Derleme
BibTex RIS Kaynak Göster

Adsorption Studies of Radionuclides by Turkish Minerals: A Review

Yıl 2022, Cilt: 9 Sayı: 2, 579 - 600, 31.05.2022
https://doi.org/10.18596/jotcsa.1074651

Öz

Hazardous radionuclides are produced during normal operation of nuclear power plants and research facilities. They can also spread to the environment due to fallout from nuclear accidents and nuclear weapon tests. The removal of hazardous radionuclides and the safe management of radioactive waste are of vital necessity. Natural minerals have been widely used for the removal of heavy metals and radionuclides because of their low cost, high capacity and radiation resistance properties. Turkey has an abundant natural mineral deposits. These deposits include clinoptilolite, bentonite, montmorillonite, kaolinite, vermiculite, illite, red clay, sepiolite, diatomite, perlite and volcanic tuff. Within the scope of this review, Turkish minerals were classified as three main groups as; zeolites, clay minerals and other minerals. The review consists of sections on the general properties of natural minerals such as zeolites and clays, the characteristics of Turkish minerals, and the adsorption performance of these minerals against some radionuclide ions (Sr, Cs, U, Th and Po).

Kaynakça

  • 1. Marinin D v, Brown GN. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management. 2000 Nov;20(7):545–53. <DOI>
  • 2. Backgrounder On Radioactive Waste | NRC.gov [Internet]. [cited 2022 Feb 14]. Available from: https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html
  • 3. Radionuclide Basics: Strontium-90 | US EPA [Internet]. [cited 2022 Feb 14]. Available from: https://www.epa.gov/radiation/radionuclide-basics-strontium-90
  • 4. Cakir P, Inan S, Altas Y. Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design. Journal of Hazardous Materials. 2014 Apr 30;271:108–19. <DOI>
  • 5. van Horn J, Huang H. Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coordination Chemistry Reviews. 2006 Apr;250(7–8):765–75. <DOI>
  • 6. Salinas-Pedroza MG, Olguín MT. Thorium removal from aqueous solutions of Mexican erionite and X zeolite. Journal of Radioanalytical and Nuclear Chemistry. 2004;260(1):115–8. <DOI>
  • 7. Ryabchikov DI, Gol’braikh EK. The analytical chemistry of Thorium. Pergamon Press; 1963.
  • 8. Skwarzec B, Bojanowski R. 210Po content in sea water and its accumulation in southern Baltic plankton. Marine Biology. 1988 Feb;97(2):301–7.
  • 9. Skwarzec B, Strumińska DI, Boryło A. Radionuclides of 210Po, 234U and 238U in drinking bottled mineral water in Poland. Journal of Radioanalytical and Nuclear Chemistry. 2003;256:361–4. <DOI>
  • 10. Strumińska-Parulska DI, Skwarzec B, Tuszkowska A, Jahnz-Bielawska A, Boryło A. Polonium (210Po), uranium (238U) and plutonium (239+240Pu) in the biggest Polish rivers. Journal of Radioanalytical and Nuclear Chemistry. 2010 Nov 19;286(2):373–80. <DOI>
  • 11. Uǧur A, Özden B, Filizok I. Spatial and temporal variability of 210Po and 210Pb in mussels (Mytilus galloprovincialis) at the Turkish coast of the Aegean Sea. Chemosphere. 2011 May;83(8):1102–7. <DOI>
  • 12. Waska H, Kim G, Kim GB. Comparison of S, Se, and 210Po accumulation patterns in common squid Todarodes pacificus from the Yellow Sea and East/Japan Sea. Ocean Science Journal. 2013 Jun 1;48(2):215–24. <DOI>
  • 13. Singh NB, Nagpal G, Agrawal S, Rachna. Water purification by using Adsorbents: A Review. Environmental Technology & Innovation. 2018 Aug;11:187–240. <DOI>
  • 14. Republic of Turkey M of E. Mining industry in Turkey [Internet]. 2018 [cited 2021 Sep 14]. Available from: https://trade.gov.tr/data/5b8fd5bf13b8761f041fee9b/f5e8baa1e2de8a3eb7a34c9a89c4c011.pdf
  • 15. Akkuyu Nükleer Güç Santrali Projesi - Nükleer Enerji ve Uluslararası Projeler Genel Müdürlüğü - T.C. Enerji ve Tabii Kaynaklar Bakanlığı [Internet]. [cited 2022 Feb 14]. Available from: https://enerji.gov.tr/nukleer-enerji-ve-uluslararasi-projeler-genel-mudurlugu-akkuyu-nukleer-guc-santrali-projesi
  • 16. Pabalan RT, Bertetti FP. Cation-Exchange Properties of Natural Zeolites. Reviews in Mineralogy and Geochemistry. 2001 Jan 1;45(1):453–518. <DOI>
  • 17. Gottardi G, Galli E. Natural zeolites. Berlin: Springer-Verlag; 1985.
  • 18. Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal. 2010 Jan 1;156(1):11–24. <DOI>
  • 19. Polat E, Karaca M, Demir H, Onus AN. Use of natural zeolite (clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research . 2004;12:183–9.
  • 20. Englert AH, Rubio J. Characterization and environmental application of a Chilean natural zeolite. International Journal of Mineral Processing. 2005 Jan 6;75(1–2):21–9. <DOI>
  • 21. Weatherley LR, Miladinovic ND. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Research. 2004;38(20):4305–12. <DOI>
  • 22. Margeta K, Zabukovec N, Siljeg M, Farkas A. Natural Zeolites in Water Treatment – How Effective is Their Use. In: Water Treatment. InTech; 2013. <DOI>
  • 23. Pansini M. Natural zeolites as cation exchangers for environmental protection. Mineralium Deposita. 1996 Sep;31(6):563–75. <DOI>
  • 24. Dyer A, Hriljac J, Evans N, Stokes I, Rand P, Kellet S, et al. The use of columns of the zeolite clinoptilolite in the remediation of aqueous nuclear waste streams. Journal of Radioanalytical and Nuclear Chemistry. 2018 Dec 1;318(3):2473–91. <DOI>
  • 25. Osmanlioglu AE. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. Journal of Hazardous Materials. 2006 Sep 1;137(1):332–5. <DOI>
  • 26. Nikashina VA, Serova IB, Kats EM, Tikhonov NA, Tokmachev MG, Novgorodov PG. Mathematical modelling of the sorption dynamics of radionuclides by natural clinoptilolite in permeable reactive barriers. Clay Minerals. 2011 Jun 9;46(2):233–40. <DOI>
  • 27. Zamzow MJ, Eichbaum BR, Sandgren KR, Shanks DE. Removal of Heavy Metals and Other Cations from Wastewater Using Zeolites. Separation Science and Technology. 1990 Oct;25(13–15):1555–69. <DOI>
  • 28. Leppert DE. An Oregon cure for Bikini Island? First results from the zeolite immobilization experiment. Oregon Geology . 1998;50:140–1.
  • 29. Valcke E, Engels B, Cremers A. The use of zeolites as amendments in radiocaesium- and radiostrontium-contaminated soils: A soil-chemical approach. Part I: Cs-K exchange in clinoptilolite and mordenite. Zeolites. 1997 Feb;18(2–3):205–11.
  • 30. Valcke E, Engels B, Cremers A. The use of zeolites as amendments in radiocaesium- and radiostrontium-contaminated soils: A soil-chemical approach. Part II: Sr-Ca exchange in clinoptilolite, mordenite, and zeolite A. Zeolites. 1997 Feb;18(2–3):212–7. <DOI>
  • 31. ChemTube3D. Zeolite-Clinoptilolite [Internet]. [cited 2021 Nov 30]. Available from: https://www.chemtube3d.com/ss-z-clinoptilolite/
  • 32. Mockovciakova A, Orolinov Z. Adsorption properties of modified bentonite clay. Cheminė Technologija . 2009;1:47–50.
  • 33. Shichi T, Takagi K. Clay minerals as photochemical reaction fields. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000 Dec;1(2):113–30. <DOI>
  • 34. Murray HH. Applied clay mineralogy: occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier Science; 2006. 0–188 p.
  • 35. Grim RE. Applied Clay Mineralogy. New York: McGraw Hill; 1962.
  • 36. Gruner JW. The Crystal Structure of Kaolinite. Zeitschrift für Kristallographie - Crystalline Materials. 1932;83(1–6):75–88.
  • 37. Brindley GW, Robinson K. Structure of Kaolinite. Nature 1945 156:3970 [Internet]. 1945 [cited 2022 Feb 14];156(3970):661–2. Available from: https://www.nature.com/articles/156661b0
  • 38. Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Progress in Polymer Science. 2013 Oct;38(10–11):1629–52. <DOI>
  • 39. El-Sherbiny S, Morsy FA, Hassan MS, Mohamed HF. Enhancing Egyptian kaolinite via calcination and dealumination for application in paper coating. Journal of Coatings Technology and Research. 2015 Jul 1;12(4):739–49. <DOI>
  • 40. Bhattacharyya KG, Gupta S sen. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science. 2008 Aug;140(2):114–31. <DOI>
  • 41. Frenkel M. Surface acidity of montmorillonites. Clays and Clay Minerals. 1974;22((5-6)):435–41.
  • 42. Winchell AN. Montmorillonite. American Mineralogist. 1945;30((7-8)):510–8.
  • 43. Poernomo H. Sorption and dispersion of strontium radionuclide in the bentonite-quartz-clay as backfill material candidate on radioactive waste repository. Indonesian Journal of Chemistry. 2010 Dec 14;10(3):276–84.
  • 44. Seliman AF, Lasheen YF, Youssief MAE, Abo-Aly MM, Shehata FA. Removal of some radionuclides from contaminated solution using natural clay: Bentonite. Journal of Radioanalytical and Nuclear Chemistry. 2014;300(3):969–79. <DOI>
  • 45. Nuruzzaman M, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry. 2016 Jan 5;64(7):1447–83. <DOI>
  • 46. Hendricks SB, Jefferson ME. Crystal structure of vermiculites and mixed vermiculite-chlorites. American Mineralogist. 1938;23(12):851–62.
  • 47. Shirozu H, Bailey SW. Crystal structure of a 2-layer Mg-vermiculite. American Mineralogist. 1966;51(7):1124.
  • 48. General Directorate of Mineral Exploration and Research. Perlite [Internet]. 2021 [cited 2021 Oct 24]. Available from: https://www.mta.gov.tr/v3.0/bilgi-merkezi/perlit
  • 49. General Directorate of Mineral Exploration and Research. Diatomite [Internet]. [cited 2021 Nov 24]. Available from: https://www.mta.gov.tr/v3.0/bilgi-merkezi/diatomit
  • 50. Ruggieri F, Marín V, Gimeno D, Fernandez-Turiel JL, García-Valles M, Gutierrez L. Application of zeolitic volcanic rocks for arsenic removal from water. Engineering Geology. 2008 Oct 17;101(3–4):245–50. <DOI>
  • 51. Silber A, Bar-Yosef B, Chen Y. pH-Dependent kinetics of tuff dissolution. Geoderma. 1999;93(1–2):125–40.
  • 52. Tachi Y, Shibutani T, Sato H, Yui M. Sorption and diffusion behavior of selenium in tuff. Journal of Contaminant Hydrology. 1998 Dec;35(1–3):77–89. <DOI>
  • 53. Cerjan Stefanović Š, Zabukovec Logar N, Margeta K, Novak Tušar N, Arčon I, Maver K, et al. Structural investigation of Zn2+ sorption on clinoptilolite tuff from the Vranjska Banja deposit in Serbia. Microporous and Mesoporous Materials. 2007 Oct 1;105(3):251–9. <DOI>
  • 54. Krestou A, Xenidis A, Panias D. Mechanism of aqueous uranium (VI) uptake by natural zeolitic tuff. Minerals Engineering. 2003 Dec;16(12):1363–70. <DOI>
  • 55. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K. Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry. 2006 Dec;270(3):637–40. <DOI>
  • 56. Köktürk U. Zeolit Madenciliği ve Çevre Sağlığına Etkileri. 1995;
  • 57. Ataman G, Gündoğdu N. Analcimic zones in the tertiary of Anatolia and their geologic positions. Sediment Geology. 1982;31:89–99.
  • 58. Kilincarslan A, Akyil S. Uranium adsorption characteristic and thermodynamic behavior of clinoptilolite zeolite. Journal of Radioanalytical and Nuclear Chemistry. 2005 May;264(3):541–8. <DOI>
  • 59. Aytas SO, Akyil S, Eral M. Adsorption and thermodynamic behavior of uranium on natural zeolite. Journal of Radioanalytical and Nuclear Chemistry. 2004;260(1):119–25. <DOI>
  • 60. Akyüz T. Strontium and cesium sorption of some anatolian zeolites. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry. 1996;26(1–3):89–91.
  • 61. DPT. Sekizinci Beş Yıllık Kalkınma Planı, Madencilik Özel İhtisas Komisyonu Raporu, Endüstriyel Hammaddeler Alt Komisyonu Genel Endüstri Mineralleri IV (Bentonit-Barit-Diatomit-Aşındırıcılar) Çalışma Grubu Raporu. Ankara; 2001.
  • 62. Republic of Turkey Ministry of Trade. Mining industry in Turkey [Internet]. 2019 [cited 2021 Sep 14]. Available from: https://www.trade.gov.tr/data/5b8fd5bf13b8761f041fee9b/Mining.pdf
  • 63. Yücel BM, Gül Ö. Dünyada ve Türkiye’de bentonit. 2018.
  • 64. General Directorate of Mineral Exploration and Research. Sepiolite [Internet]. 2021 [cited 2021 Oct 10]. Available from: https://www.mta.gov.tr/v3.0/bilgi-merkezi/sepiyolit
  • 65. Can G. Dünya’da ve Türkiye’de sepiyolitik kil . Jeoloji Mühendisliği Dergisi. 1992;41:166–70.
  • 66. Akçay H, Kurtulmuş F. Study of uranium sorption and desorption on some Turkish clays. Journal of Radioanalytical and Nuclear Chemistry Letters. 1995 Aug;200(6):529–44. <DOI>
  • 67. Sari A, Tuzen M, Citak D, Soylak M. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials. 2007 Oct 22;149(2):283–91. <DOI>
  • 68. Akyüz T, Akyüz S, Bassari A. The Sorption of Cesium and Strontium Ions onto Red-Clay from Sivrihisar-Eskisehir (Turkey). Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2000;38(1/4):337–44. <DOI>
  • 69. Donat R. The removal of uranium (VI) from aqueous solutions onto natural sepiolite. Journal of Chemical Thermodynamics. 2009 Jul;41(7):829–35. <DOI>
  • 70. Donat R, Aytas S. Adsorption and thermodynamic behavior of uranium(VI) on Ulva sp.-Na bentonite composite adsorbent. Journal of Radioanalytical and Nuclear Chemistry. 2005 Jun;265(1):107–14. <DOI>
  • 71. Akalin HA, Hiçsönmez Ü, Yilmaz H. Removal of cesium from aqueous solution by adsorption onto sivas-yildizeli (Türkiye) vermiculite: Equilibrium, kinetic and thermodynamic studies. Journal of the Turkish Chemical Society, Section A: Chemistry. 2018;5(1):85–116. <DOI>
  • 72. Gürtürk M, Oztop HF, Hepbasli A. Energy and exergy assessments of a perlite expansion furnace in a plaster plant. Energy Conversion and Management. 2013;75:488–97. <DOI>
  • 73. Uluatam SS. Assessing perlite as a sand substitute in filtration. Journal / American Water Works Association. 1991;83(6):70–1. <DOI>
  • 74. Turanli L, Uzal B, Bektas F. Effect of material characteristics on the properties of blended cements containing high volumes of natural pozzolans. Cement and Concrete Research. 2004 Dec;34(12):2277–82. <DOI>
  • 75. Yılmaz Y, Güner Y, Şaroğlu F. Geology of the quaternary volcanic centres of the east Anatolia. Journal of Volcanology and Geothermal Research. 1998 Oct;85(1–4):173–210. <DOI>
  • 76. Sorg TJ. Removal of Uranium from Drinking Water by Conventional Treatment Methods. In: Cothern CR, Rebers PA, editors. Radon, radium and uranium in drinking water. Lewis Publishers ; 1991.
  • 77. Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Pourmatin A. Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2-ZrO2 composite: A new inorganic ion exchanger. Journal of Radioanalytical and Nuclear Chemistry. 2014;299(3):1701–7. <DOI>
  • 78. Atun G, Bodur N. Retention of Cs on zeolite, bentonite and their mixtures. Journal of Radioanalytical and Nuclear Chemistry. 2002;253(2):275–9. <DOI>
  • 79. Akar D, Shahwan T, Eroglu AE. Kinetic and thermodynamic investigations of strontium ions retention by natural kaolinite and clinoptilolite minerals. Radiochimica Acta. 2005;93(8):477–85. <DOI>
  • 80. Hicsonmez U, Erenturk SA, Gorgun AU, Aslani MAA. Removal of 209Po from aquatic environment and its equilibrium and thermodynamic parameters. Journal of environmental radioactivity. 2020 Sep 1;220–221:106280. <DOI>
  • 81. Başçetin E, Atun G. Adsorptive Removal of Strontium by Binary Mineral Mixtures of Montmorillonite and Zeolite. Journal of Chemical & Engineering Data. 2010 Feb 11;55(2):783–8. <DOI>
  • 82. Yıldız B, Erten HN, Kış M. The sorption behavior of Cs + ion on clay minerals and zeolite in radioactive waste management: Sorption kinetics and thermodynamics. Journal of Radioanalytical and Nuclear Chemistry. 2011;288(2):475–83. <DOI>
  • 83. Yusan S, Erenturk S. Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent. World Journal of Nuclear Science and Technology. 2011;01(01):6–12. <DOI>
  • 84. Erenturk SA, Kaygun AK. Removal of 210Po from aqueous media and its thermodynamics and kinetics. Journal of Environmental Radioactivity. 2017 Aug 1;174:3–9. <DOI>
  • 85. Aharoni C, Tompkins FC. Kinetics of Adsorption and Desorption and the Elovich Equation. Advances in Catalysis. 1970;1–49.
  • 86. Hosseini M, Mertens SFL, Ghorbani M, Arshadi MR. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Materials Chemistry and Physics. 2003 Feb;78(3):800–8. <DOI>
  • 87. Yusan S, Aslani MAA, Turkozu DA, Aycan HA, Aytas S, Akyil S. Adsorption and thermodynamic behaviour of U(VI) on the Tendurek volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry. 2010 Jan;283(1):231–8. <DOI>
  • 88. Şimşek S, Ulusoy U. Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. Journal of Radioanalytical and Nuclear Chemistry. 2012 Apr;292(1):41–51. <DOI>
  • 89. Kabay N, Demircioǧlu M, Yaylı S, Günay E, Yüksel M, Saǧlam M, et al. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Industrial & Engineering Chemistry Research. 1998 May 1;37(5):1983–90. <DOI>
  • 90. Keçeli G. Adsorption Kinetics and Equilibria of Strontium onto Kaolinite. Separation Science and Technology (Philadelphia). 2015 Jan 2;50(1):72–80. <DOI>
  • 91. Erten HN, Aksoyoglu S, Hatipoglu S, Göktürk H. Sorption of Cesium and Strontium on Montmorillonite and Kaolinite. Radiochimica Acta. 1988 May 1;44–45(1):147–52. <DOI>
  • 92. Akçay H, Kilinç S. Sorption and desorption of thorium from aqueous solutions by montmorillonite. Journal of Radioanalytical and Nuclear Chemistry Letters. 1996 Feb;212(3):173–85. <DOI>
  • 93. Bilgin B, Atun G, Keçeli G. Adsorption of strontium on illite. Journal of Radioanalytical and Nuclear Chemistry. 2001;250(2):323–8. <DOI>
  • 94. Erden KE, Donat R. Removal of thorium(IV) from aqueous solutions by natural sepiolite. Radiochimica Acta. 2017;105(3):187–96. <DOI>
  • 95. Neck V, Müller R, Bouby M, Altmaier M, Rothe J, Denecke MA, et al. Solubility of amorphous Th(IV) hydroxide – application of LIBD to determine the solubility product and EXAFS for aqueous speciation. Radiochimica Acta. 2002 Sep 1;90(9–11):485–94. <DOI>
  • 96. Bayülken S, Başçetin E, Güçlü K, Apak R. Investigation and modeling of cesium(I) adsorption by Turkish clays: Bentonite, zeolite, sepiolite, and kaolinite. Environmental Progress and Sustainable Energy. 2011 Apr;30(1):70–80. <DOI>
  • 97. Tekdal M. Decontamination of Liquid Radioactive Wastes Using Clay Minerals. Cumhuriyet Science Journal. 2018;39(3):628–34. <DOI>
  • 98. Kamel N, Navratil J. Migration of 134Cs in unsaturated soils at a site in Egypt. Journal of Radioanalytical and Nuclear Chemistry. 2002;254:421–30. <DOI>
  • 99. Talip Z, Eral M, Hiçsönmez Ü. Adsorption of thorium from aqueous solutions by perlite. Journal of Environmental Radioactivity. 2009 Feb;100(2):139–43. <DOI>
  • 100. Dogan M, Alkan M, Onganer Y. Adsorption of methylene blue from aqueous solution onto perlite. Water, Air, & Soil Pollution. 2000;120:229–48. <DOI>
  • 101. Yusan S, Gok C, Erenturk S, Aytas S. Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: Evaluation of equilibrium, kinetic and thermodynamic data. Applied Clay Science. 2012 Oct;67–68:106–16. <DOI>
  • 102. Ölmez Aytaş Ş, Akyil S, Aslani M, Aytekin U. Removal of uranium from aqueous solutions by diatomite (Kieselguhr). Journal of Radioanalytical and Nuclear Chemistry. 1999;240(3):973–6. <DOI>
Yıl 2022, Cilt: 9 Sayı: 2, 579 - 600, 31.05.2022
https://doi.org/10.18596/jotcsa.1074651

Öz

Kaynakça

  • 1. Marinin D v, Brown GN. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management. 2000 Nov;20(7):545–53. <DOI>
  • 2. Backgrounder On Radioactive Waste | NRC.gov [Internet]. [cited 2022 Feb 14]. Available from: https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html
  • 3. Radionuclide Basics: Strontium-90 | US EPA [Internet]. [cited 2022 Feb 14]. Available from: https://www.epa.gov/radiation/radionuclide-basics-strontium-90
  • 4. Cakir P, Inan S, Altas Y. Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design. Journal of Hazardous Materials. 2014 Apr 30;271:108–19. <DOI>
  • 5. van Horn J, Huang H. Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coordination Chemistry Reviews. 2006 Apr;250(7–8):765–75. <DOI>
  • 6. Salinas-Pedroza MG, Olguín MT. Thorium removal from aqueous solutions of Mexican erionite and X zeolite. Journal of Radioanalytical and Nuclear Chemistry. 2004;260(1):115–8. <DOI>
  • 7. Ryabchikov DI, Gol’braikh EK. The analytical chemistry of Thorium. Pergamon Press; 1963.
  • 8. Skwarzec B, Bojanowski R. 210Po content in sea water and its accumulation in southern Baltic plankton. Marine Biology. 1988 Feb;97(2):301–7.
  • 9. Skwarzec B, Strumińska DI, Boryło A. Radionuclides of 210Po, 234U and 238U in drinking bottled mineral water in Poland. Journal of Radioanalytical and Nuclear Chemistry. 2003;256:361–4. <DOI>
  • 10. Strumińska-Parulska DI, Skwarzec B, Tuszkowska A, Jahnz-Bielawska A, Boryło A. Polonium (210Po), uranium (238U) and plutonium (239+240Pu) in the biggest Polish rivers. Journal of Radioanalytical and Nuclear Chemistry. 2010 Nov 19;286(2):373–80. <DOI>
  • 11. Uǧur A, Özden B, Filizok I. Spatial and temporal variability of 210Po and 210Pb in mussels (Mytilus galloprovincialis) at the Turkish coast of the Aegean Sea. Chemosphere. 2011 May;83(8):1102–7. <DOI>
  • 12. Waska H, Kim G, Kim GB. Comparison of S, Se, and 210Po accumulation patterns in common squid Todarodes pacificus from the Yellow Sea and East/Japan Sea. Ocean Science Journal. 2013 Jun 1;48(2):215–24. <DOI>
  • 13. Singh NB, Nagpal G, Agrawal S, Rachna. Water purification by using Adsorbents: A Review. Environmental Technology & Innovation. 2018 Aug;11:187–240. <DOI>
  • 14. Republic of Turkey M of E. Mining industry in Turkey [Internet]. 2018 [cited 2021 Sep 14]. Available from: https://trade.gov.tr/data/5b8fd5bf13b8761f041fee9b/f5e8baa1e2de8a3eb7a34c9a89c4c011.pdf
  • 15. Akkuyu Nükleer Güç Santrali Projesi - Nükleer Enerji ve Uluslararası Projeler Genel Müdürlüğü - T.C. Enerji ve Tabii Kaynaklar Bakanlığı [Internet]. [cited 2022 Feb 14]. Available from: https://enerji.gov.tr/nukleer-enerji-ve-uluslararasi-projeler-genel-mudurlugu-akkuyu-nukleer-guc-santrali-projesi
  • 16. Pabalan RT, Bertetti FP. Cation-Exchange Properties of Natural Zeolites. Reviews in Mineralogy and Geochemistry. 2001 Jan 1;45(1):453–518. <DOI>
  • 17. Gottardi G, Galli E. Natural zeolites. Berlin: Springer-Verlag; 1985.
  • 18. Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal. 2010 Jan 1;156(1):11–24. <DOI>
  • 19. Polat E, Karaca M, Demir H, Onus AN. Use of natural zeolite (clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research . 2004;12:183–9.
  • 20. Englert AH, Rubio J. Characterization and environmental application of a Chilean natural zeolite. International Journal of Mineral Processing. 2005 Jan 6;75(1–2):21–9. <DOI>
  • 21. Weatherley LR, Miladinovic ND. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Research. 2004;38(20):4305–12. <DOI>
  • 22. Margeta K, Zabukovec N, Siljeg M, Farkas A. Natural Zeolites in Water Treatment – How Effective is Their Use. In: Water Treatment. InTech; 2013. <DOI>
  • 23. Pansini M. Natural zeolites as cation exchangers for environmental protection. Mineralium Deposita. 1996 Sep;31(6):563–75. <DOI>
  • 24. Dyer A, Hriljac J, Evans N, Stokes I, Rand P, Kellet S, et al. The use of columns of the zeolite clinoptilolite in the remediation of aqueous nuclear waste streams. Journal of Radioanalytical and Nuclear Chemistry. 2018 Dec 1;318(3):2473–91. <DOI>
  • 25. Osmanlioglu AE. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. Journal of Hazardous Materials. 2006 Sep 1;137(1):332–5. <DOI>
  • 26. Nikashina VA, Serova IB, Kats EM, Tikhonov NA, Tokmachev MG, Novgorodov PG. Mathematical modelling of the sorption dynamics of radionuclides by natural clinoptilolite in permeable reactive barriers. Clay Minerals. 2011 Jun 9;46(2):233–40. <DOI>
  • 27. Zamzow MJ, Eichbaum BR, Sandgren KR, Shanks DE. Removal of Heavy Metals and Other Cations from Wastewater Using Zeolites. Separation Science and Technology. 1990 Oct;25(13–15):1555–69. <DOI>
  • 28. Leppert DE. An Oregon cure for Bikini Island? First results from the zeolite immobilization experiment. Oregon Geology . 1998;50:140–1.
  • 29. Valcke E, Engels B, Cremers A. The use of zeolites as amendments in radiocaesium- and radiostrontium-contaminated soils: A soil-chemical approach. Part I: Cs-K exchange in clinoptilolite and mordenite. Zeolites. 1997 Feb;18(2–3):205–11.
  • 30. Valcke E, Engels B, Cremers A. The use of zeolites as amendments in radiocaesium- and radiostrontium-contaminated soils: A soil-chemical approach. Part II: Sr-Ca exchange in clinoptilolite, mordenite, and zeolite A. Zeolites. 1997 Feb;18(2–3):212–7. <DOI>
  • 31. ChemTube3D. Zeolite-Clinoptilolite [Internet]. [cited 2021 Nov 30]. Available from: https://www.chemtube3d.com/ss-z-clinoptilolite/
  • 32. Mockovciakova A, Orolinov Z. Adsorption properties of modified bentonite clay. Cheminė Technologija . 2009;1:47–50.
  • 33. Shichi T, Takagi K. Clay minerals as photochemical reaction fields. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000 Dec;1(2):113–30. <DOI>
  • 34. Murray HH. Applied clay mineralogy: occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier Science; 2006. 0–188 p.
  • 35. Grim RE. Applied Clay Mineralogy. New York: McGraw Hill; 1962.
  • 36. Gruner JW. The Crystal Structure of Kaolinite. Zeitschrift für Kristallographie - Crystalline Materials. 1932;83(1–6):75–88.
  • 37. Brindley GW, Robinson K. Structure of Kaolinite. Nature 1945 156:3970 [Internet]. 1945 [cited 2022 Feb 14];156(3970):661–2. Available from: https://www.nature.com/articles/156661b0
  • 38. Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Progress in Polymer Science. 2013 Oct;38(10–11):1629–52. <DOI>
  • 39. El-Sherbiny S, Morsy FA, Hassan MS, Mohamed HF. Enhancing Egyptian kaolinite via calcination and dealumination for application in paper coating. Journal of Coatings Technology and Research. 2015 Jul 1;12(4):739–49. <DOI>
  • 40. Bhattacharyya KG, Gupta S sen. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science. 2008 Aug;140(2):114–31. <DOI>
  • 41. Frenkel M. Surface acidity of montmorillonites. Clays and Clay Minerals. 1974;22((5-6)):435–41.
  • 42. Winchell AN. Montmorillonite. American Mineralogist. 1945;30((7-8)):510–8.
  • 43. Poernomo H. Sorption and dispersion of strontium radionuclide in the bentonite-quartz-clay as backfill material candidate on radioactive waste repository. Indonesian Journal of Chemistry. 2010 Dec 14;10(3):276–84.
  • 44. Seliman AF, Lasheen YF, Youssief MAE, Abo-Aly MM, Shehata FA. Removal of some radionuclides from contaminated solution using natural clay: Bentonite. Journal of Radioanalytical and Nuclear Chemistry. 2014;300(3):969–79. <DOI>
  • 45. Nuruzzaman M, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry. 2016 Jan 5;64(7):1447–83. <DOI>
  • 46. Hendricks SB, Jefferson ME. Crystal structure of vermiculites and mixed vermiculite-chlorites. American Mineralogist. 1938;23(12):851–62.
  • 47. Shirozu H, Bailey SW. Crystal structure of a 2-layer Mg-vermiculite. American Mineralogist. 1966;51(7):1124.
  • 48. General Directorate of Mineral Exploration and Research. Perlite [Internet]. 2021 [cited 2021 Oct 24]. Available from: https://www.mta.gov.tr/v3.0/bilgi-merkezi/perlit
  • 49. General Directorate of Mineral Exploration and Research. Diatomite [Internet]. [cited 2021 Nov 24]. Available from: https://www.mta.gov.tr/v3.0/bilgi-merkezi/diatomit
  • 50. Ruggieri F, Marín V, Gimeno D, Fernandez-Turiel JL, García-Valles M, Gutierrez L. Application of zeolitic volcanic rocks for arsenic removal from water. Engineering Geology. 2008 Oct 17;101(3–4):245–50. <DOI>
  • 51. Silber A, Bar-Yosef B, Chen Y. pH-Dependent kinetics of tuff dissolution. Geoderma. 1999;93(1–2):125–40.
  • 52. Tachi Y, Shibutani T, Sato H, Yui M. Sorption and diffusion behavior of selenium in tuff. Journal of Contaminant Hydrology. 1998 Dec;35(1–3):77–89. <DOI>
  • 53. Cerjan Stefanović Š, Zabukovec Logar N, Margeta K, Novak Tušar N, Arčon I, Maver K, et al. Structural investigation of Zn2+ sorption on clinoptilolite tuff from the Vranjska Banja deposit in Serbia. Microporous and Mesoporous Materials. 2007 Oct 1;105(3):251–9. <DOI>
  • 54. Krestou A, Xenidis A, Panias D. Mechanism of aqueous uranium (VI) uptake by natural zeolitic tuff. Minerals Engineering. 2003 Dec;16(12):1363–70. <DOI>
  • 55. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K. Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry. 2006 Dec;270(3):637–40. <DOI>
  • 56. Köktürk U. Zeolit Madenciliği ve Çevre Sağlığına Etkileri. 1995;
  • 57. Ataman G, Gündoğdu N. Analcimic zones in the tertiary of Anatolia and their geologic positions. Sediment Geology. 1982;31:89–99.
  • 58. Kilincarslan A, Akyil S. Uranium adsorption characteristic and thermodynamic behavior of clinoptilolite zeolite. Journal of Radioanalytical and Nuclear Chemistry. 2005 May;264(3):541–8. <DOI>
  • 59. Aytas SO, Akyil S, Eral M. Adsorption and thermodynamic behavior of uranium on natural zeolite. Journal of Radioanalytical and Nuclear Chemistry. 2004;260(1):119–25. <DOI>
  • 60. Akyüz T. Strontium and cesium sorption of some anatolian zeolites. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry. 1996;26(1–3):89–91.
  • 61. DPT. Sekizinci Beş Yıllık Kalkınma Planı, Madencilik Özel İhtisas Komisyonu Raporu, Endüstriyel Hammaddeler Alt Komisyonu Genel Endüstri Mineralleri IV (Bentonit-Barit-Diatomit-Aşındırıcılar) Çalışma Grubu Raporu. Ankara; 2001.
  • 62. Republic of Turkey Ministry of Trade. Mining industry in Turkey [Internet]. 2019 [cited 2021 Sep 14]. Available from: https://www.trade.gov.tr/data/5b8fd5bf13b8761f041fee9b/Mining.pdf
  • 63. Yücel BM, Gül Ö. Dünyada ve Türkiye’de bentonit. 2018.
  • 64. General Directorate of Mineral Exploration and Research. Sepiolite [Internet]. 2021 [cited 2021 Oct 10]. Available from: https://www.mta.gov.tr/v3.0/bilgi-merkezi/sepiyolit
  • 65. Can G. Dünya’da ve Türkiye’de sepiyolitik kil . Jeoloji Mühendisliği Dergisi. 1992;41:166–70.
  • 66. Akçay H, Kurtulmuş F. Study of uranium sorption and desorption on some Turkish clays. Journal of Radioanalytical and Nuclear Chemistry Letters. 1995 Aug;200(6):529–44. <DOI>
  • 67. Sari A, Tuzen M, Citak D, Soylak M. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials. 2007 Oct 22;149(2):283–91. <DOI>
  • 68. Akyüz T, Akyüz S, Bassari A. The Sorption of Cesium and Strontium Ions onto Red-Clay from Sivrihisar-Eskisehir (Turkey). Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2000;38(1/4):337–44. <DOI>
  • 69. Donat R. The removal of uranium (VI) from aqueous solutions onto natural sepiolite. Journal of Chemical Thermodynamics. 2009 Jul;41(7):829–35. <DOI>
  • 70. Donat R, Aytas S. Adsorption and thermodynamic behavior of uranium(VI) on Ulva sp.-Na bentonite composite adsorbent. Journal of Radioanalytical and Nuclear Chemistry. 2005 Jun;265(1):107–14. <DOI>
  • 71. Akalin HA, Hiçsönmez Ü, Yilmaz H. Removal of cesium from aqueous solution by adsorption onto sivas-yildizeli (Türkiye) vermiculite: Equilibrium, kinetic and thermodynamic studies. Journal of the Turkish Chemical Society, Section A: Chemistry. 2018;5(1):85–116. <DOI>
  • 72. Gürtürk M, Oztop HF, Hepbasli A. Energy and exergy assessments of a perlite expansion furnace in a plaster plant. Energy Conversion and Management. 2013;75:488–97. <DOI>
  • 73. Uluatam SS. Assessing perlite as a sand substitute in filtration. Journal / American Water Works Association. 1991;83(6):70–1. <DOI>
  • 74. Turanli L, Uzal B, Bektas F. Effect of material characteristics on the properties of blended cements containing high volumes of natural pozzolans. Cement and Concrete Research. 2004 Dec;34(12):2277–82. <DOI>
  • 75. Yılmaz Y, Güner Y, Şaroğlu F. Geology of the quaternary volcanic centres of the east Anatolia. Journal of Volcanology and Geothermal Research. 1998 Oct;85(1–4):173–210. <DOI>
  • 76. Sorg TJ. Removal of Uranium from Drinking Water by Conventional Treatment Methods. In: Cothern CR, Rebers PA, editors. Radon, radium and uranium in drinking water. Lewis Publishers ; 1991.
  • 77. Ahmadi SJ, Akbari N, Shiri-Yekta Z, Mashhadizadeh MH, Pourmatin A. Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2-ZrO2 composite: A new inorganic ion exchanger. Journal of Radioanalytical and Nuclear Chemistry. 2014;299(3):1701–7. <DOI>
  • 78. Atun G, Bodur N. Retention of Cs on zeolite, bentonite and their mixtures. Journal of Radioanalytical and Nuclear Chemistry. 2002;253(2):275–9. <DOI>
  • 79. Akar D, Shahwan T, Eroglu AE. Kinetic and thermodynamic investigations of strontium ions retention by natural kaolinite and clinoptilolite minerals. Radiochimica Acta. 2005;93(8):477–85. <DOI>
  • 80. Hicsonmez U, Erenturk SA, Gorgun AU, Aslani MAA. Removal of 209Po from aquatic environment and its equilibrium and thermodynamic parameters. Journal of environmental radioactivity. 2020 Sep 1;220–221:106280. <DOI>
  • 81. Başçetin E, Atun G. Adsorptive Removal of Strontium by Binary Mineral Mixtures of Montmorillonite and Zeolite. Journal of Chemical & Engineering Data. 2010 Feb 11;55(2):783–8. <DOI>
  • 82. Yıldız B, Erten HN, Kış M. The sorption behavior of Cs + ion on clay minerals and zeolite in radioactive waste management: Sorption kinetics and thermodynamics. Journal of Radioanalytical and Nuclear Chemistry. 2011;288(2):475–83. <DOI>
  • 83. Yusan S, Erenturk S. Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent. World Journal of Nuclear Science and Technology. 2011;01(01):6–12. <DOI>
  • 84. Erenturk SA, Kaygun AK. Removal of 210Po from aqueous media and its thermodynamics and kinetics. Journal of Environmental Radioactivity. 2017 Aug 1;174:3–9. <DOI>
  • 85. Aharoni C, Tompkins FC. Kinetics of Adsorption and Desorption and the Elovich Equation. Advances in Catalysis. 1970;1–49.
  • 86. Hosseini M, Mertens SFL, Ghorbani M, Arshadi MR. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Materials Chemistry and Physics. 2003 Feb;78(3):800–8. <DOI>
  • 87. Yusan S, Aslani MAA, Turkozu DA, Aycan HA, Aytas S, Akyil S. Adsorption and thermodynamic behaviour of U(VI) on the Tendurek volcanic tuff. Journal of Radioanalytical and Nuclear Chemistry. 2010 Jan;283(1):231–8. <DOI>
  • 88. Şimşek S, Ulusoy U. Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. Journal of Radioanalytical and Nuclear Chemistry. 2012 Apr;292(1):41–51. <DOI>
  • 89. Kabay N, Demircioǧlu M, Yaylı S, Günay E, Yüksel M, Saǧlam M, et al. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Industrial & Engineering Chemistry Research. 1998 May 1;37(5):1983–90. <DOI>
  • 90. Keçeli G. Adsorption Kinetics and Equilibria of Strontium onto Kaolinite. Separation Science and Technology (Philadelphia). 2015 Jan 2;50(1):72–80. <DOI>
  • 91. Erten HN, Aksoyoglu S, Hatipoglu S, Göktürk H. Sorption of Cesium and Strontium on Montmorillonite and Kaolinite. Radiochimica Acta. 1988 May 1;44–45(1):147–52. <DOI>
  • 92. Akçay H, Kilinç S. Sorption and desorption of thorium from aqueous solutions by montmorillonite. Journal of Radioanalytical and Nuclear Chemistry Letters. 1996 Feb;212(3):173–85. <DOI>
  • 93. Bilgin B, Atun G, Keçeli G. Adsorption of strontium on illite. Journal of Radioanalytical and Nuclear Chemistry. 2001;250(2):323–8. <DOI>
  • 94. Erden KE, Donat R. Removal of thorium(IV) from aqueous solutions by natural sepiolite. Radiochimica Acta. 2017;105(3):187–96. <DOI>
  • 95. Neck V, Müller R, Bouby M, Altmaier M, Rothe J, Denecke MA, et al. Solubility of amorphous Th(IV) hydroxide – application of LIBD to determine the solubility product and EXAFS for aqueous speciation. Radiochimica Acta. 2002 Sep 1;90(9–11):485–94. <DOI>
  • 96. Bayülken S, Başçetin E, Güçlü K, Apak R. Investigation and modeling of cesium(I) adsorption by Turkish clays: Bentonite, zeolite, sepiolite, and kaolinite. Environmental Progress and Sustainable Energy. 2011 Apr;30(1):70–80. <DOI>
  • 97. Tekdal M. Decontamination of Liquid Radioactive Wastes Using Clay Minerals. Cumhuriyet Science Journal. 2018;39(3):628–34. <DOI>
  • 98. Kamel N, Navratil J. Migration of 134Cs in unsaturated soils at a site in Egypt. Journal of Radioanalytical and Nuclear Chemistry. 2002;254:421–30. <DOI>
  • 99. Talip Z, Eral M, Hiçsönmez Ü. Adsorption of thorium from aqueous solutions by perlite. Journal of Environmental Radioactivity. 2009 Feb;100(2):139–43. <DOI>
  • 100. Dogan M, Alkan M, Onganer Y. Adsorption of methylene blue from aqueous solution onto perlite. Water, Air, & Soil Pollution. 2000;120:229–48. <DOI>
  • 101. Yusan S, Gok C, Erenturk S, Aytas S. Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: Evaluation of equilibrium, kinetic and thermodynamic data. Applied Clay Science. 2012 Oct;67–68:106–16. <DOI>
  • 102. Ölmez Aytaş Ş, Akyil S, Aslani M, Aytekin U. Removal of uranium from aqueous solutions by diatomite (Kieselguhr). Journal of Radioanalytical and Nuclear Chemistry. 1999;240(3):973–6. <DOI>
Toplam 102 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnorganik Kimya
Bölüm DERLEME MAKALELER
Yazarlar

Süleyman İnan 0000-0003-4185-0979

Ümran Hiçsönmez 0000-0001-6880-5743

Yayımlanma Tarihi 31 Mayıs 2022
Gönderilme Tarihi 16 Şubat 2022
Kabul Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

Vancouver İnan S, Hiçsönmez Ü. Adsorption Studies of Radionuclides by Turkish Minerals: A Review. JOTCSA. 2022;9(2):579-600.