Araştırma Makalesi
BibTex RIS Kaynak Göster

Study on Recycling of Waste Glass Fiber Reinforced Polypropylene Composites: Examination of Mechanical and Thermal Properties

Yıl 2023, Cilt: 10 Sayı: 1, 63 - 76, 28.02.2023
https://doi.org/10.18596/jotcsa.1178019

Öz

This study presents the preparation of short glass fiber reinforced polypropylene (PP/FG) composites using with waste (post-consumer) polypropylene composite containing long glass fiber (PP/LFG) obtained from the recycling of battery covers of trucks. Waste PP/LFG composite parts were mechanically grinded before adding to PP/FG composites. An injection molding machine was used to produce the PP/FG composite test samples loading with recycled waste PP/LFG composite in the range of 1-20% by weight. Effects of recycled waste PP/LFG content on the mechanical, thermal, and morphological properties of the PP/FG composites were investigated. The following three different tests, at various waste PP/LFG ratios, were conducted: Izod/Charpy Impact test, bending test, and tensile test. Mechanical test results showed that mechanical strength of prepared PP/FG composites were not influenced by content of waste PP/LFG material up to 10 wt.%. Differential scanning calorimetry (DSC) was used for the evaluation of thermal parameters such as melting point and crystallization temperature of the polymer matrix in the composites studied. Furthermore, by analyzing the values of thermal effects determined using the DSC method, it was possible to determine the degree of crystallinity. The DSC results showed that crystallinity %, melting, and crystallization temperatures of PP/FG composites were not influenced to adding waste PP/LFG at different ratios. The morphology of composite materials was investigated by SEM analysis. Good fiber dispersion was observed in the PP matrix for PP/FG composites containing short glass fiber prepared with all ratios of recycled waste PP/LFG material containing long glass fiber.

Teşekkür

The authors would like to thank Şişecam Inc. who supported the work reported in this paper and İsmail Oral, laboratory technician, for support and assistance in technical applications.

Kaynakça

  • 1. Günaydın E. Polimer matriksli karbon nanotüp-cam elyaf takviyeli kompozitlerde çarpma sonrası basma özelliklerinin incelenmesi [MSc Thesis]. [Samsun]: Ondokuz Mayıs University; 2018.
  • 2. Güğül H. Karbon Nanotüp Ve Cam Elyaf Takviyeli Yüksek Yoğunluklu Polietilen Hibrit Kompozit Malzemelerin Mekanik Özelliklerinin İncelenmesi [MSc Thesis]. [İskenderun]: İskenderun Technical University; 2018.
  • 3. Sabancı Ş. Fiber Takviyeli Polimer Matriksli Kompozitlerin Enjeksiyon Yöntemi İle Üretimi [MSc Thesis]. [İstanbul]: Yıldız Technical University; 2005.
  • 4. Moritzer E., Heiderich G. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets. Proceedings of PPS-31. AIP Conf. Proc. 2016 Mar; 1713(1):120013-1–5.
  • 5. Ünal E. Cam Elyaflı Kompozit Malzemelerin Atmosferik Ortamda Ve Deniz Ortamında Yorulma Simülasyonu [MSc Thesis]. [İzmir]: Ege University; 2006.
  • 6. Kandaş H. Farklı Ön Gerilme Yüklerinde Cam Elyaf Takviyeli Polipropilen Kompozitlerin Düşük Hızlı Darbe Davranışı [MSc Thesis]. [İzmir]: Dokuz Eylul University; 2018.
  • 7. Liu D, Ding J, Fan X, Lin X, Zhu Y. Non-isothermal forming of glass fiber/polypropylene commingled yarn fabric composites. Materials and Design. 2014 Jan; 57:608–15.
  • 8. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites: Part A. 2007 Jan; 38(6):1473–82.
  • 9. Gill, R. M. Carbon fibres in composite materials. London: Iliffe Books for the Plastics Institute. 1972. ISBN 13: 978-0-5920-0069-5.
  • 10. Hassan, A., Rahman, N. A., & Yahya, R. Extrusion and injection-molding of glass fiber/MAPP/polypropylene: effect of coupling agent on DSC, DMA and mechanical properties. Journal of Reinforced Plastics and Composites, 2011 Sep; 30(14):1223-1232.
  • 11. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites. Part B, Engineering. 2008 Sep; 39(6):933-961.
  • 12. Han, L., Wang, H., Lang, X., Wang, X., Zong, Y., Zong, C. Preparation of graphene/ polypropylene composite with high dielectric constant and low dielectric loss via constructing a segregated graphane network. Royal Society of Chemistry. 2021 Nov; 11:38264-38272.
  • 13. Awad, S.A., Khalaf, E.M. Investigation of improvement of properties of polypropylene modified by nano silica composites. Composites Communications. 2019 Apr; 12:59-63.
  • 14. Kufel, A., Para, S., Kuciel, S. Basalt/Glass fiber polypropylene hybrid composites: mechanical properties at different temperatures and under cyclic loading and micromechanical modelling. Materials. 2021 Sep; 14:5574-5591.
  • 15. Schwartz, M. Composite materials handbook. 2nd ed. New York: McGraw-Hill; 1992. ISBN-13: 978-0-0705-5743-7.
  • 16. Shinzawa, H., Itasaka, H. Glass fiber (GF)/polypropylene (PP) composite studied by Raman disrelation mapping. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022 May; 273:121056.
  • 17. Watanabe, R., Sugahara, A., Hagihara, H., Mizukado, J., Shinzawa, H. Insight into interfacial compatibilization of glass-fiber-reinforced polypropylene (PP) using maleic-anhydride modified PP employing infrared spectroscopic imaging. Composites Science and Technology. 2020 July; 199:108379.
  • 18. Liu, W., Zhu, Y., Qian, C., Dai, H., Fu, Y., Dong, Y. Interfacial modification between glass fiber and polypropylene using a novel waterborne amphiphilic sizing agent. Composites Part B. 2022 July; 241:110029.
  • 19. Zhou, P., Li, C., Bai, Y., Dong, S., Xian, G., Vedernikov, A., Akhatov, I., Safonov, A., Yue, Q. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications. Construction and Building Materials. 2022 Sep; 349:128694.
  • 20. Dong, S., Zhou, P., Guo, R., Li, C., Xian, G. Durability study of glass fiber reinforced polypropylene sheet under simulated seawater sea sand concrete environment. Journal of Materials Research and Techology. 2022 Sep; 20:1079-1092.
  • 21. Kabiri, A., Liaghat, G., Alavi, F. Biomechanical evaluation of glass fiber/polypropylene composite bone fracture fixation plates: Experimental and numerical analysis. Computers in Biology and Medicine. 2021 May; 132:104303.
  • 22. Şahin S. Sürekli Cam Elyaf Takviyeli Polipropilen Levhaların Şekillendirilmesi Ve Karakterizasyonu [MSc Thesis]. [İstanbul]: Marmara University; 2015.
  • 23. Baydar DG, Bekem A, Doğu M, Gemici Z, Ünal A. Sürekli Cam Fiber Takviyeli Polipropilen Kompozitlerin Üretimi Ve Karakterizasyonu. Sigma Journal of Engineering and Natural Sciences. 2011 Dec; 30:120-132.
  • 24. Naqvia SR, Prabhakaraa HM, Bramera EA, Dierkesa W, Akkerman R, Brema G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, Conservation & Recycling. 2018 Apr; 136:118–129.
  • 25. Medar MM. Geri Dönüştürülmüş Cam Elyaf Katkılı ve Katkısız Polipropilen-Polietilen Malzemelerin Mekanik ve Kimyasal Özelliklerinin İncelenmesi [MSc Thesis]. [Kocaeli]: Gebze Technical University; 2013.
  • 26. Bajracharya RM, Manalo AC, Karunasena W, Lau K. An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites. Materials and Design. 2014 Oct; 62:98-112.
  • 27. Şentürk O. Kısa Cam Elyaf Ve Kalsit Dolgulu Polipropilen Hibrit Kompozitlerin Fiziksel Ve Mekanik Özelliklerinin İncelenmesi [MSc Thesis]. [Istanbul]: Istanbul Technical University; 2014.
  • 28. Lila MK, Singhal A, Banwait SS, Singh I. A recyclability study of bagasse fiber reinforced polypropylene composites. Polymer Degradation and Stability. 2018 June; 152:272-79.
  • 29. Feih S, Mouritz AP, Case SW. Determining the mechanism controlling glass fibre strength loss during thermal recycling of waste composites. Composites Part A: Applied Science and Manufacturing. 2015 Sep; 76:255-61.
  • 30. Cousins DS, Suzuki Y, Murray RE, Samaniuk JR. Recycling glass fiber thermoplastic composites from wind turbine blades. Journal of Cleaner Production. 2019 Feb; 209:1252-63.
  • 31. Vaidya UK, Chawla KK. Processing of fibre reinforced thermoplastic composites. International Materials Reviews. 2013 Jul; 185-218.
  • 32. Chen, T., Mansfield, C.D., Ju, L., Baird, D.G. The influence of mechanical recycling on the properties of thermotropic liquid crystalline polymer and long glass fiber reinforced polypropylene. Composite Part B. 2020 Nov; 200: 108316.
  • 33. Lee SY, Kang IA, Doh GH, Kim WJ, Kim JS, Yoon HG, Wu QH. Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nano composites. Express Polymer Letters. 2008 Mar; 2(2):894–9.
  • 34. Al-Maadeed MA, Shabana YM, Khanam PN. Processing, characterization and modeling of recycled polypropylene/glass fibre/wood flour composites. Materials and Design. 2014 June; 58:374–380.
  • 35. Choi, E.Y., Kim, C.K., Park, C.B. Fabrication of MA-EPDM grafted MWCNTs by reactive extrusion for enhanced interfacial adhesion and mechanical properties of PP/ MA-EPDM composite. Composites Part B. 2022 Aug; 242:110043.
  • 36. Pourali, M., Peterson, A.M. The effects of toolpath and glass fiber reinforcement on bond strength and dimensional accuracy in material extrusion of a hot melt adhesive. Additive Manufacturing. 202258 Oct; 58:103056.

Study on Recycling of Waste Glass Fiber Reinforced Polypropylene Composites: Examination of Mechanical and Thermal Properties

Yıl 2023, Cilt: 10 Sayı: 1, 63 - 76, 28.02.2023
https://doi.org/10.18596/jotcsa.1178019

Öz

This study presents the preparation of short glass fiber reinforced polypropylene (PP/FG) composites using with waste (post-consumer) polypropylene composite containing long glass fiber (PP/LFG) obtained from the recycling of battery covers of trucks. Waste PP/LFG composite parts were mechanically grinded before adding to PP/FG composites. An injection molding machine was used to produce the PP/FG composite test samples loading with recycled waste PP/LFG composite in the range of 1-20% by weight. Effects of recycled waste PP/LFG content on the mechanical, thermal, and morphological properties of the PP/FG composites were investigated. The following three different tests, at various waste PP/LFG ratios, were conducted: Izod/Charpy Impact test, bending test, and tensile test. Mechanical test results showed that mechanical strength of prepared PP/FG composites were not influenced by content of waste PP/LFG material up to 10 wt.%. Differential scanning calorimetry (DSC) was used for the evaluation of thermal parameters such as melting point and crystallization temperature of the polymer matrix in the composites studied. Furthermore, by analyzing the values of thermal effects determined using the DSC method, it was possible to determine the degree of crystallinity. The DSC results showed that crystallinity %, melting, and crystallization temperatures of PP/FG composites were not influenced to adding waste PP/LFG at different ratios. The morphology of composite materials was investigated by SEM analysis. Good fiber dispersion was observed in the PP matrix for PP/FG composites containing short glass fiber prepared with all ratios of recycled waste PP/LFG material containing long glass fiber.

Kaynakça

  • 1. Günaydın E. Polimer matriksli karbon nanotüp-cam elyaf takviyeli kompozitlerde çarpma sonrası basma özelliklerinin incelenmesi [MSc Thesis]. [Samsun]: Ondokuz Mayıs University; 2018.
  • 2. Güğül H. Karbon Nanotüp Ve Cam Elyaf Takviyeli Yüksek Yoğunluklu Polietilen Hibrit Kompozit Malzemelerin Mekanik Özelliklerinin İncelenmesi [MSc Thesis]. [İskenderun]: İskenderun Technical University; 2018.
  • 3. Sabancı Ş. Fiber Takviyeli Polimer Matriksli Kompozitlerin Enjeksiyon Yöntemi İle Üretimi [MSc Thesis]. [İstanbul]: Yıldız Technical University; 2005.
  • 4. Moritzer E., Heiderich G. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets. Proceedings of PPS-31. AIP Conf. Proc. 2016 Mar; 1713(1):120013-1–5.
  • 5. Ünal E. Cam Elyaflı Kompozit Malzemelerin Atmosferik Ortamda Ve Deniz Ortamında Yorulma Simülasyonu [MSc Thesis]. [İzmir]: Ege University; 2006.
  • 6. Kandaş H. Farklı Ön Gerilme Yüklerinde Cam Elyaf Takviyeli Polipropilen Kompozitlerin Düşük Hızlı Darbe Davranışı [MSc Thesis]. [İzmir]: Dokuz Eylul University; 2018.
  • 7. Liu D, Ding J, Fan X, Lin X, Zhu Y. Non-isothermal forming of glass fiber/polypropylene commingled yarn fabric composites. Materials and Design. 2014 Jan; 57:608–15.
  • 8. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites: Part A. 2007 Jan; 38(6):1473–82.
  • 9. Gill, R. M. Carbon fibres in composite materials. London: Iliffe Books for the Plastics Institute. 1972. ISBN 13: 978-0-5920-0069-5.
  • 10. Hassan, A., Rahman, N. A., & Yahya, R. Extrusion and injection-molding of glass fiber/MAPP/polypropylene: effect of coupling agent on DSC, DMA and mechanical properties. Journal of Reinforced Plastics and Composites, 2011 Sep; 30(14):1223-1232.
  • 11. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites. Part B, Engineering. 2008 Sep; 39(6):933-961.
  • 12. Han, L., Wang, H., Lang, X., Wang, X., Zong, Y., Zong, C. Preparation of graphene/ polypropylene composite with high dielectric constant and low dielectric loss via constructing a segregated graphane network. Royal Society of Chemistry. 2021 Nov; 11:38264-38272.
  • 13. Awad, S.A., Khalaf, E.M. Investigation of improvement of properties of polypropylene modified by nano silica composites. Composites Communications. 2019 Apr; 12:59-63.
  • 14. Kufel, A., Para, S., Kuciel, S. Basalt/Glass fiber polypropylene hybrid composites: mechanical properties at different temperatures and under cyclic loading and micromechanical modelling. Materials. 2021 Sep; 14:5574-5591.
  • 15. Schwartz, M. Composite materials handbook. 2nd ed. New York: McGraw-Hill; 1992. ISBN-13: 978-0-0705-5743-7.
  • 16. Shinzawa, H., Itasaka, H. Glass fiber (GF)/polypropylene (PP) composite studied by Raman disrelation mapping. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022 May; 273:121056.
  • 17. Watanabe, R., Sugahara, A., Hagihara, H., Mizukado, J., Shinzawa, H. Insight into interfacial compatibilization of glass-fiber-reinforced polypropylene (PP) using maleic-anhydride modified PP employing infrared spectroscopic imaging. Composites Science and Technology. 2020 July; 199:108379.
  • 18. Liu, W., Zhu, Y., Qian, C., Dai, H., Fu, Y., Dong, Y. Interfacial modification between glass fiber and polypropylene using a novel waterborne amphiphilic sizing agent. Composites Part B. 2022 July; 241:110029.
  • 19. Zhou, P., Li, C., Bai, Y., Dong, S., Xian, G., Vedernikov, A., Akhatov, I., Safonov, A., Yue, Q. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications. Construction and Building Materials. 2022 Sep; 349:128694.
  • 20. Dong, S., Zhou, P., Guo, R., Li, C., Xian, G. Durability study of glass fiber reinforced polypropylene sheet under simulated seawater sea sand concrete environment. Journal of Materials Research and Techology. 2022 Sep; 20:1079-1092.
  • 21. Kabiri, A., Liaghat, G., Alavi, F. Biomechanical evaluation of glass fiber/polypropylene composite bone fracture fixation plates: Experimental and numerical analysis. Computers in Biology and Medicine. 2021 May; 132:104303.
  • 22. Şahin S. Sürekli Cam Elyaf Takviyeli Polipropilen Levhaların Şekillendirilmesi Ve Karakterizasyonu [MSc Thesis]. [İstanbul]: Marmara University; 2015.
  • 23. Baydar DG, Bekem A, Doğu M, Gemici Z, Ünal A. Sürekli Cam Fiber Takviyeli Polipropilen Kompozitlerin Üretimi Ve Karakterizasyonu. Sigma Journal of Engineering and Natural Sciences. 2011 Dec; 30:120-132.
  • 24. Naqvia SR, Prabhakaraa HM, Bramera EA, Dierkesa W, Akkerman R, Brema G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, Conservation & Recycling. 2018 Apr; 136:118–129.
  • 25. Medar MM. Geri Dönüştürülmüş Cam Elyaf Katkılı ve Katkısız Polipropilen-Polietilen Malzemelerin Mekanik ve Kimyasal Özelliklerinin İncelenmesi [MSc Thesis]. [Kocaeli]: Gebze Technical University; 2013.
  • 26. Bajracharya RM, Manalo AC, Karunasena W, Lau K. An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites. Materials and Design. 2014 Oct; 62:98-112.
  • 27. Şentürk O. Kısa Cam Elyaf Ve Kalsit Dolgulu Polipropilen Hibrit Kompozitlerin Fiziksel Ve Mekanik Özelliklerinin İncelenmesi [MSc Thesis]. [Istanbul]: Istanbul Technical University; 2014.
  • 28. Lila MK, Singhal A, Banwait SS, Singh I. A recyclability study of bagasse fiber reinforced polypropylene composites. Polymer Degradation and Stability. 2018 June; 152:272-79.
  • 29. Feih S, Mouritz AP, Case SW. Determining the mechanism controlling glass fibre strength loss during thermal recycling of waste composites. Composites Part A: Applied Science and Manufacturing. 2015 Sep; 76:255-61.
  • 30. Cousins DS, Suzuki Y, Murray RE, Samaniuk JR. Recycling glass fiber thermoplastic composites from wind turbine blades. Journal of Cleaner Production. 2019 Feb; 209:1252-63.
  • 31. Vaidya UK, Chawla KK. Processing of fibre reinforced thermoplastic composites. International Materials Reviews. 2013 Jul; 185-218.
  • 32. Chen, T., Mansfield, C.D., Ju, L., Baird, D.G. The influence of mechanical recycling on the properties of thermotropic liquid crystalline polymer and long glass fiber reinforced polypropylene. Composite Part B. 2020 Nov; 200: 108316.
  • 33. Lee SY, Kang IA, Doh GH, Kim WJ, Kim JS, Yoon HG, Wu QH. Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nano composites. Express Polymer Letters. 2008 Mar; 2(2):894–9.
  • 34. Al-Maadeed MA, Shabana YM, Khanam PN. Processing, characterization and modeling of recycled polypropylene/glass fibre/wood flour composites. Materials and Design. 2014 June; 58:374–380.
  • 35. Choi, E.Y., Kim, C.K., Park, C.B. Fabrication of MA-EPDM grafted MWCNTs by reactive extrusion for enhanced interfacial adhesion and mechanical properties of PP/ MA-EPDM composite. Composites Part B. 2022 Aug; 242:110043.
  • 36. Pourali, M., Peterson, A.M. The effects of toolpath and glass fiber reinforcement on bond strength and dimensional accuracy in material extrusion of a hot melt adhesive. Additive Manufacturing. 202258 Oct; 58:103056.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Ezgi Sözen 0000-0002-7526-9800

Aref Cevahir 0000-0002-9574-4971

Sennur Deniz 0000-0002-6314-1105

Yayımlanma Tarihi 28 Şubat 2023
Gönderilme Tarihi 21 Eylül 2022
Kabul Tarihi 11 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

Vancouver Sözen E, Cevahir A, Deniz S. Study on Recycling of Waste Glass Fiber Reinforced Polypropylene Composites: Examination of Mechanical and Thermal Properties. JOTCSA. 2023;10(1):63-76.