mar 11];8(3): 135-45. .
- 28. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research. 2014 Jul 4;24(4):378–99.
- 29a. A. Metwally M, E. Khalifa M, Koketsu M. Thiocarbohydrazides: Synthesis and Reactions. Chemistry. 2012 Aug 31;2(2):38–51. 29b. Andleeb H, Hussain M, Abida Ejaz S, Sevigny J, Farman M, Yasinzai M, et al. Synthesis and computational studies of highly selective inhibitors of human recombinant tissue non-specific alkaline phosphatase (h-TNAP): A therapeutic target against vascular calcification. Bioorganic Chemistry. 2020 Aug;101:103999.
- 30a. Constantinescu C, Matei A, Ion V, Mitu B, Ionita I, Dinescu M, et al. Ferrocene carboxaldehyde thin films grown by matrix-assisted pulsed laser evaporation for non linear optical applications. Applied Surface Science. 2014 May;302:83–6. 30b. Bodenheimer JS, Low W. A vibrational study of ferrocene and ruthenocene. Spectrochimica Acta Part A: Molecular Spectroscopy. 1973 Sep;29(9):1733–43.
- 31. Gryaznova TP, Katsyuba SA, Milyukov VA, Sinyashin OG. DFT study of substitution effect on the geometry, IR spectra, spin state and energetic stability of the ferrocenes and their pentaphospholyl analogues. Journal of Organometallic Chemistry. 2010 Nov;695(24):2586–95.
- 32a. Çatıkkaş B. Raman and FT-IR Spectra, DFT and SQMFF calculations for N,N-Dimethylaniline. PEN [Internet]. 2017 Jun 24 [cited 2022 Mar 11];5(2):237-44. 32b. Lu R, Gan W, Wu B, Zhang Z, Guo Y, Wang H. C−H Stretching Vibrations of Methyl, Methylene and Methine Groups at the Vapor/Alcohol ( n = 1−8) Interfaces. J Phys Chem B. 2005 Jul 1;109(29):14118–29.
- 33. Barwiolek M, Kaczmarek-Kędziera A, Muziol TM, Jankowska D, Jezierska J, Bieńko A. Dinuclear Copper(II) Complexes with Schiff Bases Derived from 2-Hydroxy-5-Methylisophthalaldehyde and Histamine or 2-(2-Aminoethyl)pyridine and Their Application as Magnetic and Fluorescent Materials in Thin Film Deposition. IJMS. 2020 Jun 28;21(13):4587.
- 34. Benramdane R, Benghanem F, Ourari A, Keraghel S, Bouet G. Synthesis and characterization of a new Schiff base derived from 2,3-diaminopyridine and 5-methoxysalicylaldehyde and its Ni(II), Cu(II) and Zn(II) complexes. Electrochemical and electrocatalytical studies. Journal of Coordination Chemistry. 2015 Feb 1;68(3):560–72.
- 35a. Northcote‐Smith J, Kaur P, Suntharalingam K. A Cancer Stem Cell Potent Copper(II) Complex with a S , N , S ‐Schiff base Ligand and Bathophenanthroline. Eur J Inorg Chem. 2021 May 14;2021(18):1770–5. 35b. Ciesienski KL, Haas KL, Franz KJ. Development of next-generation photolabile copper cages with improved copper binding properties. Dalton Trans. 2010;39(40):9538.
- 36a. Kamatchi P, Selvaraj S, Kandaswamy M. Synthesis, magnetic and electrochemical studies of binuclear copper(II) complexes derived from unsymmetrical polydentate ligands. Polyhedron. 2005 Jun;24(8):900–8. 36b. Samin AJ. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects. AIP Advances. 2016 May;6(5):055101.
- 37a. Li M, Wang R. Synthesis and multi-response research of a highly selective fluorescent chemosensor for Zn 2+. IOP Conf Ser: Earth Environ Sci. 2017 Apr;61:012043. <URL>. 37b. Miller SR, Gustowski DA, Chen Z, Gokel GW, Echegoyen L, Kaifer AE. Rationalization of the unusual electrochemical behavior observed in lariat ethers and other reducible macrocyclic systems. Anal Chem. 1988 Oct 1;60(19):2021–4.
- 38a. Alfonso M, Tárraga A, Molina P. Ferrocene-based multichannel molecular chemosensors with high selectivity and sensitivity for Pb(ii) and Hg(ii) metal cations. Dalton Trans. 2010;39(37):8637. 38b. Medina JC, Goodnow TT, Rojas MT, Atwood JL, Lynn BC, Kaifer AE, et al. Ferrocenyl iron as a donor group for complexed silver in
ferrocenyldimethyl[2.2]cryptand: a redox-switched receptor effective in water. J Am Chem Soc. 1992 Dec;114(26):10583–95.
- 39a. Kamal A, Kumar S, Kumar V, Mahajan RK. Selective sensing ability of ferrocene appended quinoline-triazole derivative toward Fe (III) ions. Sensors and Actuators B: Chemical. 2015 Dec;221:370–8. 39b. Sanan R, Kang TS, Mahajan RK. Complexation, dimerisation and solubilisation of methylene blue in the presence of biamphiphilic ionic liquids: a detailed spectroscopic and electrochemical study. Phys Chem Chem Phys. 2014;16(12):5667.
Year 2022,
Volume: 9 Issue: 2, 465 - 478, 31.05.2022
Saranya Dhasarathan
,
Selvaraj Shunmugaperumal
,
Kamatchi Selvaraj P
References
- 1a. Malik LA, Bashir A, Qureashi A, Pandith AH. Detection and removal of heavy metal ions: a review. Environ Chem Lett. 2019 Dec;17(4):1495–521. 1b. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010 Sep;8(3):199–216.
- 2a. Bansod B, Kumar T, Thakur R, Rana S, Singh I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics. 2017 Aug;94:443–55. 2b. Gong T, Liu J, Liu X, Liu J, Xiang J, Wu Y. A sensitive and selective sensing platform based on CdTe QDs in the presence of l -cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chemistry. 2016 Dec;213:306–12.
- 3. Tian M, Fang L, Yan X, Xiao W, Row KH. Determination of Heavy Metal Ions and Organic Pollutants in Water Samples Using Ionic Liquids and Ionic Liquid-Modified Sorbents. Journal of Analytical Methods in Chemistry. 2019 Oct 31;2019:1–19.
- 4a. Zhang M, Shi J, Liao C, Tian Q, Wang C, Chen S, et al. Perylene Imide-Based Optical Chemosensors for Vapor Detection. Chemosensors. 2020 Dec 22;9(1):1. 4b. Elke K, Jermann E, Begerow J, Dunemann L. Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and high-resolution gas chromatography–flame ionization detection. Journal of Chromatography A. 1998 Nov;826(2):191–200.
- 5. Berhanu AL, Gaurav, Mohiuddin I, Malik AK, Aulakh JS, Kumar V, et al. A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends in Analytical Chemistry. 2019 Jul;116:74–91.
- 6. Borah N, De S, Gogoi A, Das G. A series of benzothiazole-based Schiff bases for the colorimetric sensing of fluoride and acetate ions: acetate-induced turn-on fluorescence for selectivity. New J Chem. 2020;44(43):18703–13.
- 7. Abu-Dief AM, Mohamed IMA. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef University Journal of Basic and Applied Sciences. 2015 Jun;4(2):119–33.
- 8. Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxidants & Redox Signaling. 2018 Jun 20;28(18):1669–703.
- 9. Jain R, Singh SK, Advani U, Kohli S, Sharma N. Mercury toxicity and its management. Int Res J Pharm. 2013 Sep 9;4(8):38–41.
- 10. Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochemistry International. 2013 Apr;62(5):575–94.
- 11. Qi X, Jun EJ, Xu L, Kim S-J, Joong Hong JS, Yoon YJ, et al. New BODIPY Derivatives as OFF−ON Fluorescent Chemosensor and Fluorescent Chemodosimeter for Cu 2+ : Cooperative Selectivity Enhancement toward Cu 2+. J Org Chem. 2006 Mar 31;71(7):2881–4.
- 12. Taylor AA, Tsuji JS, Garry MR, McArdle ME, Goodfellow WL, Adams WJ, et al. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environmental Management. 2020 Jan;65(1):131–59.
- 13. Bao J, Xing Y, Feng C, Kou S, Jiang H, Li X. Acute and sub-chronic effects of copper on survival, respiratory metabolism, and metal accumulation in Cambaroides dauricus. Sci Rep. 2020 Dec;10(1):16700.
- 14. Brewer GJ. Copper toxicity in the general population. Clinical Neurophysiology. 2010 Apr;121(4):459–60.
- 15. Chakraborty S, Rayalu S. Detection of nickel by chemo and fluoro sensing technologies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021 Jan;245:118915.
- 16. Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology. 2017 Dec;392:47–54.
- 17. Das KK, Reddy RC, Bagoji IB, Das S, Bagali S, Mullur L, et al. Primary concept of nickel toxicity – an overview. Journal of Basic and Clinical Physiology and Pharmacology. 2019 Mar 26;30(2):141–52.
- 18a. Erikson KM, Syversen T, Aschner JL, Aschner M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environmental Toxicology and Pharmacology. 2005 May;19(3):415–21. 18b. Peres TV, Aschner M. Nutritional, Genetic, and Molecular Aspects of Manganese Intoxication. In: Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals [Internet]. Elsevier; 2017 [cited 2022 Mar 11]. p. 367–76.
- 19. Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, et al. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front Neurosci. 2019 Jun 26;13:654.
- 20. Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, et al. “Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies.” BMC Pharmacol Toxicol. 2016 Dec;17(1):57.
- 21. Peres TV, Aschner M. Nutritional, Genetic, and Molecular Aspects of Manganese Intoxication. In: Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals [Internet]. Elsevier; 2017 [cited 2022 Mar 11]. p. 367–76.
- 22. Guilarte TR. Manganese and Parkinson’s Disease: A Critical Review and New Findings. Environ Health Perspect. 2010 Aug;118(8):1071–80.
- 23. Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, et al. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Front Plant Sci [Internet]. 2017 Feb 28 [cited 2022 Mar 11];8.
- 24. Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environment International. 2018 Nov;120:404–20. .
- 25a. Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdisciplinary Toxicology. 2015 Jun 1;8(2):55–64. 25b. Mani MS, Nayak DG, Dsouza HS. Challenges in diagnosing lead poisoning: A review of occupationally and nonoccupationally exposed cases reported in India. Toxicol Ind Health. 2020 May;36(5):346–55.
- 26. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. IJERPH. 2020 May 26;17(11):3782.
- 27. Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia A. Cadmium toxicity and treatment: An update. Caspian J Intern Med [Internet]. 2017 Jun [cited 2022 Mar 11];8(3): 135-45. .
- 28. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research. 2014 Jul 4;24(4):378–99.
- 29a. A. Metwally M, E. Khalifa M, Koketsu M. Thiocarbohydrazides: Synthesis and Reactions. Chemistry. 2012 Aug 31;2(2):38–51. 29b. Andleeb H, Hussain M, Abida Ejaz S, Sevigny J, Farman M, Yasinzai M, et al. Synthesis and computational studies of highly selective inhibitors of human recombinant tissue non-specific alkaline phosphatase (h-TNAP): A therapeutic target against vascular calcification. Bioorganic Chemistry. 2020 Aug;101:103999.
- 30a. Constantinescu C, Matei A, Ion V, Mitu B, Ionita I, Dinescu M, et al. Ferrocene carboxaldehyde thin films grown by matrix-assisted pulsed laser evaporation for non linear optical applications. Applied Surface Science. 2014 May;302:83–6. 30b. Bodenheimer JS, Low W. A vibrational study of ferrocene and ruthenocene. Spectrochimica Acta Part A: Molecular Spectroscopy. 1973 Sep;29(9):1733–43.
- 31. Gryaznova TP, Katsyuba SA, Milyukov VA, Sinyashin OG. DFT study of substitution effect on the geometry, IR spectra, spin state and energetic stability of the ferrocenes and their pentaphospholyl analogues. Journal of Organometallic Chemistry. 2010 Nov;695(24):2586–95.
- 32a. Çatıkkaş B. Raman and FT-IR Spectra, DFT and SQMFF calculations for N,N-Dimethylaniline. PEN [Internet]. 2017 Jun 24 [cited 2022 Mar 11];5(2):237-44. 32b. Lu R, Gan W, Wu B, Zhang Z, Guo Y, Wang H. C−H Stretching Vibrations of Methyl, Methylene and Methine Groups at the Vapor/Alcohol ( n = 1−8) Interfaces. J Phys Chem B. 2005 Jul 1;109(29):14118–29.
- 33. Barwiolek M, Kaczmarek-Kędziera A, Muziol TM, Jankowska D, Jezierska J, Bieńko A. Dinuclear Copper(II) Complexes with Schiff Bases Derived from 2-Hydroxy-5-Methylisophthalaldehyde and Histamine or 2-(2-Aminoethyl)pyridine and Their Application as Magnetic and Fluorescent Materials in Thin Film Deposition. IJMS. 2020 Jun 28;21(13):4587.
- 34. Benramdane R, Benghanem F, Ourari A, Keraghel S, Bouet G. Synthesis and characterization of a new Schiff base derived from 2,3-diaminopyridine and 5-methoxysalicylaldehyde and its Ni(II), Cu(II) and Zn(II) complexes. Electrochemical and electrocatalytical studies. Journal of Coordination Chemistry. 2015 Feb 1;68(3):560–72.
- 35a. Northcote‐Smith J, Kaur P, Suntharalingam K. A Cancer Stem Cell Potent Copper(II) Complex with a S , N , S ‐Schiff base Ligand and Bathophenanthroline. Eur J Inorg Chem. 2021 May 14;2021(18):1770–5. 35b. Ciesienski KL, Haas KL, Franz KJ. Development of next-generation photolabile copper cages with improved copper binding properties. Dalton Trans. 2010;39(40):9538.
- 36a. Kamatchi P, Selvaraj S, Kandaswamy M. Synthesis, magnetic and electrochemical studies of binuclear copper(II) complexes derived from unsymmetrical polydentate ligands. Polyhedron. 2005 Jun;24(8):900–8. 36b. Samin AJ. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects. AIP Advances. 2016 May;6(5):055101.
- 37a. Li M, Wang R. Synthesis and multi-response research of a highly selective fluorescent chemosensor for Zn 2+. IOP Conf Ser: Earth Environ Sci. 2017 Apr;61:012043. <URL>. 37b. Miller SR, Gustowski DA, Chen Z, Gokel GW, Echegoyen L, Kaifer AE. Rationalization of the unusual electrochemical behavior observed in lariat ethers and other reducible macrocyclic systems. Anal Chem. 1988 Oct 1;60(19):2021–4.
- 38a. Alfonso M, Tárraga A, Molina P. Ferrocene-based multichannel molecular chemosensors with high selectivity and sensitivity for Pb(ii) and Hg(ii) metal cations. Dalton Trans. 2010;39(37):8637. 38b. Medina JC, Goodnow TT, Rojas MT, Atwood JL, Lynn BC, Kaifer AE, et al. Ferrocenyl iron as a donor group for complexed silver in
ferrocenyldimethyl[2.2]cryptand: a redox-switched receptor effective in water. J Am Chem Soc. 1992 Dec;114(26):10583–95.
- 39a. Kamal A, Kumar S, Kumar V, Mahajan RK. Selective sensing ability of ferrocene appended quinoline-triazole derivative toward Fe (III) ions. Sensors and Actuators B: Chemical. 2015 Dec;221:370–8. 39b. Sanan R, Kang TS, Mahajan RK. Complexation, dimerisation and solubilisation of methylene blue in the presence of biamphiphilic ionic liquids: a detailed spectroscopic and electrochemical study. Phys Chem Chem Phys. 2014;16(12):5667.