Research Article
BibTex RIS Cite

Pollution Removal Performance of Chemically Functionalized Textile Waste Biochar Anchored Poly(vinylidene fluoride) Adsorbent

Year 2022, Volume: 9 Issue: 3, 777 - 792, 31.08.2022
https://doi.org/10.18596/jotcsa.1026303

Abstract

Preparation of adsorbent materials in powder and polymeric composite form was achieved by controlled carbonization of ZnCl2 pretreated textile waste at low temperatures. Structural and surface properties of carbonized textile waste samples (CTW) and polymeric composites were prepared by the addition of CTW to PVDF-DMF solution at 0, 5, 10, 15, 20, and 30 mass% ratios analyzed by FT-IR, XRD, SEM, and BET analysis. Adsorption performances of powder and composite adsorbents were investigated for MO dye removal from an aqueous solution. Zn-CTW obtained with carbonization of ZnCl2 treated textile waste at 350 °C presented 117.5 mg/g MO removal. Those were higher than CTW-350 and CTW-400. The presence of 1545 cm-1 band at the IR spectrum of Zn-CTW proved the formation of functional groups that increase dye adsorption performance with honeycomb-like pores on the surface. Zn-CTW reflected its properties onto the PVDF matrix. Improved porosity percentage, BET surface, and dye adsorption of Pz20 were recorded as 105.3, 15.22 m2/g, and 41 mg/g, respectively, compared with bare PVDF. Disposal of textile waste and preparation of functional activated carbon were achieved in a low-cost and easy way. Zn-CTW loaded PVDF composites are promising materials to use as a dye removal adsorbent from water or filtration membranes.

Supporting Institution

Kütahya Dumlupınar Department of Scientific Research Project (DPU-BAP)

Project Number

2020-08

References

  • 1. Vieira O, Ribeiro RS, Pedrosa M, Lado Ribeiro AR, Silva AMT. Nitrogen-doped reduced graphene oxide – PVDF nanocomposite membrane for persulfate activation and degradation of water organic micropollutants. Chem Eng J [Internet]. Elsevier; 2020;402(March):126117. Available from: .
  • 2. Pala M, Kantarli IC, Buyukisik HB, Yanik J. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol. 2014;161:255–62.
  • 3. Arteaga-Pérez LE, Segura C, Bustamante-García V, Cápiro OG, Jiménez R. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures. Energy. 2015;93:1731–41.
  • 4. Tag AT, Duman G, Ucar S, Yanik J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis. 2016;120:200–6.
  • 5. Ambaye TG, Vaccari M, van Hullebusch ED, Amrane A, Rtimi S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol [Internet]. Springer Berlin Heidelberg; 2020; Available from: .
  • 6. De Oliveira GF, De Andrade RC, Trindade MAG, Andrade HMC, De Carvalho CT. Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu. Quim Nova. 2017;40(3):284–92.
  • 7. Choudhury A, Lansing S. Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. J Environ Chem Eng [Internet]. Elsevier Ltd; 2020;9(1):104837. Available from: .
  • 8. Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Reports [Internet]. Elsevier B.V.; 2020;28:e00570. Available from: .
  • 9. Della L, Ducousso M, Batisse N, Dubois M, Verney V, Xavier V, et al. Poplar wood and tea biochars for trichloroethylene remediation in pure water and contaminated groundwater. Environ Challenges [Internet]. Elsevier B.V.; 2020;1(August):100003. Available from: .
  • 10. Silva RVS, Gonçalves AD, Vinhal JO, Cassella RJ, Santos RC, Sasso MAD, et al. Bioproducts from the pyrolysis of castor seed cake: basic dye adsorption capacity of biochar and antifungal activity of the aqueous phase. J Environ Chem Eng. 2020;9(August 2020):104825.
  • 11. Yao X, Ji L, Guo J, Ge S, Lu W, Chen Y, et al. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour Technol [Internet]. Elsevier; 2020;318(September):124082. Available from: .
  • 12. Chahinez HO, Abdelkader O, Leila Y, Tran HN. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environ Technol Innov [Internet]. Elsevier B.V.; 2020;19:100872. Available from: .
  • 13. Ali NA, Hussein EA. Characterization of functional electrospun polymeric nanofiber membranes. Int J Environ Sci Technol [Internet]. Springer Berlin Heidelberg; 2019;16(12):8411–22. Available from: .
  • 14. Haslinger S, Hummel M, Anghelescu-Hakala A, Määttänen M, Sixta H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag [Internet]. The Author(s); 2019;97:88–96. Available from: .
  • 15. Anonim. Sektörel Atık Kılavuzları. 2016;146.
  • 16. Nautiyal P, Subramanian KA, Dastidar MG. Experimental investigation on adsorption properties of biochar derived from algae biomass residue of biodiesel production. Environ Process. 2017;4:S179–93.
  • 17. Jeihanipour A, Aslanzadeh S, Rajendran K, Balasubramanian G, Taherzadeh MJ. High-rate biogas production from waste textiles using a two-stage process. Renew Energy [Internet]. Elsevier Ltd; 2013;52:128–35. Available from: .
  • 18. Jeihanipour A, Karimi K, Niklasson C, Taherzadeh MJ. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manag [Internet]. Elsevier Ltd; 2010;30(12):2504–9. Available from: .
  • 19. Xu Z, Qi R, Xiong M, Zhang D, Gu H, Chen W. Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors. Bioresour Technol. 2021;321(November 2020).
  • 20. Kwon D, Yi S, Jung S, Kwon EE. Valorization of synthetic textile waste using CO2 as a raw material in the catalytic pyrolysis process. Environ Pollut [Internet]. Elsevier Ltd; 2021;268:115916. Available from: .
  • 21. Subramanian K, Chopra SS, Cakin E, Li X, Lin CSK. Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resour Conserv Recycl [Internet]. Elsevier; 2020;161(May):104989. Available from: .
  • 22. Guo Z, Eriksson M, Motte H de la, Adolfsson E. Circular recycling of polyester textile waste using a sustainable catalyst. J Clean Prod [Internet]. Elsevier Ltd; 2020;283:124579. Available from: .
  • 23. Hanoğlu A, Çay A, Yanık J. Production of biochars from textile fibres through torrefaction and their characterisation. Energy. 2019;166:664–73.
  • 24. Singh V, Srivastava VC. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. Environ Pollut [Internet]. Elsevier Ltd; 2020;259:113822. Available from: .
  • 25. Silva TL, Cazetta AL, Souza PSC, Zhang T, Asefa T, Almeida VC. Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. J Clean Prod. 2018;171:482–90.
  • 26. Wang X, Li C, Li Z, Yu G, Wang Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol Environ Saf [Internet]. Elsevier Inc.; 2019;168(August 2018):45–52. Available from: .
  • 27. Hein J, Guarin A, Frommé E, Pauw P. Deforestation and the Paris climate agreement: An assessment of REDD + in the national climate action plans. For Policy Econ [Internet]. Elsevier; 2018;90(November 2017):7–11. Available from: .
  • 28. Li Z, Hanafy H, Zhang L, Sellaoui L, Schadeck Netto M, Oliveira MLS, et al. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chem Eng J. 2020;388(December 2019). .
  • 29. Patra C, Gupta R, Bedadeep D, Narayanasamy S. Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight. Environ Pollut. 2020;266.
  • 30. Li L, Fan C, Zeng B, Tan M. Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose. Mater Chem Phys. 2020;242.
  • 31. Arularasu M V., Harb M, Vignesh R, Rajendran T V., Sundaram R. PVDF/ZnO hybrid nanocomposite applied as a resistive humidity sensor. Surfaces and Interfaces. 2020;21(September).
  • 32. Saha P, Debnath T, Das S, Chatterjee S, Sutradhar S. β-Phase improved Mn-Zn-Cu-ferrite-PVDF nanocomposite film: A metamaterial for enhanced microwave absorption. Mater Sci Eng B Solid-State Mater Adv Technol [Internet]. Elsevier; 2019;245(April 2018):17–29. Available from: .
  • 33. Abdulsalam J, Mulopo J, Oboirien B, Bada S, Falcon R. Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage. Int J Coal Sci Technol [Internet]. Springer Singapore; 2019;6(3):459–77. Available from: .
  • 34. Gumus H. Performance investigation of Fe 3 O 4 blended poly (vinylidene fluoride) membrane on filtration and benzyl alcohol oxidation: Evaluation of sufficiency for catalytic reactors. Chinese J Chem Eng. Elsevier B.V.; 2019;27(2):314–21.
  • 35. Medeiros KAR, Rangel EQ, Sant’Anna AR, Louzada DR, Barbosa CRH, D’Almeida JRM. Evaluation of the electromechanical behavior of polyvinylidene fluoride used as a component of risers in the offshore oil industry. Oil Gas Sci Technol. 2018;73(2).
  • 36. Cai X, Lei T, Sun D, Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. Royal Society of Chemistry; 2017;7(25):15382–9.
  • 37. Sartova K, Omurzak E, Kambarova G, Dzhumaev I, Borkoev B, Abdullaeva Z. Activated carbon obtained from the cotton processing wastes. Diam Relat Mater. 2019;91(June 2018):90–7.
  • 38. Yedurkar S, Maurya C, Mahanwar P. Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach. Open J Synth Theory Appl. 2016;5(1):1–14.
  • 39. Ahmad F, Daud WMAW, Ahmad MA, Radzi R. Cocoa (Theobroma cacao) shell-based activated carbon by CO 2 activation in removing of Cationic dye from aqueous solution: Kinetics and equilibrium studies. Chem Eng Res Des. 2012;90(10):1480–90.
  • 40. Choi GG, Jung SH, Oh SJ, Kim JS. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Process Technol. 2014;123:57–64.
  • 41. Chiang CH, Chen J, Lin JH. Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. J Environ Chem Eng. 2020;8(4).
  • 42. Xiao W, Garba ZN, Sun S, Lawan I, Wang L, Lin M, et al. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J Clean Prod. 2020;253.
  • 43. León O, Muñoz-Bonilla A, Soto D, Pérez D, Rangel M, Colina M, et al. Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohydr Polym. 2018;194:375–83.
  • 44. Gabrienko AA, Arzumanov SS, Lashchinskaya ZN, Toktarev A V., Freude D, Haase J, et al. n-Butane transformation on Zn/H-BEA. The effect of different Zn species (Zn2+ and ZnO) on the reaction performance. J Catal [Internet]. Elsevier Inc.; 2020;391:69–79. Available from: .
  • 45. Gumus H. Catalytic performance of polyvinylidene fluoride (Pvdf) supported TiO2 additive at microwave conditions. J Turkish Chem Soc Sect A Chem. 2020;7(2):361–74.
Year 2022, Volume: 9 Issue: 3, 777 - 792, 31.08.2022
https://doi.org/10.18596/jotcsa.1026303

Abstract

Project Number

2020-08

References

  • 1. Vieira O, Ribeiro RS, Pedrosa M, Lado Ribeiro AR, Silva AMT. Nitrogen-doped reduced graphene oxide – PVDF nanocomposite membrane for persulfate activation and degradation of water organic micropollutants. Chem Eng J [Internet]. Elsevier; 2020;402(March):126117. Available from: .
  • 2. Pala M, Kantarli IC, Buyukisik HB, Yanik J. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol. 2014;161:255–62.
  • 3. Arteaga-Pérez LE, Segura C, Bustamante-García V, Cápiro OG, Jiménez R. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs feasible temperatures. Energy. 2015;93:1731–41.
  • 4. Tag AT, Duman G, Ucar S, Yanik J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis. 2016;120:200–6.
  • 5. Ambaye TG, Vaccari M, van Hullebusch ED, Amrane A, Rtimi S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol [Internet]. Springer Berlin Heidelberg; 2020; Available from: .
  • 6. De Oliveira GF, De Andrade RC, Trindade MAG, Andrade HMC, De Carvalho CT. Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of activated carbon from the renewable biomass source babassu. Quim Nova. 2017;40(3):284–92.
  • 7. Choudhury A, Lansing S. Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. J Environ Chem Eng [Internet]. Elsevier Ltd; 2020;9(1):104837. Available from: .
  • 8. Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Reports [Internet]. Elsevier B.V.; 2020;28:e00570. Available from: .
  • 9. Della L, Ducousso M, Batisse N, Dubois M, Verney V, Xavier V, et al. Poplar wood and tea biochars for trichloroethylene remediation in pure water and contaminated groundwater. Environ Challenges [Internet]. Elsevier B.V.; 2020;1(August):100003. Available from: .
  • 10. Silva RVS, Gonçalves AD, Vinhal JO, Cassella RJ, Santos RC, Sasso MAD, et al. Bioproducts from the pyrolysis of castor seed cake: basic dye adsorption capacity of biochar and antifungal activity of the aqueous phase. J Environ Chem Eng. 2020;9(August 2020):104825.
  • 11. Yao X, Ji L, Guo J, Ge S, Lu W, Chen Y, et al. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour Technol [Internet]. Elsevier; 2020;318(September):124082. Available from: .
  • 12. Chahinez HO, Abdelkader O, Leila Y, Tran HN. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environ Technol Innov [Internet]. Elsevier B.V.; 2020;19:100872. Available from: .
  • 13. Ali NA, Hussein EA. Characterization of functional electrospun polymeric nanofiber membranes. Int J Environ Sci Technol [Internet]. Springer Berlin Heidelberg; 2019;16(12):8411–22. Available from: .
  • 14. Haslinger S, Hummel M, Anghelescu-Hakala A, Määttänen M, Sixta H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag [Internet]. The Author(s); 2019;97:88–96. Available from: .
  • 15. Anonim. Sektörel Atık Kılavuzları. 2016;146.
  • 16. Nautiyal P, Subramanian KA, Dastidar MG. Experimental investigation on adsorption properties of biochar derived from algae biomass residue of biodiesel production. Environ Process. 2017;4:S179–93.
  • 17. Jeihanipour A, Aslanzadeh S, Rajendran K, Balasubramanian G, Taherzadeh MJ. High-rate biogas production from waste textiles using a two-stage process. Renew Energy [Internet]. Elsevier Ltd; 2013;52:128–35. Available from: .
  • 18. Jeihanipour A, Karimi K, Niklasson C, Taherzadeh MJ. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manag [Internet]. Elsevier Ltd; 2010;30(12):2504–9. Available from: .
  • 19. Xu Z, Qi R, Xiong M, Zhang D, Gu H, Chen W. Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors. Bioresour Technol. 2021;321(November 2020).
  • 20. Kwon D, Yi S, Jung S, Kwon EE. Valorization of synthetic textile waste using CO2 as a raw material in the catalytic pyrolysis process. Environ Pollut [Internet]. Elsevier Ltd; 2021;268:115916. Available from: .
  • 21. Subramanian K, Chopra SS, Cakin E, Li X, Lin CSK. Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resour Conserv Recycl [Internet]. Elsevier; 2020;161(May):104989. Available from: .
  • 22. Guo Z, Eriksson M, Motte H de la, Adolfsson E. Circular recycling of polyester textile waste using a sustainable catalyst. J Clean Prod [Internet]. Elsevier Ltd; 2020;283:124579. Available from: .
  • 23. Hanoğlu A, Çay A, Yanık J. Production of biochars from textile fibres through torrefaction and their characterisation. Energy. 2019;166:664–73.
  • 24. Singh V, Srivastava VC. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. Environ Pollut [Internet]. Elsevier Ltd; 2020;259:113822. Available from: .
  • 25. Silva TL, Cazetta AL, Souza PSC, Zhang T, Asefa T, Almeida VC. Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. J Clean Prod. 2018;171:482–90.
  • 26. Wang X, Li C, Li Z, Yu G, Wang Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol Environ Saf [Internet]. Elsevier Inc.; 2019;168(August 2018):45–52. Available from: .
  • 27. Hein J, Guarin A, Frommé E, Pauw P. Deforestation and the Paris climate agreement: An assessment of REDD + in the national climate action plans. For Policy Econ [Internet]. Elsevier; 2018;90(November 2017):7–11. Available from: .
  • 28. Li Z, Hanafy H, Zhang L, Sellaoui L, Schadeck Netto M, Oliveira MLS, et al. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chem Eng J. 2020;388(December 2019). .
  • 29. Patra C, Gupta R, Bedadeep D, Narayanasamy S. Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight. Environ Pollut. 2020;266.
  • 30. Li L, Fan C, Zeng B, Tan M. Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose. Mater Chem Phys. 2020;242.
  • 31. Arularasu M V., Harb M, Vignesh R, Rajendran T V., Sundaram R. PVDF/ZnO hybrid nanocomposite applied as a resistive humidity sensor. Surfaces and Interfaces. 2020;21(September).
  • 32. Saha P, Debnath T, Das S, Chatterjee S, Sutradhar S. β-Phase improved Mn-Zn-Cu-ferrite-PVDF nanocomposite film: A metamaterial for enhanced microwave absorption. Mater Sci Eng B Solid-State Mater Adv Technol [Internet]. Elsevier; 2019;245(April 2018):17–29. Available from: .
  • 33. Abdulsalam J, Mulopo J, Oboirien B, Bada S, Falcon R. Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage. Int J Coal Sci Technol [Internet]. Springer Singapore; 2019;6(3):459–77. Available from: .
  • 34. Gumus H. Performance investigation of Fe 3 O 4 blended poly (vinylidene fluoride) membrane on filtration and benzyl alcohol oxidation: Evaluation of sufficiency for catalytic reactors. Chinese J Chem Eng. Elsevier B.V.; 2019;27(2):314–21.
  • 35. Medeiros KAR, Rangel EQ, Sant’Anna AR, Louzada DR, Barbosa CRH, D’Almeida JRM. Evaluation of the electromechanical behavior of polyvinylidene fluoride used as a component of risers in the offshore oil industry. Oil Gas Sci Technol. 2018;73(2).
  • 36. Cai X, Lei T, Sun D, Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. Royal Society of Chemistry; 2017;7(25):15382–9.
  • 37. Sartova K, Omurzak E, Kambarova G, Dzhumaev I, Borkoev B, Abdullaeva Z. Activated carbon obtained from the cotton processing wastes. Diam Relat Mater. 2019;91(June 2018):90–7.
  • 38. Yedurkar S, Maurya C, Mahanwar P. Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach. Open J Synth Theory Appl. 2016;5(1):1–14.
  • 39. Ahmad F, Daud WMAW, Ahmad MA, Radzi R. Cocoa (Theobroma cacao) shell-based activated carbon by CO 2 activation in removing of Cationic dye from aqueous solution: Kinetics and equilibrium studies. Chem Eng Res Des. 2012;90(10):1480–90.
  • 40. Choi GG, Jung SH, Oh SJ, Kim JS. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Process Technol. 2014;123:57–64.
  • 41. Chiang CH, Chen J, Lin JH. Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. J Environ Chem Eng. 2020;8(4).
  • 42. Xiao W, Garba ZN, Sun S, Lawan I, Wang L, Lin M, et al. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J Clean Prod. 2020;253.
  • 43. León O, Muñoz-Bonilla A, Soto D, Pérez D, Rangel M, Colina M, et al. Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohydr Polym. 2018;194:375–83.
  • 44. Gabrienko AA, Arzumanov SS, Lashchinskaya ZN, Toktarev A V., Freude D, Haase J, et al. n-Butane transformation on Zn/H-BEA. The effect of different Zn species (Zn2+ and ZnO) on the reaction performance. J Catal [Internet]. Elsevier Inc.; 2020;391:69–79. Available from: .
  • 45. Gumus H. Catalytic performance of polyvinylidene fluoride (Pvdf) supported TiO2 additive at microwave conditions. J Turkish Chem Soc Sect A Chem. 2020;7(2):361–74.
There are 45 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hüseyin Gümüş 0000-0002-2029-7978

Bülent Büyükkıdan 0000-0001-9619-3246

Project Number 2020-08
Publication Date August 31, 2022
Submission Date November 20, 2021
Acceptance Date April 11, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

Vancouver Gümüş H, Büyükkıdan B. Pollution Removal Performance of Chemically Functionalized Textile Waste Biochar Anchored Poly(vinylidene fluoride) Adsorbent. JOTCSA. 2022;9(3):777-92.