Araştırma Makalesi
BibTex RIS Kaynak Göster

Spectral Investigation of Yb3+/Ho3+/Tm3+:Y2Si2O7 Upconverting Nanophosphors for the Usage of Temperature Sensing

Yıl 2023, Cilt: 10 Sayı: 1, 55 - 62, 28.02.2023
https://doi.org/10.18596/jotcsa.1159026

Öz

Rare earth (Yb3+, Ho3+, Tm3+) yttrium disilicate phosphors were produced by sol-gel technique and heated at 1050 °C temperature. The sizes of the phosphors vary between 20-30 nm according to the images obtained from the Transmission Electron Microscope. The up-conversion (UC) emissions of the nanopowders were measured in the range of 500–900 nm wavelength under 950 nm laser excitation. A linear increase with power was observed in the emission intensity ratio depending on the laser excitation power. Using the FIR technique, the phosphor’s temperature was determined by the heating effect caused by the laser pump power. Due to the change in intensity ratio versus temperature, the temperature sensitivity at 428 K was calculated as 0.781x10-2K-1 and it was suggested that it can be used as a promising temperature sensor probe in photonic devices.

Destekleyen Kurum

Marmara University Scientific Research Projects Unit

Proje Numarası

FEN-B-150513-0170

Teşekkür

We thank Prof.Dr.Baldassare Di Bartolo for the photoluminescent measurements performed in the Spectroscopy Laboratory at Boston College.

Kaynakça

  • 1. Marciniak L, Waszniewska K, Bednarkiewicz A, Hreniak D, Strek W. Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes. J Phys Chem C [Internet]. 2016 Apr 28 [cited 2022 Nov 27];120(16):8877–82.
  • 2. Marciniak L, Bednarkiewicz A, Kowalska D, Strek W. A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues. J Mater Chem C [Internet]. 2016 [cited 2022 Nov 27];4(24):5559–63.
  • 3. Balabhadra S, Debasu ML, Brites CDS, Nunes LAO, Malta OL, Rocha J, et al. Boosting the sensitivity of Nd 3+ -based luminescent nanothermometers. Nanoscale [Internet]. 2015 [cited 2022 Nov 27];7(41):17261–7.
  • 4. Du P, Tang J, Li W, Luo L. Exploiting the diverse photoluminescence behaviors of NaLuF4:xEu3+ nanoparticles and g-C3N4 to realize versatile applications in white light-emitting diode and optical thermometer. Chem Eng J [Internet]. 2021 Feb [cited 2022 Nov 27];406:127165.
  • 5. Doğan A, Erdem M. Investigation of the optical temperature sensing properties of up-converting TeO2-ZnO-BaO activated with Yb3+/Tm3+ glasses. Sens Actuat A: Phys [Internet]. 2021 May [cited 2022 Nov 27];322:112645.
  • 6. Doğan A, Yıldırım SM, Erdem M, Esmer K, Eryürek G. Investigation of spectral output of Er3+ and Yb3+ /Er3+ doped TeO2 –ZnO–BaO glasses for photonic applications. New J Chem [Internet]. 2021 [cited 2022 Nov 27];45(8):3790–9.
  • 7. Liu X, Chen Y, Shang F, Chen G, Xu J. Wide-range thermometry and up-conversion luminescence of Ca5(PO4)3F:Yb3+/Er3+ transparent glass ceramics. J Mater Sci: Mater Electron [Internet]. 2019 Mar [cited 2022 Nov 27];30(6):5718–25.
  • 8. Fischer LH, Harms GS, Wolfbeis OS. Upconverting Nanoparticles for Nanoscale Thermometry. Angew Chem Int Ed [Internet]. 2011 May 9 [cited 2022 Nov 27];50(20):4546–51.
  • 9. Wade SA, Collins SF, Baxter GW. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J Appl Phys [Internet]. 2003 [cited 2022 Nov 27];94(8):4743.
  • 10. Lei R, Luo X, Yuan Z, Wang H, Huang F, Deng D, et al. Ultrahigh-sensitive optical temperature sensing in Pr3+:Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence. J Lumin [Internet]. 2019 Jan [cited 2022 Nov 27];205:440–5.
  • 11. Du P, Luo L, Yu JS. Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics. J Alloy Comp [Internet]. 2015 May [cited 2022 Nov 27];632:73–7.
  • 12. Liu Z, Jiang G, Wang R, Chai C, Zheng L, Zhang Z, et al. Temperature and concentration effects on upconversion photoluminescence properties of Ho3+ and Yb3+ codoped 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 multifunctional ceramics. Ceram Int [Internet]. 2016 Jul [cited 2022 Nov 27];42(9):11309–13.
  • 13. Xu W, Zhao H, Li Y, Zheng L, Zhang Z, Cao W. Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sens Actuat B: Chem [Internet]. 2013 Nov [cited 2022 Nov 27];188:1096–100.
  • 14. Marciniak L, Hreniak D, Strek W, Piccinelli F, Speghini A, Bettinelli M, et al. Spectroscopic and structural properties of polycrystalline Y2Si2O7 doped with Er3+. J Lumin [Internet]. 2016 Feb [cited 2022 Nov 27];170:614–8.
  • 15. Sokolnicki J. Rare earths (Ce, Eu, Tb) doped Y2Si2O7 phosphors for white LED. J Lumin [Internet]. 2013 Feb [cited 2022 Nov 27];134:600–6.
  • 16. Erdem M, Sitt B. Up conversion based white light emission from sol–gel derived α-Y2Si2O7 nanoparticles activated with Yb3+, Er3+ ions. Optical Materials [Internet]. 2015 Aug [cited 2022 Nov 27];46:260–4.
  • 17. Erdem M, Tabanli S, Eryurek G, Samur R, Di Bartolo B. Crystalline phase effect on the up-conversion processes and white emission of Yb3+/Er3+/Tm3+ :Y2Si2O7 nanocrystals. Dalton Trans [Internet]. 2019 [cited 2022 Nov 27];48(19):6464–72.
  • 18. Tomala R, Hreniak D, Strek W. Laser induced broadband white emission of Y2Si2O7 nanocrystals. J Rare Earths [Internet]. 2019 Nov [cited 2022 Nov 27];37(11):1196–9.
  • 19. Rakov N. Tm3+,Yb3+: Y2SiO5 up-conversion phosphors: Exploration of temperature sensing performance by monitoring the luminescence emission. Physica B: Cond Mat [Internet]. 2022 Mar [cited 2022 Nov 27];628:413572.
  • 20. Erdem M, Özen G, Tav C. Crystallization behaviour of neodymium doped yttrium silicate nanophosphors. Journal of the Eur Ceram Soc [Internet]. 2011 Nov [cited 2022 Nov 27];31(14):2629–31.
  • 21. Jiang C, Xu W. Theoretical Model of Yb$^{3 + }$-Er$^{3 + }$-Tm$^{3 + }$-Codoped System for White Light Generation. J Display Technol [Internet]. 2009 Aug [cited 2022 Nov 27];5(8):312–8.
  • 22. Doğan A, Erdem M, Esmer K, Eryürek G. Upconversion luminescence and temperature sensing characteristics of Ho3+/Yb3+ co-doped tellurite glasses. J Non-Cryst Sol [Internet]. 2021 Nov [cited 2022 Nov 27];571:121055.
  • 23. Tavares MCP, da Costa EB, Bueno LA, Gouveia-Neto AS. White phosphor using Yb3+-sensitized Er3+-and Tm3+-doped sol-gel derived lead-fluorosilicate transparent glass ceramic excited at 980 nm. Opt Mater [Internet]. 2018 Jan [cited 2022 Nov 27];75:733–8.
  • 24. Pandey A, Rai VK. Colour emission tunability in Ho3+–Tm3+–Yb3+ co-doped Y2O3 upconverted phosphor. Appl Phys B [Internet]. 2012 Dec [cited 2022 Nov 27];109(4):611–6.
  • 25. Wade SA. Temperature measurement using rare earth doped fibre fluorescence [Internet] [PhD Thesis]. [Australia]: Victoria University; 1999.
  • 26. Wang X, Liu Q, Bu Y, Liu CS, Liu T, Yan X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv [Internet]. 2015 [cited 2022 Nov 27];5(105):86219–36.
  • 27. Tang J, Du P, Li W, Luo L. Boosted thermometric performance in NaGdF4:Er3+/Yb3+ upconverting nanorods by Fe3+ ions doping for contactless nanothermometer based on thermally and non-thermally coupled levels. J Lumin [Internet]. 2020 Aug [cited 2022 Nov 27];224:117296.
  • 28. Du P, Luo L, Park HK, Yu JS. Citric-assisted sol-gel based Er3+ /Yb3+ -codoped Na0.5Gd0.5MoO4 : A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters. Chem Eng J [Internet]. 2016 Dec [cited 2022 Nov 27];306:840–8.
  • 29. Jacinto C, Vermelho MVD, Gouveia EA, de Araujo MT, Udo PT, Astrath NGC, et al. Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses. Appl Phys Lett [Internet]. 2007 Aug 13 [cited 2022 Nov 27]; 91(7):071102.
  • 30. He A, Xi Z, Li X, Long W, Fang P, Zhang J. Temperature dependence of upconversion luminescence and sensing sensitivity of Ho3+/Yb3+ modified PSN-PMN-PT crystals. J Alloy Comp [Internet]. 2019 Sep [cited 2022 Nov 27];803:450–5.
  • 31. Zhang Y, Wang T, Liu H, Liu D, Liu Y, Fu Z. Optical temperature sensing behavior for KLa(MoO4)2:Ho3+/Yb3+ phosphors based on fluorescence intensity ratios. Optik [Internet]. 2020 Feb [cited 2022 Nov 27];204:164100.
  • 32. Zhou J, Chen Y, Lei R, Wang H, Zhu Q, Wang X, et al. Excellent photoluminescence and temperature sensing properties in Ho3+/Yb3+ codoped (Y0.88La0.09Zr0.03)2O3 transparent ceramics. Ceramics International [Internet]. 2019 Apr [cited 2022 Nov 27];45(6):7696–702.
Yıl 2023, Cilt: 10 Sayı: 1, 55 - 62, 28.02.2023
https://doi.org/10.18596/jotcsa.1159026

Öz

Proje Numarası

FEN-B-150513-0170

Kaynakça

  • 1. Marciniak L, Waszniewska K, Bednarkiewicz A, Hreniak D, Strek W. Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes. J Phys Chem C [Internet]. 2016 Apr 28 [cited 2022 Nov 27];120(16):8877–82.
  • 2. Marciniak L, Bednarkiewicz A, Kowalska D, Strek W. A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues. J Mater Chem C [Internet]. 2016 [cited 2022 Nov 27];4(24):5559–63.
  • 3. Balabhadra S, Debasu ML, Brites CDS, Nunes LAO, Malta OL, Rocha J, et al. Boosting the sensitivity of Nd 3+ -based luminescent nanothermometers. Nanoscale [Internet]. 2015 [cited 2022 Nov 27];7(41):17261–7.
  • 4. Du P, Tang J, Li W, Luo L. Exploiting the diverse photoluminescence behaviors of NaLuF4:xEu3+ nanoparticles and g-C3N4 to realize versatile applications in white light-emitting diode and optical thermometer. Chem Eng J [Internet]. 2021 Feb [cited 2022 Nov 27];406:127165.
  • 5. Doğan A, Erdem M. Investigation of the optical temperature sensing properties of up-converting TeO2-ZnO-BaO activated with Yb3+/Tm3+ glasses. Sens Actuat A: Phys [Internet]. 2021 May [cited 2022 Nov 27];322:112645.
  • 6. Doğan A, Yıldırım SM, Erdem M, Esmer K, Eryürek G. Investigation of spectral output of Er3+ and Yb3+ /Er3+ doped TeO2 –ZnO–BaO glasses for photonic applications. New J Chem [Internet]. 2021 [cited 2022 Nov 27];45(8):3790–9.
  • 7. Liu X, Chen Y, Shang F, Chen G, Xu J. Wide-range thermometry and up-conversion luminescence of Ca5(PO4)3F:Yb3+/Er3+ transparent glass ceramics. J Mater Sci: Mater Electron [Internet]. 2019 Mar [cited 2022 Nov 27];30(6):5718–25.
  • 8. Fischer LH, Harms GS, Wolfbeis OS. Upconverting Nanoparticles for Nanoscale Thermometry. Angew Chem Int Ed [Internet]. 2011 May 9 [cited 2022 Nov 27];50(20):4546–51.
  • 9. Wade SA, Collins SF, Baxter GW. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J Appl Phys [Internet]. 2003 [cited 2022 Nov 27];94(8):4743.
  • 10. Lei R, Luo X, Yuan Z, Wang H, Huang F, Deng D, et al. Ultrahigh-sensitive optical temperature sensing in Pr3+:Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence. J Lumin [Internet]. 2019 Jan [cited 2022 Nov 27];205:440–5.
  • 11. Du P, Luo L, Yu JS. Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics. J Alloy Comp [Internet]. 2015 May [cited 2022 Nov 27];632:73–7.
  • 12. Liu Z, Jiang G, Wang R, Chai C, Zheng L, Zhang Z, et al. Temperature and concentration effects on upconversion photoluminescence properties of Ho3+ and Yb3+ codoped 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 multifunctional ceramics. Ceram Int [Internet]. 2016 Jul [cited 2022 Nov 27];42(9):11309–13.
  • 13. Xu W, Zhao H, Li Y, Zheng L, Zhang Z, Cao W. Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sens Actuat B: Chem [Internet]. 2013 Nov [cited 2022 Nov 27];188:1096–100.
  • 14. Marciniak L, Hreniak D, Strek W, Piccinelli F, Speghini A, Bettinelli M, et al. Spectroscopic and structural properties of polycrystalline Y2Si2O7 doped with Er3+. J Lumin [Internet]. 2016 Feb [cited 2022 Nov 27];170:614–8.
  • 15. Sokolnicki J. Rare earths (Ce, Eu, Tb) doped Y2Si2O7 phosphors for white LED. J Lumin [Internet]. 2013 Feb [cited 2022 Nov 27];134:600–6.
  • 16. Erdem M, Sitt B. Up conversion based white light emission from sol–gel derived α-Y2Si2O7 nanoparticles activated with Yb3+, Er3+ ions. Optical Materials [Internet]. 2015 Aug [cited 2022 Nov 27];46:260–4.
  • 17. Erdem M, Tabanli S, Eryurek G, Samur R, Di Bartolo B. Crystalline phase effect on the up-conversion processes and white emission of Yb3+/Er3+/Tm3+ :Y2Si2O7 nanocrystals. Dalton Trans [Internet]. 2019 [cited 2022 Nov 27];48(19):6464–72.
  • 18. Tomala R, Hreniak D, Strek W. Laser induced broadband white emission of Y2Si2O7 nanocrystals. J Rare Earths [Internet]. 2019 Nov [cited 2022 Nov 27];37(11):1196–9.
  • 19. Rakov N. Tm3+,Yb3+: Y2SiO5 up-conversion phosphors: Exploration of temperature sensing performance by monitoring the luminescence emission. Physica B: Cond Mat [Internet]. 2022 Mar [cited 2022 Nov 27];628:413572.
  • 20. Erdem M, Özen G, Tav C. Crystallization behaviour of neodymium doped yttrium silicate nanophosphors. Journal of the Eur Ceram Soc [Internet]. 2011 Nov [cited 2022 Nov 27];31(14):2629–31.
  • 21. Jiang C, Xu W. Theoretical Model of Yb$^{3 + }$-Er$^{3 + }$-Tm$^{3 + }$-Codoped System for White Light Generation. J Display Technol [Internet]. 2009 Aug [cited 2022 Nov 27];5(8):312–8.
  • 22. Doğan A, Erdem M, Esmer K, Eryürek G. Upconversion luminescence and temperature sensing characteristics of Ho3+/Yb3+ co-doped tellurite glasses. J Non-Cryst Sol [Internet]. 2021 Nov [cited 2022 Nov 27];571:121055.
  • 23. Tavares MCP, da Costa EB, Bueno LA, Gouveia-Neto AS. White phosphor using Yb3+-sensitized Er3+-and Tm3+-doped sol-gel derived lead-fluorosilicate transparent glass ceramic excited at 980 nm. Opt Mater [Internet]. 2018 Jan [cited 2022 Nov 27];75:733–8.
  • 24. Pandey A, Rai VK. Colour emission tunability in Ho3+–Tm3+–Yb3+ co-doped Y2O3 upconverted phosphor. Appl Phys B [Internet]. 2012 Dec [cited 2022 Nov 27];109(4):611–6.
  • 25. Wade SA. Temperature measurement using rare earth doped fibre fluorescence [Internet] [PhD Thesis]. [Australia]: Victoria University; 1999.
  • 26. Wang X, Liu Q, Bu Y, Liu CS, Liu T, Yan X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv [Internet]. 2015 [cited 2022 Nov 27];5(105):86219–36.
  • 27. Tang J, Du P, Li W, Luo L. Boosted thermometric performance in NaGdF4:Er3+/Yb3+ upconverting nanorods by Fe3+ ions doping for contactless nanothermometer based on thermally and non-thermally coupled levels. J Lumin [Internet]. 2020 Aug [cited 2022 Nov 27];224:117296.
  • 28. Du P, Luo L, Park HK, Yu JS. Citric-assisted sol-gel based Er3+ /Yb3+ -codoped Na0.5Gd0.5MoO4 : A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters. Chem Eng J [Internet]. 2016 Dec [cited 2022 Nov 27];306:840–8.
  • 29. Jacinto C, Vermelho MVD, Gouveia EA, de Araujo MT, Udo PT, Astrath NGC, et al. Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses. Appl Phys Lett [Internet]. 2007 Aug 13 [cited 2022 Nov 27]; 91(7):071102.
  • 30. He A, Xi Z, Li X, Long W, Fang P, Zhang J. Temperature dependence of upconversion luminescence and sensing sensitivity of Ho3+/Yb3+ modified PSN-PMN-PT crystals. J Alloy Comp [Internet]. 2019 Sep [cited 2022 Nov 27];803:450–5.
  • 31. Zhang Y, Wang T, Liu H, Liu D, Liu Y, Fu Z. Optical temperature sensing behavior for KLa(MoO4)2:Ho3+/Yb3+ phosphors based on fluorescence intensity ratios. Optik [Internet]. 2020 Feb [cited 2022 Nov 27];204:164100.
  • 32. Zhou J, Chen Y, Lei R, Wang H, Zhu Q, Wang X, et al. Excellent photoluminescence and temperature sensing properties in Ho3+/Yb3+ codoped (Y0.88La0.09Zr0.03)2O3 transparent ceramics. Ceramics International [Internet]. 2019 Apr [cited 2022 Nov 27];45(6):7696–702.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm Makaleler
Yazarlar

Murat Erdem 0000-0003-3581-7523

Kadir Esmer 0000-0002-1336-9259

Gönül Özen Eryürek 0000-0002-1010-6680

Proje Numarası FEN-B-150513-0170
Yayımlanma Tarihi 28 Şubat 2023
Gönderilme Tarihi 8 Ağustos 2022
Kabul Tarihi 7 Kasım 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

Vancouver Erdem M, Esmer K, Özen Eryürek G. Spectral Investigation of Yb3+/Ho3+/Tm3+:Y2Si2O7 Upconverting Nanophosphors for the Usage of Temperature Sensing. JOTCSA. 2023;10(1):55-62.