Year 2022,
Volume: 9 Issue: 3, 729 - 740, 31.08.2022
Funda Ozkok
,
Mehmet Boğa
,
Muhammed Tuneg
Vildan Enisoğlu Atalay
,
Nihal Onul
,
Kamala Asgarova
Rabia Tığlı
Sıla Arslan
,
Dilan Akagündüz
,
Rumeysa Cebecioğlu
Tunç Çatal
References
- 1. Haciosmanoglu E, Ozkok F, Onsu AK, Bektas M, Varol B, Pehlivan S. Synthesis of New Anthraquinone Derivatives and Anticancer Effects on Breast Cancer Cell Lines. Eurasia Proc Sci Technol Eng Math. 2018 Dec 4;(4):271–6.
- 2. Ozkok F, Sahin YM. BİYOAKTİF ANTRAKİNON ANALOGLARI VE BUNLARIN SENTEZİNE YÖNELİK METOT. 2016/19610. p. https://portal.turkpatent.gov.tr/anonim/arastirma/patent/dosya-takibi.
3. Kshirsagar AD, Panchal PV, Harle UN, Nanda RK, Shaikh HM. Anti-Inflammatory and Antiarthritic Activity of Anthraquinone Derivatives in Rodents. Int J Inflamm. 2014;2014:1–12.
- 4. Demi̇Rezer LO, Uzun M, Ozenver N, Guvenalp Z. Determination of Phytoestrogenic Potential of Anthranoids by Molecular Docking Studies. :1.
- 5. Aulenta F, Ferri T, Nicastro D, Majone M, Papini MP. Improved electrical wiring of microbes: anthraquinone-modified electrodes for biosensing of chlorinated hydrocarbons. New Biotechnol. 2011 Dec;29(1):126–31.
- 6. Kang D, White RJ, Xia F, Zuo X, Vallée-Bélisle A, Plaxco KW. DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors. NPG Asia Mater. 2012 Jan;4(1):e1–e1.
- 7. Mariappan K, Basa PN. Coordination polymers of 1,8-bis(2-methylthioethoxy)anthraquinone and 1,5-bis(2-methylthioethoxy)anthraquinone with Ag(I): Synthesis and X-ray crystallography. Inorganica Chim Acta. 2011 Jan;366(1):344–9.
- 8. Chang M-Y, Tai H-Y. Synthesis of 2-substituted 9,10-anthraquinones. Synth Commun. 2013 Dec 17;43(24):3363–72.
- 9. Jarrahpour A, Ebrahimi E, Khalifeh R, Sharghi H, Sahraei M, Sinou V, et al. Synthesis of novel β-lactams bearing an anthraquinone moiety, and evaluation of their antimalarial activities. Tetrahedron. 2012 Jun;68(24):4740–4.
- 10. Liang D, Su Z, Tian W, Li J, Li Z, Wang C, et al. Synthesis and screening of novel anthraquinone−quinazoline multitarget hybrids as promising anticancer candidates. Future Med Chem. 2020 Jan;12(2):111–26.
- 11. Li F, Li X, Shao J, Chi P, Chen J, Wang Z. Estrogenic Activity of Anthraquinone Derivatives: In Vitro and In Silico Studies. Chem Res Toxicol. 2010 Aug 16;23(8):1349–55.
- 12. Dimarco A, Gaetani M, Orezzi P, Scarpinato BM, Silvestrini R, Soldati M, et al. “DAUNOMYCIN”, A NEW ANTIBIOTIC OF THE RHODOMYCIN GROUP. Nature. 1964 Feb 15;201:706–7.
- 13. White RichardJ, Durr FrederickE. Development of mitoxantrone. Invest New Drugs [Internet]. 1985 [cited 2021 Jul 11];3(2). Available from: http://link.springer.com/10.1007/BF00174154
- 14. Hua DH, Lou K, Havens J, Perchellet EM, Wang Y, Perchellet J-P, et al. Synthesis and in vitro antitumor activity of substituted anthracene-1,4-diones. Tetrahedron. 2004 Nov;60(45):10155–63.
- 15. Cairns D, Michalitsi E, Jenkins TC, Mackay SP. Molecular Modelling and Cytotoxicity of Substituted Anthraquinones as Inhibitors of Human Telomerase. Bioorg Med Chem. 2002 Mar;10(3):803–7.
- 16. Kanokmedhakul K, Kanokmedhakul S, Phatchana R. Biological activity of Anthraquinones and Triterpenoids from Prismatomeris fragrans. J Ethnopharmacol. 2005 Sep;100(3):284–8.
- 17. Singh DN, Verma N, Raghuwanshi S, Shukla PK, Kulshreshtha DK. Antifungal anthraquinones from Saprosma fragrans. Bioorg Med Chem Lett. 2006 Sep;16(17):4512–4.
- 18. Faltynek CR, Schroeder J, Mauvais P, Miller D, Wang S, Murphy D, et al. Damnacanthal Is a Highly Potent, Selective Inhibitor of p56lck Tyrosine Kinase Activity. Biochemistry. 1995 Sep 26;34(38):12404–10.
- 19. Inngjerdingen M, Torgersen KM, Maghazachi AA. Lck is required for stromal cell–derived factor 1␣ (CXCL12)–induced lymphoid cell chemotaxis. 2002;99(12):8.
- 20. García-Vilas JA, Quesada AR, Medina MA. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells. Sci Rep. 2015 Jul;5(1):8021.
- 21. Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol. 1992 Dec;19(6):670–86.
- 22. Randall K.Johnson. Experimental Antitumor Activity of Aminoanthraquinones.
- 23. Cheng CC, Zee-Cheng RKY, Narayanan VL, Ing RB, Pauli KD. The collaborative development of a new family of antineoplastic drugs. Trends Pharmacol Sci. 1981;2:223–4.
- 24. Cotter FE. Therapeutic milestones. Novantrone (mitozantrone). Br J Clin Pract. 1988 May;42(5):207–9.
- 25. Amadori S, Meloni G, Petti MC, Papa G, Miniero R, Mandelli F. Phase II trial of intermediate dose ARA-C (IDAC) with sequential mitoxantrone (MITOX) in acute myelogenous leukemia. Leukemia. 1989 Feb;3(2):112–4.
- 26. Satyamoorthy K, Chitnis MP, Pradhan SG, Advani SH. Modulation of Mitoxantrone Cytotoxicity by Verapamil in Human Chronic Myeloid Leukemia Cells. Oncology. 1989;46(2):128–31.
- 27. Durr FE, Wallace RE, Citarella RV. Molecular and biochemical pharmacology of mitoxantrone. Cancer Treat Rev. 1983 Dec;10:3–11.
- 28. Hoff DDV, Coltman CA, Forseth B. Activity of Mitoxantrone in a Human Tumor Cloning System. 1981;4.
- 29. Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, et al. SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway: SZ-685C induces apoptosis and inhibits tumour growth. Br J Pharmacol. 2010 Feb;159(3):689–97.
- 30. Zhu X, He Z, Wu J, Yuan J, Wen W, Hu Y, et al. A Marine Anthraquinone SZ-685C Overrides Adriamycin-Resistance in Breast Cancer Cells through Suppressing Akt Signaling. Mar Drugs. 2012 Mar 23;10(12):694–711.
- 31. Huang H-S, Chiou J-F, Fong Y, Hou C-C, Lu Y-C, Wang J-Y, et al. Activation of Human Telomerase Reverse Transcriptase Expression by Some New Symmetrical Bis-Substituted Derivatives of the Anthraquinone. J Med Chem. 2003 Jul 1;46(15):3300–7.
- 32. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999 Apr;57(7):727–41.
- 33. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol Rev. 2004 Jun;56(2):185–229.
- 34. Laurent G, Jaffrézou J-P. Signaling pathways activated by daunorubicin. Blood. 2001 Aug 15;98(4):913–24.
- 35. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013 Jul 1;41(W1):W77–83.
- 36. Scarpini E, Cogiamanian F. Alzheimer’s disease: from molecular pathogenesis to innovative therapies. Expert Rev Neurother. 2003 Sep;3(5):619–30.
- 37. Stellenboom N. Comparison of the inhibitory potential towards carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase of chalcone and chalcone epoxide: STELLENBOOM. J Biochem Mol Toxicol. 2019 Feb;33(2):e22240.
- 38. Ali TB, Schleret TR, Reilly BM, Chen WY, Abagyan R. Adverse Effects of Cholinesterase Inhibitors in Dementia, According to the Pharmacovigilance Databases of the United-States and Canada. Cavalli A, editor. PLOS ONE. 2015 Dec 7;10(12):e0144337.
- 39. Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, et al. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorganic Chem. 2020 Jul;100:103897.
- 40. Augustin N, Nuthakki VK, Abdullaha Mohd, Hassan QP, Gandhi SG, Bharate SB. Discovery of Helminthosporin, an Anthraquinone Isolated from Rumex abyssinicus Jacq as a Dual Cholinesterase Inhibitor. ACS Omega. 2020 Jan 28;5(3):1616–24.
- 41. Zengin G, Degirmenci N, Alpsoy L, Aktumsek A. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Hum Exp Toxicol. 2016 May;35(5):544–53.
- 42. Hong C, Luo W, Yao D, Su Y-B, Zhang X, Tian R-G, et al. Novel aromatic–polyamine conjugates as cholinesterase inhibitors with notable selectivity toward butyrylcholinesterase. Bioorg Med Chem. 2014 Jun;22(12):3213–9.
43. Lee Y, Bang H, Oh J, Whang W. Bioassay-Guided Isolated Compounds from Morinda officinalis Inhibit Alzheimer’s Disease Pathologies. Molecules. 2017 Sep 29;22(10):1638.
- 44. Tonelli M, Catto M, Tasso B, Novelli F, Canu C, Iusco G, et al. Multitarget Therapeutic Leads for Alzheimer’s Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and β-Amyloid (Aβ) Aggregation. ChemMedChem. 2015 Jun;10(6):1040–53.
- 45. Celik S, Ozkok F, Ozel AE, Müge Sahin Y, Akyuz S, Sigirci BD, et al. Synthesis, FT-IR and NMR characterization, antimicrobial activity, cytotoxicity and DNA docking analysis of a new anthraquinone derivate compound. J Biomol Struct Dyn. 2020 Feb 11;38(3):756–70.
- 46. Ozkok F, Sahin YM, Enisoglu Atalay V, Asgarova K, Onul N, Catal T. Sensitive detection of iron (II) sulfate with a novel reagent using spectrophotometry. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Oct;240:118631.
- 47. Bingul M, Şenkuytu E, Saglam MF, Boga M, Kandemir H, Sengul IF. Synthesis, photophysical and antioxidant properties of carbazole-based bis-thiosemicarbazones. Res Chem Intermed. 2019 Sep;45(9):4487–99.
- 48. Stewart JJP. Application of the PM6 method to modeling the solid state. J Mol Model. 2008 Jun;14(6):499–535.
- 49. Stewart JJP. Application of the PM6 method to modeling proteins. J Mol Model. 2009 Jul;15(7):765–805.
- 50. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988 Jan 15;37(2):785–9.
- 51. Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys. 2010 Mar 21;132(11):114110.
- 52. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983 Dec;105(26):7512–6.
- 53. Pearson J, Havill DC. The Effect of Hypoxia and Sulphide on Culture-Grown Wetland and Non-Wetland Plants: II. METABOLIC AND PHYSIOLOGICAL CHANGES. J Exp Bot. 1988;39(4):431–9.
- 54. Gaussview 5.0.9 [Internet]. Available from: https://www.strath.ac.uk/is/software/gaussview509/
- 55. Gaussian 09 [Internet]. Available from: https://gaussian.com/glossary/g09/
- 56. Fierro C, Anderson AB, Scherson DA. Electron donor-acceptor properties of porphyrins, phthalocyanines, and related ring chelates: a molecular orbital approach. J Phys Chem. 1988 Dec;92(24):6902–7.
57. Islam N, Ghosh DC. On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness. Int J Mol Sci. 2012 Feb 17;13(2):2160–75.
- 58. Sen P, Yıldız SZ, Atalay VE, Kanmazalp SD, Dege N. Synthesis, molecular structure, spectroscopic and computational studies on 4-(2-(2-(2-formylphenoxy)ethoxy)ethoxy)phthalonitrile as Functionalized Phthalonitrile. Maced J Chem Chem Eng. 2019 May 24;38(1):63.
- 59. Enisoglu-Atalay V, Atasever-Arslan B, Yaman B, Cebecioglu R, Kul A, Ozilhan S, et al. Chemical and molecular characterization of metabolites from Flavobacterium sp. Agbor G, editor. PLOS ONE. 2018 Oct 17;13(10):e0205817.
Evaluation of Acetyl- and Butyrylcholinesterase Enzyme Inhibitory Activities and Cytotoxic Activities of Anthraquinone Derivatives
Year 2022,
Volume: 9 Issue: 3, 729 - 740, 31.08.2022
Funda Ozkok
,
Mehmet Boğa
,
Muhammed Tuneg
Vildan Enisoğlu Atalay
,
Nihal Onul
,
Kamala Asgarova
Rabia Tığlı
Sıla Arslan
,
Dilan Akagündüz
,
Rumeysa Cebecioğlu
Tunç Çatal
Abstract
In this study, the enzyme activity of anthraquinone compounds which were synthesized beforehand by our research group was investigated. Molecular docking studies were performed for compounds 1-(4-aminophenylthio)anthracene-9,10-dione (3) and 1-(4-chlorophenylthio)anthracene-9,10-dione (5). Compound 3 was synthesized from the reaction of 1-chloroanthraquinone (1) and 4-aminothiophenol (2). Compound 5 was synthesized (1) from the reaction of 1-chloroanthraquinone (1) and 4-chlorothiophenol (4). Anthraquinone analogs (3, 5) were synthesized with a new reaction method made by our research group (2). Inhibitory effects of compounds 3 and 5 were investigated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes which are related to Alzheimer’s Disease (AD). Compounds 3 and 5 exhibited strong anti-acetyl- and butyryl-cholinesterase inhibition activities than galanthamine used as standard compound (92.11±1.08 and 80.95±1.77 %, respectively). The EHOMO-ELUMO values, molecular descriptors, and the calculated UV-Vis spectra of anthraquinone derivatives were computed by B3LYP/6-31+G(d,p) levels in the CHCl3 phase. Based on the fluorescence property of the anthraquinone skeleton, the fluorescence activity of the bioactive anthraquinone analogue (5) was investigated. MTT test was performed to determine the cytotoxic effects of thioanthraquinone molecules 3 and 5. In MTT analyses, 3 compounds showed the highest effect against Ishikawa cells at a dose of 10 µg/mL, while compound 5 showed the highest effect at a dose of 50 µg/mL. The cell viability for compound 3 was 84.18% for 10 µg/mL and the cell viability for compound 5 was 75.02% for 50 µg/mL.
References
- 1. Haciosmanoglu E, Ozkok F, Onsu AK, Bektas M, Varol B, Pehlivan S. Synthesis of New Anthraquinone Derivatives and Anticancer Effects on Breast Cancer Cell Lines. Eurasia Proc Sci Technol Eng Math. 2018 Dec 4;(4):271–6.
- 2. Ozkok F, Sahin YM. BİYOAKTİF ANTRAKİNON ANALOGLARI VE BUNLARIN SENTEZİNE YÖNELİK METOT. 2016/19610. p. https://portal.turkpatent.gov.tr/anonim/arastirma/patent/dosya-takibi.
3. Kshirsagar AD, Panchal PV, Harle UN, Nanda RK, Shaikh HM. Anti-Inflammatory and Antiarthritic Activity of Anthraquinone Derivatives in Rodents. Int J Inflamm. 2014;2014:1–12.
- 4. Demi̇Rezer LO, Uzun M, Ozenver N, Guvenalp Z. Determination of Phytoestrogenic Potential of Anthranoids by Molecular Docking Studies. :1.
- 5. Aulenta F, Ferri T, Nicastro D, Majone M, Papini MP. Improved electrical wiring of microbes: anthraquinone-modified electrodes for biosensing of chlorinated hydrocarbons. New Biotechnol. 2011 Dec;29(1):126–31.
- 6. Kang D, White RJ, Xia F, Zuo X, Vallée-Bélisle A, Plaxco KW. DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors. NPG Asia Mater. 2012 Jan;4(1):e1–e1.
- 7. Mariappan K, Basa PN. Coordination polymers of 1,8-bis(2-methylthioethoxy)anthraquinone and 1,5-bis(2-methylthioethoxy)anthraquinone with Ag(I): Synthesis and X-ray crystallography. Inorganica Chim Acta. 2011 Jan;366(1):344–9.
- 8. Chang M-Y, Tai H-Y. Synthesis of 2-substituted 9,10-anthraquinones. Synth Commun. 2013 Dec 17;43(24):3363–72.
- 9. Jarrahpour A, Ebrahimi E, Khalifeh R, Sharghi H, Sahraei M, Sinou V, et al. Synthesis of novel β-lactams bearing an anthraquinone moiety, and evaluation of their antimalarial activities. Tetrahedron. 2012 Jun;68(24):4740–4.
- 10. Liang D, Su Z, Tian W, Li J, Li Z, Wang C, et al. Synthesis and screening of novel anthraquinone−quinazoline multitarget hybrids as promising anticancer candidates. Future Med Chem. 2020 Jan;12(2):111–26.
- 11. Li F, Li X, Shao J, Chi P, Chen J, Wang Z. Estrogenic Activity of Anthraquinone Derivatives: In Vitro and In Silico Studies. Chem Res Toxicol. 2010 Aug 16;23(8):1349–55.
- 12. Dimarco A, Gaetani M, Orezzi P, Scarpinato BM, Silvestrini R, Soldati M, et al. “DAUNOMYCIN”, A NEW ANTIBIOTIC OF THE RHODOMYCIN GROUP. Nature. 1964 Feb 15;201:706–7.
- 13. White RichardJ, Durr FrederickE. Development of mitoxantrone. Invest New Drugs [Internet]. 1985 [cited 2021 Jul 11];3(2). Available from: http://link.springer.com/10.1007/BF00174154
- 14. Hua DH, Lou K, Havens J, Perchellet EM, Wang Y, Perchellet J-P, et al. Synthesis and in vitro antitumor activity of substituted anthracene-1,4-diones. Tetrahedron. 2004 Nov;60(45):10155–63.
- 15. Cairns D, Michalitsi E, Jenkins TC, Mackay SP. Molecular Modelling and Cytotoxicity of Substituted Anthraquinones as Inhibitors of Human Telomerase. Bioorg Med Chem. 2002 Mar;10(3):803–7.
- 16. Kanokmedhakul K, Kanokmedhakul S, Phatchana R. Biological activity of Anthraquinones and Triterpenoids from Prismatomeris fragrans. J Ethnopharmacol. 2005 Sep;100(3):284–8.
- 17. Singh DN, Verma N, Raghuwanshi S, Shukla PK, Kulshreshtha DK. Antifungal anthraquinones from Saprosma fragrans. Bioorg Med Chem Lett. 2006 Sep;16(17):4512–4.
- 18. Faltynek CR, Schroeder J, Mauvais P, Miller D, Wang S, Murphy D, et al. Damnacanthal Is a Highly Potent, Selective Inhibitor of p56lck Tyrosine Kinase Activity. Biochemistry. 1995 Sep 26;34(38):12404–10.
- 19. Inngjerdingen M, Torgersen KM, Maghazachi AA. Lck is required for stromal cell–derived factor 1␣ (CXCL12)–induced lymphoid cell chemotaxis. 2002;99(12):8.
- 20. García-Vilas JA, Quesada AR, Medina MA. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells. Sci Rep. 2015 Jul;5(1):8021.
- 21. Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol. 1992 Dec;19(6):670–86.
- 22. Randall K.Johnson. Experimental Antitumor Activity of Aminoanthraquinones.
- 23. Cheng CC, Zee-Cheng RKY, Narayanan VL, Ing RB, Pauli KD. The collaborative development of a new family of antineoplastic drugs. Trends Pharmacol Sci. 1981;2:223–4.
- 24. Cotter FE. Therapeutic milestones. Novantrone (mitozantrone). Br J Clin Pract. 1988 May;42(5):207–9.
- 25. Amadori S, Meloni G, Petti MC, Papa G, Miniero R, Mandelli F. Phase II trial of intermediate dose ARA-C (IDAC) with sequential mitoxantrone (MITOX) in acute myelogenous leukemia. Leukemia. 1989 Feb;3(2):112–4.
- 26. Satyamoorthy K, Chitnis MP, Pradhan SG, Advani SH. Modulation of Mitoxantrone Cytotoxicity by Verapamil in Human Chronic Myeloid Leukemia Cells. Oncology. 1989;46(2):128–31.
- 27. Durr FE, Wallace RE, Citarella RV. Molecular and biochemical pharmacology of mitoxantrone. Cancer Treat Rev. 1983 Dec;10:3–11.
- 28. Hoff DDV, Coltman CA, Forseth B. Activity of Mitoxantrone in a Human Tumor Cloning System. 1981;4.
- 29. Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, et al. SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway: SZ-685C induces apoptosis and inhibits tumour growth. Br J Pharmacol. 2010 Feb;159(3):689–97.
- 30. Zhu X, He Z, Wu J, Yuan J, Wen W, Hu Y, et al. A Marine Anthraquinone SZ-685C Overrides Adriamycin-Resistance in Breast Cancer Cells through Suppressing Akt Signaling. Mar Drugs. 2012 Mar 23;10(12):694–711.
- 31. Huang H-S, Chiou J-F, Fong Y, Hou C-C, Lu Y-C, Wang J-Y, et al. Activation of Human Telomerase Reverse Transcriptase Expression by Some New Symmetrical Bis-Substituted Derivatives of the Anthraquinone. J Med Chem. 2003 Jul 1;46(15):3300–7.
- 32. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999 Apr;57(7):727–41.
- 33. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol Rev. 2004 Jun;56(2):185–229.
- 34. Laurent G, Jaffrézou J-P. Signaling pathways activated by daunorubicin. Blood. 2001 Aug 15;98(4):913–24.
- 35. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013 Jul 1;41(W1):W77–83.
- 36. Scarpini E, Cogiamanian F. Alzheimer’s disease: from molecular pathogenesis to innovative therapies. Expert Rev Neurother. 2003 Sep;3(5):619–30.
- 37. Stellenboom N. Comparison of the inhibitory potential towards carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase of chalcone and chalcone epoxide: STELLENBOOM. J Biochem Mol Toxicol. 2019 Feb;33(2):e22240.
- 38. Ali TB, Schleret TR, Reilly BM, Chen WY, Abagyan R. Adverse Effects of Cholinesterase Inhibitors in Dementia, According to the Pharmacovigilance Databases of the United-States and Canada. Cavalli A, editor. PLOS ONE. 2015 Dec 7;10(12):e0144337.
- 39. Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, et al. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorganic Chem. 2020 Jul;100:103897.
- 40. Augustin N, Nuthakki VK, Abdullaha Mohd, Hassan QP, Gandhi SG, Bharate SB. Discovery of Helminthosporin, an Anthraquinone Isolated from Rumex abyssinicus Jacq as a Dual Cholinesterase Inhibitor. ACS Omega. 2020 Jan 28;5(3):1616–24.
- 41. Zengin G, Degirmenci N, Alpsoy L, Aktumsek A. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Hum Exp Toxicol. 2016 May;35(5):544–53.
- 42. Hong C, Luo W, Yao D, Su Y-B, Zhang X, Tian R-G, et al. Novel aromatic–polyamine conjugates as cholinesterase inhibitors with notable selectivity toward butyrylcholinesterase. Bioorg Med Chem. 2014 Jun;22(12):3213–9.
43. Lee Y, Bang H, Oh J, Whang W. Bioassay-Guided Isolated Compounds from Morinda officinalis Inhibit Alzheimer’s Disease Pathologies. Molecules. 2017 Sep 29;22(10):1638.
- 44. Tonelli M, Catto M, Tasso B, Novelli F, Canu C, Iusco G, et al. Multitarget Therapeutic Leads for Alzheimer’s Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and β-Amyloid (Aβ) Aggregation. ChemMedChem. 2015 Jun;10(6):1040–53.
- 45. Celik S, Ozkok F, Ozel AE, Müge Sahin Y, Akyuz S, Sigirci BD, et al. Synthesis, FT-IR and NMR characterization, antimicrobial activity, cytotoxicity and DNA docking analysis of a new anthraquinone derivate compound. J Biomol Struct Dyn. 2020 Feb 11;38(3):756–70.
- 46. Ozkok F, Sahin YM, Enisoglu Atalay V, Asgarova K, Onul N, Catal T. Sensitive detection of iron (II) sulfate with a novel reagent using spectrophotometry. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Oct;240:118631.
- 47. Bingul M, Şenkuytu E, Saglam MF, Boga M, Kandemir H, Sengul IF. Synthesis, photophysical and antioxidant properties of carbazole-based bis-thiosemicarbazones. Res Chem Intermed. 2019 Sep;45(9):4487–99.
- 48. Stewart JJP. Application of the PM6 method to modeling the solid state. J Mol Model. 2008 Jun;14(6):499–535.
- 49. Stewart JJP. Application of the PM6 method to modeling proteins. J Mol Model. 2009 Jul;15(7):765–805.
- 50. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988 Jan 15;37(2):785–9.
- 51. Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys. 2010 Mar 21;132(11):114110.
- 52. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983 Dec;105(26):7512–6.
- 53. Pearson J, Havill DC. The Effect of Hypoxia and Sulphide on Culture-Grown Wetland and Non-Wetland Plants: II. METABOLIC AND PHYSIOLOGICAL CHANGES. J Exp Bot. 1988;39(4):431–9.
- 54. Gaussview 5.0.9 [Internet]. Available from: https://www.strath.ac.uk/is/software/gaussview509/
- 55. Gaussian 09 [Internet]. Available from: https://gaussian.com/glossary/g09/
- 56. Fierro C, Anderson AB, Scherson DA. Electron donor-acceptor properties of porphyrins, phthalocyanines, and related ring chelates: a molecular orbital approach. J Phys Chem. 1988 Dec;92(24):6902–7.
57. Islam N, Ghosh DC. On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness. Int J Mol Sci. 2012 Feb 17;13(2):2160–75.
- 58. Sen P, Yıldız SZ, Atalay VE, Kanmazalp SD, Dege N. Synthesis, molecular structure, spectroscopic and computational studies on 4-(2-(2-(2-formylphenoxy)ethoxy)ethoxy)phthalonitrile as Functionalized Phthalonitrile. Maced J Chem Chem Eng. 2019 May 24;38(1):63.
- 59. Enisoglu-Atalay V, Atasever-Arslan B, Yaman B, Cebecioglu R, Kul A, Ozilhan S, et al. Chemical and molecular characterization of metabolites from Flavobacterium sp. Agbor G, editor. PLOS ONE. 2018 Oct 17;13(10):e0205817.