Araştırma Makalesi
BibTex RIS Kaynak Göster

An Iron(III)-S-methylthiosemicarbazone Complex: Synthesis, Spectral Characterization, and Antioxidant Potency Measured by CUPRAC and DPPH Methods

Yıl 2022, Cilt: 9 Sayı: 3, 867 - 878, 31.08.2022
https://doi.org/10.18596/jotcsa.1058398

Öz

An iron(III) complex, [Fe(L1)Cl].H2O, was synthesized by template condensation reaction of 1,1,1-Trifluoroacetylacetone-S-methylthiosemicarbazone hydrogen iodide (L) and 2,3-dihydroxybenzaldehyde in the presence of iron(III) ions. The complex was characterized by IR, ESI MS and X-ray diffraction techniques. Free radical scavenging (FRS) ability and antioxidant capacity of the S-methylthiosemicarbazone and the iron(III) complex were evaluated through DPPH and CUPRAC methods, respectively. The complex exerted better than the S-methylthiosemicarbazone in both TEAC and FRS% values. In addition, iron(III) complex was found to be 3.1 times more antioxidant than the reference ascorbic acid according to the CUPRAC method.

Teşekkür

I dedicate this paper to Dr. Bahri ÜLKÜSEVEN, the mentor of my research career. Also, I gratefully acknowledge Dr. Onur ŞAHİN for X-ray diffraction studies and Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

Kaynakça

  • 1. Kalinowski DS, Stefani C, Toyokuni S, Ganz T, Anderson GJ, Subramaniam NV, et al. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2016 Apr;1863(4):727–48.
  • 2. Kalinowski DS, Richardson DR. The Evolution of Iron Chelators for the Treatment of Iron Overload Disease and Cancer. Pharmacol Rev. 2005 Dec;57(4):547–83.
  • 3. Basu U, Roy M, Chakravarty AR. Recent advances in the chemistry of iron-based chemotherapeutic agents. Coordination Chemistry Reviews. 2020 Aug;417:213339.
  • 4. Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR. Structure–Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. J Med Chem. 2016 Sep 22;59(18):8601–20.
  • 5. Maqbool SN, Lim SC, Park KC, Hanif R, Richardson DR, Jansson PJ, et al. Overcoming tamoxifen resistance in oestrogen receptor‐positive breast cancer using the novel thiosemicarbazone anti‐cancer agent, DpC. Br J Pharmacol. 2020 May;177(10):2365–80.
  • 6. Lui GYL, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget. 2015 Aug 7;6(22):18748–79.
  • 7. Saswati S, Adão P, Majumder S, Dash SP, Roy S, Kuznetsov ML, et al. Synthesis, structure, solution behavior, reactivity and biological evaluation of oxidovanadium( iv / v ) thiosemicarbazone complexes. Dalton Trans. 2018;47(33):11358–74.
  • 8. Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, et al. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics. 2016;8(9):874–86.
  • 9. Ohui K, Afanasenko E, Bacher F, Ting RLX, Zafar A, Blanco-Cabra N, et al. New Water-Soluble Copper(II) Complexes with Morpholine–Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action. J Med Chem. 2019 Jan 24;62(2):512–30.
  • 10. Alcaraz R, Muñiz P, Cavia M, Palacios Ó, Samper KG, Gil-García R, et al. Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress. Journal of Inorganic Biochemistry. 2020 May;206:110993.
  • 11. Kaya B, Kalındemirtaş FD, Ertik O, Yanardag R, Kuruca SE, Ülküseven B. New thiosemicarbazone-based Zinc(II) complexes. In vitro cytotoxicity competing with cisplatin on malignant melanoma A375 cells and its relation to neuraminidase inhibition. Chemico-Biological Interactions. 2022 Jan;351:109757.
  • 12. Özerkan D, Ertik O, Kaya B, Kuruca SE, Yanardag R, Ülküseven B. Novel palladium (II) complexes with tetradentate thiosemicarbazones. Synthesis, characterization, in vitro cytotoxicity and xanthine oxidase inhibition. Invest New Drugs. 2019 Dec;37(6):1187–97.
  • 13. Bal T, Atasever B, Solakoğlu Z, Erdem-Kuruca S, Ülküseven B. Synthesis, characterisation and cytotoxic properties of the N1,N4-diarylidene-S-methyl-thiosemicarbazone chelates with Fe(III) and Ni(II). European Journal of Medicinal Chemistry. 2007 Feb;42(2):161–7.
  • 14. Kaya B, Yılmaz ZK, Şahin O, Aslim B, Tükenmez Ü, Ülküseven B. Structural analysis and biological functionalities of iron(III)– and manganese(III)–thiosemicarbazone complexes: in vitro anti-proliferative activity on human cancer cells, DNA binding and cleavage studies. J Biol Inorg Chem. 2019 May;24(3):365–76.
  • 15. Bal-Demirci T, Congur G, Erdem A, Erdem-Kuruca S, Özdemir N, Akgün-Dar K, et al. Iron( iii ) and nickel( ii ) complexes as potential anticancer agents: synthesis, physicochemical and structural properties, cytotoxic activity and DNA interactions. New J Chem. 2015;39(7):5643–53.
  • 16. Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020 Mar;94(3):651–715.
  • 17. Haraguchi H. Antioxidative plant constituents. Bioactive compounds from natural sources. Taylor & Francis: London, UK; 2001. p. 337–78.
  • 18. Anraku M, Gebicki JM, Iohara D, Tomida H, Uekama K, Maruyama T, et al. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydrate Polymers. 2018 Nov;199:141–9.
  • 19. Marchi RC, Campos IAS, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews. 2022 Jan;451:214275.
  • 20. Balakrishnan N, Haribabu J, Dhanabalan AK, Swaminathan S, Sun S, Dibwe DF, et al. Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu( ii ) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Trans. 2020;49(27):9411–24.
  • 21. İlhan-Ceylan B. Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2′-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chimica Acta. 2021 Mar;517:120186.
  • 22. Poladian Q, Şahin O, Karakurt T, İlhan-Ceylan B, Kurt Y. A new zinc(II) complex with N2O2-tetradentate schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron. 2021 Jun;201:115164.
  • 23. Eğlence-Bakır S. New nickel(II) complexes containing N2O2 donor thiosemicarbazones: Synthesis, characterization and antioxidant properties. Journal of Molecular Structure. 2021 Dec;1246:131121.
  • 24. Kaya B, Şahin O, Bener M, Ülküseven B. Iron(III) and nickel(II) complexes with S-alkyl (n-C1-6)- thiosemicarbazidato ligands: Synthesis, structural characterization, and antioxidant features. Journal of Molecular Structure. 2018 Sep;1167:16–22.
  • 25. Kaya B, Kaya K, Koca A, Ülküseven B. Thiosemicarbazide-based iron(III) and manganese(III) complexes. Structural, electrochemical characterization and antioxidant activity. Polyhedron. 2019 Nov;173:114130.
  • 26. Bal-Demirci T, Şahin M, Kondakçı E, Özyürek M, Ülküseven B, Apak R. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Mar;138:866–72.
  • 27. Kalındemirtaş FD, Kaya B, Bener M, Şahin O, Kuruca SE, Demirci TB, et al. Iron(III) complexes based on tetradentate thiosemicarbazones: Synthesis, characterization, radical scavenging activity and in vitro cytotoxicity on K562, P3HR1 and JURKAT cells. Appl Organomet Chem [Internet]. 2021 Apr [cited 2022 Jun 22];35(4).
  • 28. Sheldrick GM. A short history of SHELX. Acta Crystallogr A Found Crystallogr. 2008 Jan 1;64(1):112–22.
  • 29. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015 Jan 1;71(1):3–8.
  • 30. Anonymous. APEX2. Bruker AXS, Inc., Wisconsin, USA; 2013.
  • 31. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, et al. Mercury 4.0 : from visualization to analysis, design and prediction. J Appl Crystallogr. 2020 Feb 1;53(1):226–35.
  • 32. Farrugia LJ. WinGX and ORTEP for Windows : an update. J Appl Crystallogr. 2012 Aug 1;45(4):849–54.
  • 33. Atasever Arslan B, Kaya B, Şahin O, Baday S, Saylan CC, Ülküseven B. The iron(III) and nickel(II) complexes with tetradentate thiosemicarbazones. Synthesis, experimental, theoretical characterization, and antiviral effect against SARS-CoV-2. Journal of Molecular Structure. 2021 Dec;1246:131166.
  • 34. Gündüz MG, Kaya B, Özkul C, Şahin O, Rekha EM, Sriram D, et al. S-alkylated thiosemicarbazone derivatives: Synthesis, crystal structure determination, antimicrobial activity evaluation and molecular docking studies. Journal of Molecular Structure. 2021 Oct;1242:130674.
  • 35. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric. 1998 Feb;76(2):270–6.
  • 36. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J Agric Food Chem. 2004 Dec 1;52(26):7970–81.
  • 37. Leovac V, Divjakovic V, Cesljevic V, Fazlic R. Transition metal complexes with thiosemicarbazide-based ligand: Part 45 - Synthesis, crystal and molecular structure of [2, 6-diacetylpyridine bis(S-methylisothiosemicarbazonato)]diazide-iron(III). J Serb Chem Soc. 2003;68(4–5):425–33.
  • 38. Gullotti M, Casella L, Pasini A, Ugo R. Optically active complexes of Schiff bases. Part 3. Complexes of iron(III) with quadridentate Schiff bases derived from salicylaldehyde. J Chem Soc, Dalton Trans. 1977;(4):339.
  • 39. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC. Synthesis, structure, and spectroscopic properties of copper( II ) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper( II ) perchlorate. J Chem Soc, Dalton Trans. 1984;(7):1349–56.
  • 40. Xie D, Gan T, Su C, Han Y, Liu Z, Cao Y. Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. International Journal of Biological Macromolecules. 2020 Oct;161:315–24.
  • 41. Gülçin İ. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids. 2007 Apr;32(3):431–8.
  • 42. Mahendra raj K, Mruthyunjayaswamy BHM. Synthesis, spectroscopic characterization, electrochemistry and biological activity evaluation of some metal (II) complexes with ONO donor ligands containing indole and coumarin moieties. Journal of Saudi Chemical Society. 2017 Jan;21:S202–18.
  • 43. Bal-Demirci T, Güveli Ş, Yeşilyurt S, Özdemir N, Ülküseven B. Thiosemicarbazone ligand, nickel(II) and ruthenium(II) complexes based on vitamin B6 vitamer: The synthesis, different coordination behaviors and antioxidant activities. Inorganica Chimica Acta. 2020 Mar;502:119335.
  • 44. Andelescu AA, Cretu C, Sasca V, Marinescu S, Cseh L, Costisor O, et al. New heteroleptic Zn(II) and Cu(II) complexes with quercetine and N^N ligands. Polyhedron. 2018 Jun;147:120–5.
  • 45. Buldurun K, Turan N, Savcı A, Çolak N. Synthesis, structural characterization and biological activities of metal(II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru(II) complexes transfer hydrogenation. Journal of Saudi Chemical Society. 2019 Feb;23(2):205–14.
  • 46. Dimiza F, Raptopoulou CP, Psycharis V, Papadopoulos AN, Psomas G. Manganese( ii ) complexes with the non-steroidal anti-inflammatory drugs naproxen and mefenamic acid: synthesis, structure, antioxidant capacity, and interaction with albumins and DNA. New J Chem. 2018;42(20):16666–81.
  • 47. Hosseini-Yazdi SA, Mirzaahmadi A, Khandar AA, Mahdavi M, Rahimian A, Eigner V, et al. Copper, nickel and zinc complexes of a new water-soluble thiosemicarbazone ligand: Synthesis, characterization, stability and biological evaluation. Journal of Molecular Liquids. 2017 Dec;248:658–67.
  • 48. Özdemir Ö. Bis-azo-linkage Schiff bases—Part(II): Synthesis, characterization, photoluminescence and DPPH radical scavenging properties of their novel luminescent mononuclear Zn(II) complexes. Journal of Photochemistry and Photobiology A: Chemistry. 2020 Apr;392:112356.
  • 49. Świderski G, Jabłońska-Trypuć A, Kalinowska M, Świsłocka R, Karpowicz D, Magnuszewska M, et al. Spectroscopic, Theoretical and Antioxidant Study of 3d-Transition Metals (Co(II), Ni(II), Cu(II), Zn(II)) Complexes with Cichoric Acid. Materials. 2020 Jul 11;13(14):3102.
  • 50. Kalinowska M, Sienkiewicz-Gromiuk J, Świderski G, Pietryczuk A, Cudowski A, Lewandowski W. Zn(II) Complex of Plant Phenolic Chlorogenic Acid: Antioxidant, Antimicrobial and Structural Studies. Materials. 2020 Aug 24;13(17):3745.
Yıl 2022, Cilt: 9 Sayı: 3, 867 - 878, 31.08.2022
https://doi.org/10.18596/jotcsa.1058398

Öz

Kaynakça

  • 1. Kalinowski DS, Stefani C, Toyokuni S, Ganz T, Anderson GJ, Subramaniam NV, et al. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2016 Apr;1863(4):727–48.
  • 2. Kalinowski DS, Richardson DR. The Evolution of Iron Chelators for the Treatment of Iron Overload Disease and Cancer. Pharmacol Rev. 2005 Dec;57(4):547–83.
  • 3. Basu U, Roy M, Chakravarty AR. Recent advances in the chemistry of iron-based chemotherapeutic agents. Coordination Chemistry Reviews. 2020 Aug;417:213339.
  • 4. Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR. Structure–Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. J Med Chem. 2016 Sep 22;59(18):8601–20.
  • 5. Maqbool SN, Lim SC, Park KC, Hanif R, Richardson DR, Jansson PJ, et al. Overcoming tamoxifen resistance in oestrogen receptor‐positive breast cancer using the novel thiosemicarbazone anti‐cancer agent, DpC. Br J Pharmacol. 2020 May;177(10):2365–80.
  • 6. Lui GYL, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget. 2015 Aug 7;6(22):18748–79.
  • 7. Saswati S, Adão P, Majumder S, Dash SP, Roy S, Kuznetsov ML, et al. Synthesis, structure, solution behavior, reactivity and biological evaluation of oxidovanadium( iv / v ) thiosemicarbazone complexes. Dalton Trans. 2018;47(33):11358–74.
  • 8. Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, et al. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics. 2016;8(9):874–86.
  • 9. Ohui K, Afanasenko E, Bacher F, Ting RLX, Zafar A, Blanco-Cabra N, et al. New Water-Soluble Copper(II) Complexes with Morpholine–Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action. J Med Chem. 2019 Jan 24;62(2):512–30.
  • 10. Alcaraz R, Muñiz P, Cavia M, Palacios Ó, Samper KG, Gil-García R, et al. Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress. Journal of Inorganic Biochemistry. 2020 May;206:110993.
  • 11. Kaya B, Kalındemirtaş FD, Ertik O, Yanardag R, Kuruca SE, Ülküseven B. New thiosemicarbazone-based Zinc(II) complexes. In vitro cytotoxicity competing with cisplatin on malignant melanoma A375 cells and its relation to neuraminidase inhibition. Chemico-Biological Interactions. 2022 Jan;351:109757.
  • 12. Özerkan D, Ertik O, Kaya B, Kuruca SE, Yanardag R, Ülküseven B. Novel palladium (II) complexes with tetradentate thiosemicarbazones. Synthesis, characterization, in vitro cytotoxicity and xanthine oxidase inhibition. Invest New Drugs. 2019 Dec;37(6):1187–97.
  • 13. Bal T, Atasever B, Solakoğlu Z, Erdem-Kuruca S, Ülküseven B. Synthesis, characterisation and cytotoxic properties of the N1,N4-diarylidene-S-methyl-thiosemicarbazone chelates with Fe(III) and Ni(II). European Journal of Medicinal Chemistry. 2007 Feb;42(2):161–7.
  • 14. Kaya B, Yılmaz ZK, Şahin O, Aslim B, Tükenmez Ü, Ülküseven B. Structural analysis and biological functionalities of iron(III)– and manganese(III)–thiosemicarbazone complexes: in vitro anti-proliferative activity on human cancer cells, DNA binding and cleavage studies. J Biol Inorg Chem. 2019 May;24(3):365–76.
  • 15. Bal-Demirci T, Congur G, Erdem A, Erdem-Kuruca S, Özdemir N, Akgün-Dar K, et al. Iron( iii ) and nickel( ii ) complexes as potential anticancer agents: synthesis, physicochemical and structural properties, cytotoxic activity and DNA interactions. New J Chem. 2015;39(7):5643–53.
  • 16. Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020 Mar;94(3):651–715.
  • 17. Haraguchi H. Antioxidative plant constituents. Bioactive compounds from natural sources. Taylor & Francis: London, UK; 2001. p. 337–78.
  • 18. Anraku M, Gebicki JM, Iohara D, Tomida H, Uekama K, Maruyama T, et al. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydrate Polymers. 2018 Nov;199:141–9.
  • 19. Marchi RC, Campos IAS, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews. 2022 Jan;451:214275.
  • 20. Balakrishnan N, Haribabu J, Dhanabalan AK, Swaminathan S, Sun S, Dibwe DF, et al. Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu( ii ) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Trans. 2020;49(27):9411–24.
  • 21. İlhan-Ceylan B. Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2′-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chimica Acta. 2021 Mar;517:120186.
  • 22. Poladian Q, Şahin O, Karakurt T, İlhan-Ceylan B, Kurt Y. A new zinc(II) complex with N2O2-tetradentate schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron. 2021 Jun;201:115164.
  • 23. Eğlence-Bakır S. New nickel(II) complexes containing N2O2 donor thiosemicarbazones: Synthesis, characterization and antioxidant properties. Journal of Molecular Structure. 2021 Dec;1246:131121.
  • 24. Kaya B, Şahin O, Bener M, Ülküseven B. Iron(III) and nickel(II) complexes with S-alkyl (n-C1-6)- thiosemicarbazidato ligands: Synthesis, structural characterization, and antioxidant features. Journal of Molecular Structure. 2018 Sep;1167:16–22.
  • 25. Kaya B, Kaya K, Koca A, Ülküseven B. Thiosemicarbazide-based iron(III) and manganese(III) complexes. Structural, electrochemical characterization and antioxidant activity. Polyhedron. 2019 Nov;173:114130.
  • 26. Bal-Demirci T, Şahin M, Kondakçı E, Özyürek M, Ülküseven B, Apak R. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Mar;138:866–72.
  • 27. Kalındemirtaş FD, Kaya B, Bener M, Şahin O, Kuruca SE, Demirci TB, et al. Iron(III) complexes based on tetradentate thiosemicarbazones: Synthesis, characterization, radical scavenging activity and in vitro cytotoxicity on K562, P3HR1 and JURKAT cells. Appl Organomet Chem [Internet]. 2021 Apr [cited 2022 Jun 22];35(4).
  • 28. Sheldrick GM. A short history of SHELX. Acta Crystallogr A Found Crystallogr. 2008 Jan 1;64(1):112–22.
  • 29. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015 Jan 1;71(1):3–8.
  • 30. Anonymous. APEX2. Bruker AXS, Inc., Wisconsin, USA; 2013.
  • 31. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, et al. Mercury 4.0 : from visualization to analysis, design and prediction. J Appl Crystallogr. 2020 Feb 1;53(1):226–35.
  • 32. Farrugia LJ. WinGX and ORTEP for Windows : an update. J Appl Crystallogr. 2012 Aug 1;45(4):849–54.
  • 33. Atasever Arslan B, Kaya B, Şahin O, Baday S, Saylan CC, Ülküseven B. The iron(III) and nickel(II) complexes with tetradentate thiosemicarbazones. Synthesis, experimental, theoretical characterization, and antiviral effect against SARS-CoV-2. Journal of Molecular Structure. 2021 Dec;1246:131166.
  • 34. Gündüz MG, Kaya B, Özkul C, Şahin O, Rekha EM, Sriram D, et al. S-alkylated thiosemicarbazone derivatives: Synthesis, crystal structure determination, antimicrobial activity evaluation and molecular docking studies. Journal of Molecular Structure. 2021 Oct;1242:130674.
  • 35. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric. 1998 Feb;76(2):270–6.
  • 36. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J Agric Food Chem. 2004 Dec 1;52(26):7970–81.
  • 37. Leovac V, Divjakovic V, Cesljevic V, Fazlic R. Transition metal complexes with thiosemicarbazide-based ligand: Part 45 - Synthesis, crystal and molecular structure of [2, 6-diacetylpyridine bis(S-methylisothiosemicarbazonato)]diazide-iron(III). J Serb Chem Soc. 2003;68(4–5):425–33.
  • 38. Gullotti M, Casella L, Pasini A, Ugo R. Optically active complexes of Schiff bases. Part 3. Complexes of iron(III) with quadridentate Schiff bases derived from salicylaldehyde. J Chem Soc, Dalton Trans. 1977;(4):339.
  • 39. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC. Synthesis, structure, and spectroscopic properties of copper( II ) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper( II ) perchlorate. J Chem Soc, Dalton Trans. 1984;(7):1349–56.
  • 40. Xie D, Gan T, Su C, Han Y, Liu Z, Cao Y. Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. International Journal of Biological Macromolecules. 2020 Oct;161:315–24.
  • 41. Gülçin İ. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids. 2007 Apr;32(3):431–8.
  • 42. Mahendra raj K, Mruthyunjayaswamy BHM. Synthesis, spectroscopic characterization, electrochemistry and biological activity evaluation of some metal (II) complexes with ONO donor ligands containing indole and coumarin moieties. Journal of Saudi Chemical Society. 2017 Jan;21:S202–18.
  • 43. Bal-Demirci T, Güveli Ş, Yeşilyurt S, Özdemir N, Ülküseven B. Thiosemicarbazone ligand, nickel(II) and ruthenium(II) complexes based on vitamin B6 vitamer: The synthesis, different coordination behaviors and antioxidant activities. Inorganica Chimica Acta. 2020 Mar;502:119335.
  • 44. Andelescu AA, Cretu C, Sasca V, Marinescu S, Cseh L, Costisor O, et al. New heteroleptic Zn(II) and Cu(II) complexes with quercetine and N^N ligands. Polyhedron. 2018 Jun;147:120–5.
  • 45. Buldurun K, Turan N, Savcı A, Çolak N. Synthesis, structural characterization and biological activities of metal(II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru(II) complexes transfer hydrogenation. Journal of Saudi Chemical Society. 2019 Feb;23(2):205–14.
  • 46. Dimiza F, Raptopoulou CP, Psycharis V, Papadopoulos AN, Psomas G. Manganese( ii ) complexes with the non-steroidal anti-inflammatory drugs naproxen and mefenamic acid: synthesis, structure, antioxidant capacity, and interaction with albumins and DNA. New J Chem. 2018;42(20):16666–81.
  • 47. Hosseini-Yazdi SA, Mirzaahmadi A, Khandar AA, Mahdavi M, Rahimian A, Eigner V, et al. Copper, nickel and zinc complexes of a new water-soluble thiosemicarbazone ligand: Synthesis, characterization, stability and biological evaluation. Journal of Molecular Liquids. 2017 Dec;248:658–67.
  • 48. Özdemir Ö. Bis-azo-linkage Schiff bases—Part(II): Synthesis, characterization, photoluminescence and DPPH radical scavenging properties of their novel luminescent mononuclear Zn(II) complexes. Journal of Photochemistry and Photobiology A: Chemistry. 2020 Apr;392:112356.
  • 49. Świderski G, Jabłońska-Trypuć A, Kalinowska M, Świsłocka R, Karpowicz D, Magnuszewska M, et al. Spectroscopic, Theoretical and Antioxidant Study of 3d-Transition Metals (Co(II), Ni(II), Cu(II), Zn(II)) Complexes with Cichoric Acid. Materials. 2020 Jul 11;13(14):3102.
  • 50. Kalinowska M, Sienkiewicz-Gromiuk J, Świderski G, Pietryczuk A, Cudowski A, Lewandowski W. Zn(II) Complex of Plant Phenolic Chlorogenic Acid: Antioxidant, Antimicrobial and Structural Studies. Materials. 2020 Aug 24;13(17):3745.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnorganik Kimya
Bölüm Makaleler
Yazarlar

Büşra Kaya 0000-0003-2706-172X

Yayımlanma Tarihi 31 Ağustos 2022
Gönderilme Tarihi 16 Ocak 2022
Kabul Tarihi 31 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 3

Kaynak Göster

Vancouver Kaya B. An Iron(III)-S-methylthiosemicarbazone Complex: Synthesis, Spectral Characterization, and Antioxidant Potency Measured by CUPRAC and DPPH Methods. JOTCSA. 2022;9(3):867-78.