Derleme
BibTex RIS Kaynak Göster

Applications of New Generation Solvents for Extraction of Herbal Products Prior to Atomic and Molecular Analysis

Yıl 2023, Cilt: 10 Sayı: 1, 117 - 128, 28.02.2023
https://doi.org/10.18596/jotcsa.1178753

Öz

In this review, an up to date and current knowledge of some of the green solvents, which includes supercritical fluids extraction (SFE), switchable polarity solvents (SPS), and natural deep eutectic solvents (NADES) are discussed with more emphasis on the extraction of active components of herbal products. Different scientific articles and books have been researched and reviewed to explain the applications of new generation solvents for extraction of herbal products prior to atomic and molecular analysis from the past until now. Currently, the most of techniques used in processing herbal products involve the use of extraction methods. Therefore, trends in extraction methods focuses mainly on finding reasonable solutions that minimizes the use of toxic solvents and allows the usage of renewable and green solvents from natural products, which ensure high quality and safe extracts. In future, SFE is definitely going to be on the industrial scale due to its numerous applications in the large scale especially for herbal, food, cosmetics and pharmaceutical products etc.

Teşekkür

The authors will like to thank and acknowledge their appreciations and gratitude to the relevant cited references of this review, which discussed the applications of solvents of the future for herbal products extractions.

Kaynakça

  • 1. F. Vanhaecke, A new scope for JAAS, J. Anal. At. Spectrom. 30 (2015) 1015-1016. https://doi.org/10.1039/C5JA90018B.
  • 2. A. Walsh, The development of atomic absorption methods of elemental analysis 1952-1962, Anal. Chem. 63 (1991) 933A-941A. https://doi.org/10.1021/ac00019a002
  • 3. D. W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community, Appl. Spectrosc. 64 (2010) 335A-366A. https://www.osapublishing.org/as/abstract.cfm?uri=as-64-12-335A.
  • 4. R. Glaus, J. Riedel, I. Gornushkin, Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples, Anal. Chem. 87(2015) 10131-10137. https://doi.org/10.1021/acs.analchem.5b02926.
  • 5. T. L. Chen, H. Kim, S. Y. Pan, P. C. Tseng, Y. P. Lin, P. C. Chiang, Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives, Sci. Total Environ. 716 (2020) 136998. https://doi.org/10.1016/j.scitotenv.2020.136998.
  • 6. M. Cvjetko Bubalo, S. Vidović, I. Radojčić Redovniković, S. Jokić, New perspective in extraction of plant biologically active compounds by green solvents, Food Bioprod. Process. 109 (2018) 52-73. https://doi.org/10.1016/j.fbp.2018.03.001.
  • 7. T. Mumladze, S. Yousef, M. Tatariants, R. Kriukiene, V. Makarevicius, S.I. Lukošiute, Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents, Green Chem. 20 (2018) 3604-3618. https://doi.org/10.1039/c8gc01062e.
  • 8. G. Cravotto, L. Boffa, S. Mantegna, P. Perego, M. Avogadro, P. Cintas, Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves, Ultrason. Sonochem. 15 (2008) 898-902. https://doi.org/10.1016/j.ultsonch.2007.10.009.
  • 9. F. Chemat, M.A. Vian, G. Cravotto, Green extraction of natural products: Concept and principles, Int. J. Mol. Sci. 13 (2012) 8615-8627. https://doi.org/10.3390/ijms13078615.
  • 10. A. Bernhoft, H. Siem, E. Bjertness, M. Meltzer, T. Flaten, E. Holmsen, Bioactive compounds in plants. Benefits and risks for man and animals, The Norwegian Academy of Science and Letters, ISBN 978-82-7099-583-7. Printed in Norway 2010 by AIT Otta AS Oslo.
  • 11. P. Anastas, N. Eghbali, Green chemistry: Principles and practice, Chem. Soc. Rev. 39 (2010) 301-312. https://doi.org/10.1039/b918763b
  • 12. S. Sadravi, F. Honarasa, Spectrophotometric nanomolar determination of glucose by using C-dots/ Fe 3O 4 magnetic nanozyme, J. Chem. Sci. Springer India. 131 (2019) 1-7. https://doi.org/10.1007/s12039-019-1629-2.
  • 13. Y. Gu, F. Jérôme, Glycerol as a sustainable solvent for green chemistry, Green Chem. 12 (2010) 1127-1138. https://doi.org/10.1039/C001628D.
  • 14. H.M. Ammani, A.G. Usman, Synthesis and charcterization of 2-benzoxazolone and its derivatives, Asian J. Appl. Sci. 7 (2018) 24-33.
  • 15. X. Li, H. Lu, D. Liu, B. Wang, Preparation of composite switchable water with hydrophobic tertiary amine for washing oil sands, J. CO2 Util. 29 (2019) 254-261. https://doi.org/10.1016/j.jcou.2018.12.012.
  • 16. J.S. Aher, A. V. Kardel, M.R. Gaware, D.D. Lokhande, A.M. Bhagare, One pot synthesis of pyrimidine-5-carbonitrile and pyrimidine-5-carboxamide using ammonium chloride under solvent free condition, J. Chem. Sci. 131 (2019). https://doi.org/10.1007/s12039-019-1633-6.
  • 17. P. T. Anastas, J. C. Warner, Green chemistry, Frontiers 640 (1998). http://ccc.chem.pitt.edu/wipf/Frontiers/Zhiyong.pdf.
  • 18. G.K. Verma, K. Raghuvanshi, R. Kumar, M.S. Singh, An efficient one-pot three-component synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water, Tetrahedron Lett. 53 (2012) 399-402. https://doi.org/10.1016/j.tetlet.2011.11.047.
  • 19. K. Torokhtii, N. Pompeo, E. Silva, Surface impedance measurements in thin conducting films: Substrate and finite-thickness-induced uncertainties, 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 22-25 May 2017. https://doi.org/10.1109/I2MTC.2017.7969902.
  • 20. X. Wang, M. Gao, Z. Zhang, H. Gu, T. Liu,, N. Yu, Development of CO 2 -Mediated Switchable Hydrophilicity Solvent-Based Microextraction Combined with HPLC-UV for the Determination of Bisphenols in Foods and Drinks, Food Anal. Methods 11 (2018) 2093-2104. https://doi.org/10.1007/s12161-018-1187-0.
  • 21. X. Yuan, B. E. Richter, K. Jiang, K. J. Boniface, A. Cormier, C. A. Sanders, Carbonated water for the separation of carboxylic compounds: a chromatography approach, Green Chem. 20 (2018) 440-448. https://doi.org/10.1039/C7GC02812A.
  • 22. B.B. Asare Bediako, P. Zhou, B. Rugabirwa, Q. Liu, Y. Su, H. A. Wang, Switchable hydrophilicity solvent mediated process to prepare fine silica aerogel powder as an excellent flatting agent, Adv. Powder Technol. 30 (2019) 565-571. https://doi.org/10.1016/j.apt.2018.12.009.
  • 23. E. Yilmaz, M. Soylak, Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples, Talanta 160 (2016) 680-685. https://doi.org/10.1016/j.talanta.2016.08.001.
  • 24. G. S. Kanberoglu, E. Yilmaz, M. Soylak, Application of deep eutectic solvent in ultrasound-assisted emulsification microextraction of quercetin from some fruits and vegetables, J. Mol. Liq. 279 (2019) 571-577. https://doi.org/10.1016/j.molliq.2019.01.130.
  • 25. F. Diederich, Y. Rubin, International Edition in English Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes, Networks 31 (1992) 1101-23. https://doi.org/10.1002/anie.199211013.
  • 26. C. Leder, T. Rastogi, K. Kümmerer, Putting benign by design into practice-novel concepts for green and sustainable pharmacy: Designing green drug derivatives by non-targeted synthesis and screening for biodegradability, Sustain. Chem. Pharm. 2 (2015) 31-36. https://doi.org/10.1016/j.scp.2015.07.001.
  • 27. M. Tuerhong, X.U. Yang, Y.I.N. Xue-bo, Review on Carbon Dots and Their Applications, Chinese J. Anal. Chem. 45 (2017) 139-150. https://doi.org/10.1016/S1872-2040(16)60990-8.
  • 28. J.M. Rooney, Carbocationic Polymerization: N-Vinylcarbazole. Comprehensive Polymer Science and Supplements (1989) 697-704. https://doi.org/10.1016/B978-0-08-096701-1.00105-1.
  • 29. T.R. Madhura, G.G. Kumar, R. Ramaraj, Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application, J. Chem. Sci. 131 (2019) 1-11. https://doi.org/10.1007/s12039-019-1611-z.
  • 30. N. Zou, X. Wei, Z. Zong, X. Li, Z. Wang, X. Wang, A novel enzymatic biosensor for detection of intracellular hydrogen peroxide based on 1-aminopyrene and reduced graphene oxides, J. Chem. Sci. 131 (2019) 1-8. https://doi.org/10.1007/s12039-019-1604-y. 31. L. Fang, Y. Leng, P. Gao, Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications, Biomaterials 26 (2005) 3471-3478. https://doi.org/10.1016/j.biomaterials.2004.09.022.
  • 32. M.E. Lucchesi, F. Chemat, J. Smadja, An original solvent free microwave extraction of essential oils from spices, Flavour Fragr. J. 19 (2004) 134-138. https://doi.org/10.1002/ffj.1274.
  • 33. M. E. Lucchesi, F. Chemat, J. Smadja, Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation, J. Chromatogr. A 1043 (2004) 323-327. https://doi.org/10.1016/j.chroma.2004.05.083.
  • 34. O.O. Okoh, A.P. Sadimenko, A.J. Afolayan, Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods, Food Chem. 120 (2010) 308-312. https://doi.org/10.1016/j.foodchem.2009.09.084.
  • 35. L. Xu, Recent advances on supercritical fluid extraction of essential oils, Afr. J. Pharmacy Pharmacol. 5 (2014) 1196-1211. https://doi.org/10.5897/ajpp11.228.
  • 36. S. Alhamimi, Extraction and chromatography of bioactive compounds in complex samples using supercritical CO2 technology (Doctoral dissertation, Lund University) (2018). https://lup.lub.lu.se/search/publication/9f2f4ca2-e59c-4bf0-b37a-10cee9eddc07.
  • 37. F.M. Gumerov, V.F. Khairutdinov, T.R. Akhmetzyanov, F.R. Gabitov, Z.I. Zaripov, M.I. Farakhov, Supercritical Fluid Propane-Butane Extraction Treatment of Oil Sludge, Russ. J. Phys. Chem. B 11 (2017) 1103-1108. https://doi.org/10.1134/s1990793117070090.
  • 38. K. Mothibedi, J. Mokgadi, N. Torto, Determination of Flavonoids in Ginkgo Biloba Using Bond Elut Plexa Solid Phase Extraction Sorbent for Cleanup and HPLC-DAD Analysis, Agilent Technologies (2011) 1-5. https://www.agilent.com/cs/library/applications/5990-9547EN.pdf.
  • 39. H. El-Adawi, A.A. El-Wahab, Y. Abdel-Fattah, Application of numerical modeling for optimization of selective hot water extraction of taxifolin from “milk thistle” seeds, Afr. J. Biotechnol. 10 (2011) 9804-9811. https://doi.org/10.5897/AJB10.1352.
  • 40. S.M. Pourmortazavi, S.S. Hajimirsadeghi, Supercritical fluid extraction in plant essential and volatile oil analysis, J. Chromatogr. A 1163 , (2007) 2-24. https://doi.org/10.1016/j.chroma.2007.06.021.
  • 41. M. Cvjetko Bubalo, N. Ćurko, M. Tomašević, K. Kovačević Ganić, I. Radojcic Redovnikovic, Green extraction of grape skin phenolics by using deep eutectic solvents, Food Chem. 200 (2016) 159-166. https://doi.org/10.1016/j.foodchem.2016.01.040.
  • 42. S. Jokić, M. Bijuk, K. Aladić, M. Bilić, M. Molnar, Optimisation of supercritical CO2 extraction of grape seed oil using response surface methodology, Int. J. Food Sci. Technol. 51 (2016) 403-410. https://doi.org/10.1111/ijfs.12986.
  • 43. E. Yilmaz, M. Soylak, Switchable solvent-based liquid phase microextraction of copper(ii): optimization and application to environmental samples, J. Anal. At. Spectrom. 30 (2015) 1629-1635. https://doi.org/10.1039/c5ja00012b.
  • 44. J.R. Vanderveen, S. Burra, J. Geng, A. Goyon, A. Jardine, H.E. Shin, Characterizing the Effects of a “Switchable Water” Additive on the Aqueous Solubility of Small Molecules, Chemphyschem 19 (2018) 2093-2100. https://doi.org/10.1002/cphc.201701303.
  • 45. S. Wang, C. Zheng, J. Zhao, X. Li, H. Lu, Extracting and recovering diesel from oil-based drill cuttings using switchable hydrophilic solvents, Chem. Eng. Res. Des . 128 (2017) 27-36. https://doi.org/10.1016/j.cherd.2017.09.036.
  • 46. M. Soylak, M. Khan, E. Yilmaz, Switchable solvent based liquid phase microextraction of uranium in environmental samples: A green approach, Anal. Methods 8 (2016) 979-986. https://doi.org/10.1039/c5ay02631h.
  • 47. F. Zare, M. Ghaedi, R. Jannesar, L. Tayebi, Switchable polarity solvents for preconcentration and simultaneous determination of amino acids in human plasma samples, New J. Chem. 42 (2018) 10007-10015. https://doi.org/10.1039/c7nj04576j. 48. B. Grabner, Master's Thesis. Switchable Solvents and Room-Temperature Solid Phase Ionic Liquids in Biocatalysis. Department of Chemical and Pharmaceutical Engineering, Institute of Process and Particle Engineering, Graz University of Technology, (2015). Graz. https://diglib.tugraz.at/download.php?id=576a71ee38885&location=browse.
  • 49. H. Ahmar, M. Nejati-Yazdinejad, M. Najafi, K.S. Hasheminasab, Switchable Hydrophilicity Solvent-Based Homogenous Liquid–Liquid Microextraction (SHS-HLLME) Combined with GC-FID for the Quantification of Methadone and Tramadol, Chromatographia 81 (2018) 1063-1070. https://doi.org/10.1007/s10337-018-3528-y.
  • 50. M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis, Desalination 312 (2013) 124-129. https://doi.org/10.1016/j.desal.2012.07.034.
  • 51. K.K. Reimund, B.J. Coscia, J.T. Arena, A.D. Wilson, J.R. McCutcheon, Characterization and membrane stability study for the switchable polarity solvent N,N-dimethylcyclohexylamine as a draw solute in forward osmosis, J. Membr. Sci. 501 (2016) 93-99. https://doi.org/10.1016/j.memsci.2015.10.039.
  • 52. S. Hardy, I.M. De Wispelaere, W. Leitner, M.A. Liauw, Comprehensive monitoring of a biphasic switchable solvent synthesis, Analyst 138 (2013) 819-824. https://doi.org/10.1039/c2an36044f.
  • 53. J.R. Vanderveen, J. Geng, S. Zhang, P.G. Jessop, Diamines as switchable-hydrophilicity solvents with improved phase behaviour, RSC Adv. 8 (2018) 27318-27325. https://doi.org/10.1039/c8ra05751f.
  • 54. P.G. Jessop, Fundamental properties and practical applications of ionic liquids: Concluding remarks, Faraday Discuss. 206 (2018) 587-601. https://doi.org/10.1039/c7fd90090b.
  • 55. M. Ezoddin, K. Abdi, N. Lamei, Development of air assisted liquid phase microextraction based on switchable-hydrophilicity solvent for the determination of palladium in environmental samples, Talanta 153 (2016) 247-252. https://doi.org/10.1016/j.talanta.2016.03.018.
  • 56. P.G. Jessop, L. Kozycz, Z.G. Rahami, D. Schoenmakers, A.R. Boyd, D. Wechsler, Tertiary amine solvents having switchable hydrophilicity, Green Chem. 13 (2011) 619-623. https://doi.org/10.1039/c0gc00806k.
  • 57. M.E. Donaldson, V.L. Mestre, D. Vinci, C.L. Liotta, C.A. Eckert, Switchable solvents for in-situ acid-catalyzed hydrolysis of #-pinene, Ind. Eng. Chem. Res. 48 (2009) 2542-2547. https://doi.org/10.1021/ie801149z.
  • 58. P.G. Jessop, L. Phan, A. Carrier, S. Robinson, C.J. Dürr, J.R. Harjani, A solvent having switchable hydrophilicity, Green Chem. 12 (2010) 809-814. https://doi.org/10.1039/b926885e.
  • 59. J. Durelle, Master's Thesis. Designing Switchable-Hydrophilicity Solvents and Modelling their Behaviour. Department of Chemistry, Queen’s University, Canada (2014).. https://central.bac-lac.gc.ca/.item?id=TC-OKQ12528&op=pdf&app=Library&oclc_number= 1033176130.
  • 60. D. Fu, S. Farag, J. Chaouki, P.G. Jessop, Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent, Bioresour. Technol. 154 (2014) 101-108. https://doi.org/10.1016/j.biortech.2013.11.091.
  • 61. S.K. Shahvandi, M.H. Banitaba, H. Ahmar, Development of a new pH assisted homogeneous liquid-liquid microextraction by a solvent with switchable hydrophilicity: Application for GC-MS determination of methamphetamine, Talanta 184 (2018) 103-108. https://doi.org/10.1016/j.talanta.2018.02.115.
  • 62. Z.M. Memon, E. Yilmaz, M. Soylak, Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination, J. Mol. Liq. 229 (2017) 459-464. https://doi.org/10.1016/j.molliq.2016.12.098.
  • 63. I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, Virtual computational chemistry laboratory - Design and description, J. Comput. Aided Mol. Des. 19 (2005) 453-463. https://doi.org/10.1007/s10822-005-8694-y.
  • 64. O.F. Sendur, Y. Turan, S. Bal, A. Gurgan, Toxic neuropathy due to N-hexane: Report of three cases, Inhal. Toxicol. 21 (2009) 210-214. https://doi.org/10.1080/08958370802311169.
  • 65. G. Lasarte-Aragonés, Lucena, R., Cárdenas, S. ve Valcárcel, M. (2015). Use of switchable solvents in the microextraction context. Talanta, 131, 645-649. https://doi.org/10.1016/j.talanta.2014.08.031.
  • 66. Phan, L., Andreatta, J.R., Horvey, L.K., Edie, C.F., Luco, A.L., Mirchandani, A. (2008). Switchable-polarity solvents prepared with a single liquid component. Journal of Organic Chemistry, 73, 127-132. https://doi.org/10.1021/jo7017697.
  • 67. Soylak, M., Unsal, Y.E. (2011). Solid-phase extraction of heavy metal ions on bucky tubes disc in natural water and herbal plant samples. Environmental Monitoring and Assessment, 181, 577-586. https://doi.org/10.1007/s10661-010-1852-2.
  • 68. Campbell, K. N., Sommers, A. H., Campbell, B. K. (1944). The Preparation of Unsymmetrical Secondary Aliphatic Amines 1. Journal of the American Chemical Society, 66, 82-84. https://pubs.acs.org/doi/pdf/10.1021/ja01229a023.
  • 69. Soylak, M., Şahin, U., Elçi, L. (1996). Spectrophotometric determination of molybdenum in steel samples utilizing selective sorbent extraction on Amberlite XAD-8 resin. Analytica Chimica Acta, 322, 111-115. https://doi.org/10.1016/0003-2670(95)00603-6.
  • 70. Vanderveen, J.R., Durelle, J., Jessop, P.G. (2014). Design and evaluation of switchable-hydrophilicity solvents. Green Chemistry, 16, 1187-1197. https://doi.org/10.1039/c3gc42164c.
  • 71. Hardy, S., Liauw, M.A. (2013). Mixing behaviour investigation of a switchable solvent synthesis using ATR-IR spectroscopy. Chemical Engineering Journal, 233, 292-296. https://doi.org/10.1016/j.cej.2013.08.031.
  • 72. Memon, Z. M., Yilmaz, E., Soylak, M. (2017). Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination. Journal of Molecular Liquids, 229, 459-464. https://doi.org/10.1016/j.molliq.2016.12.098.
  • 73. Caruso, R. V., O’Connor, R.J., Stephens, W.E., Cummings, K.M., Fong, G.T. (2013). Toxic metal concentrations in cigarettes obtained from U.S. smokers in 2009: Results from the International Tobacco Control (ITC) United States survey cohort. International Journal of Environmental Research and Public Health, 11, 202-217. https://doi.org/10.3390/ijerph110100202. 74. Oliveira, P.R., Lamy-Mendes, A.C., Rezende, E.I.P., Mangrich, A.S., Marcolino Junior, L.H., Bergamini, M.F. (2015). Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chemistry, 171, 426-431. https://doi.org/10.1016/j.foodchem.2014.09.023.
  • 75. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V. (2003). Novel Solvent Properties of Choline Chloride /Urea Mixtures_Supplementaryinfo. Chemical Communication, 1, 70-71. https://pubs.rsc.org/en/content/articlehtml/2003/cc/b210714g.
  • 76. Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., Tambyrajah, V. (2001). Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications, 1, 2010-2011. https://doi.org/10.1039/b106357j. 77. Sitze, M. S., Schreiter, E. R., Patterson, E. V., Freeman, R. G. (2001). Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations. Inorganic chemistry, 40, 2298-2304. https://doi.org/10.1021/ic001042r.
  • 78. Miao, X., Liu, T., Zhang, C., Geng, X., Meng, Y., Li, X. (2016). Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms. Physical Chemistry Chemical Physics, 18, 4295-4299. https://doi.org/10.1039/C5CP07134H.
  • 79. Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41, 7108-7146. https://doi.org/10.1039/c2cs35178a.
  • 80. Choi, Y.H., Van, S. J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E. (2011). Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology. Plant Physiology, 156, 1701-1705. https://doi.org/10.1104/pp.111.178426.
  • 81. Faggian, M., Sut, S., Perissutti, B., Baldan, V., Grabnar, I., Dall’Acqua, S. (2016). Natural Deep Eutectic Solvents (NADES) as a tool for bioavailability improvement: Pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: Possible application in nutraceuticals. Molecules, 21, 1-11. https://doi.org/10.3390/molecules21111531.
  • 82. Zainal-Abidin, M.H., Hayyan, M., Hayyan, A., Jayakumar, N.S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979, 1-23. https://doi.org/10.1016/j.aca.2017.05.012.
  • 83. Mbous, Y.P., Hayyan, M., Hayyan, A., Wong, W.F., Hashim, M.A., Looi, C.Y. (2017). Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnology Advances, 35, 105-134. https://doi.org/10.1016/j.biotechadv.2016.11.006.
  • 84. Radošević, K., Ćurko, N., Gaurina Srček, V., Cvjetko Bubalo, M., Tomašević, M., Kovačević Ganić, K. (2016). Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT - Food Science and Technology, 73, 45-51. https://doi.org/10.1016/j.lwt.2016.05.037.
  • 85. Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61-68. https://doi.org/10.1016/j.aca.2012.12.019.
  • 86. Wang, M., Wang, J., Zhang, Y., Xia, Q., Bi, W., Yang, X. (2016). Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. Journal of Chromatography A, 1443, 262-266. https://doi.org/10.1016/j.chroma.2016.03.061.
  • 87. Dai, Y., Verpoorte, R., Choi, Y.H. (2014). Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chemistry, 159, 116-121. https://doi.org/10.1016/j.foodchem.2014.02.155.
  • 88. Dai, Y., Rozema, E., Verpoorte, R., Choi, Y.H. (2016). Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A, 1434, 50-56. https://doi.org/10.1016/j.chroma.2016.01.037.
  • 89. Castañeda-Ovando, A., Pacheco-Hernández, M. de L., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113, 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001.
  • 90. Wei, Z.F., Wang, X.Q., Peng, X., Wang, W., Zhao, C.J., Zu, Y.G. (2015). Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Industrial Crops and Products, 63, 175-181. https://doi.org/10.1016/j.indcrop.2014.10.013.
  • 91. Biswal, M.R., Rai, S., Prakash, M.K. (2019). Molecular dynamics based antimicrobial activity descriptors for synthetic cationic peptides. Journal of Chemical Sciences, 131, 16. https://doi.org/10.1007/s12039-019-1590-0.
  • 92. Qi, X.L., Peng, X., Huang, Y.Y., Li, L., Wei, Z.F., Zu, Y.G. (2015). Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Industrial Crops and Products, 70, 142-148. https://doi.org/10.1016/j.indcrop.2015.03.026.
  • 93. Bi, W., Tian, M., Row, K.H. (2013). Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. Journal of Chromatography A, 1285, 22-30. https://doi.org/10.1016/j.chroma.2013.02.041.
  • 94. Huang, Y., Feng, F., Jiang, J., Qiao, Y., Wu, T., Voglmeir, J. (2017). Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chemistry, 221, 1400-1405. https://doi.org/10.1016/j.foodchem.2016.11.013.
  • 95. Bajkacz, S., Adamek, J. (2017). Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta, 168, 329-335. https://doi.org/10.1016/j.talanta.2017.02.065.
  • 96. Cunha, S.C., Fernandes, J.O. (2018). Extraction techniques with deep eutectic solvents. TrAC - Trends in Analytical Chemistry, 105, 225-239. https://doi.org/10.1016/j.trac.2018.05.001.
  • 97. Wei, Z., Qi, X., Li, T., Luo, M., Wang, W., Zu, Y. (2015). Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Separation and Purification Technology, 149, 237-244. https://doi.org/10.1016/j.seppur.2015.05.015.
  • 98. Bajkacz, S., Adamek, J. (2018). Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Analytical Methods, 11, 1330-1344. https://doi.org/10.1007/s12161-017-1118-5.
  • 99. Fernández, M. de los Á., Boiteux, J., Espino, M., Gomez, F.J.V., Silva, M.F. (2018). Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Analytica Chimica Acta, 1038, 1-10. https://doi.org/10.1016/j.aca.2018.07.059.
  • 100. Shishov, A., Bulatov, A., Locatelli, M., Carradori, S., Andruch, V. (2017). Application of deep eutectic solvents in analytical chemistry. A review. Microchemical Journal, 135, 33-38. https://doi.org/10.1016/j.microc.2017.07.015.
  • 101. Mehariya, S., Fratini, F., Lavecchia, R., Zuorro, A. (2021). Green extraction of value-added compounds form microalgae: A short review on Natural Deep Eutectic Solvent (NaDES) and related pre-treatments. Journal of Environmental Chemical Engineering, 105989. https://doi.org/10.1016/j.jece.2021.105989.
  • 102. Popovic, B. M., Micic, N., Potkonjak, A., Blagojevic, B., Pavlovic, K., Milanov, D., Juric, T. (2022). Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents–Ultrafast microwave-assisted NADES preparation and extraction. Food Chemistry, 366, 130562. https://doi.org/10.1016/j.foodchem.2021.130562.
  • 103. Hikmawanti, N. P. E., Ramadon, D., Jantan, I., Mun’im, A. (2021). Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants, 10(10), 2091. https://doi.org/10.3390/plants10102091.
  • 104. Nystedt, H. L., Grønlien, K. G., Tønnesen, H. H. (2021). Interactions of natural deep eutectic solvents (NADES) with artificial and natural membranes. Journal of Molecular Liquids, 328, 115452. https://doi.org/10.1016/j.molliq.2021.115452.
  • 105. Canales, R., Espino, M., Pasini, S., Silva, M. F. (2021). Chemometric and green metric strategies for sustainable analytical methods: phenolic compounds in lettuce-NADES extracts. Analytical Methods, 13(10), 1261-1268. https://doi.org/10.1039/D0AY02318C.
Yıl 2023, Cilt: 10 Sayı: 1, 117 - 128, 28.02.2023
https://doi.org/10.18596/jotcsa.1178753

Öz

Kaynakça

  • 1. F. Vanhaecke, A new scope for JAAS, J. Anal. At. Spectrom. 30 (2015) 1015-1016. https://doi.org/10.1039/C5JA90018B.
  • 2. A. Walsh, The development of atomic absorption methods of elemental analysis 1952-1962, Anal. Chem. 63 (1991) 933A-941A. https://doi.org/10.1021/ac00019a002
  • 3. D. W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community, Appl. Spectrosc. 64 (2010) 335A-366A. https://www.osapublishing.org/as/abstract.cfm?uri=as-64-12-335A.
  • 4. R. Glaus, J. Riedel, I. Gornushkin, Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples, Anal. Chem. 87(2015) 10131-10137. https://doi.org/10.1021/acs.analchem.5b02926.
  • 5. T. L. Chen, H. Kim, S. Y. Pan, P. C. Tseng, Y. P. Lin, P. C. Chiang, Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives, Sci. Total Environ. 716 (2020) 136998. https://doi.org/10.1016/j.scitotenv.2020.136998.
  • 6. M. Cvjetko Bubalo, S. Vidović, I. Radojčić Redovniković, S. Jokić, New perspective in extraction of plant biologically active compounds by green solvents, Food Bioprod. Process. 109 (2018) 52-73. https://doi.org/10.1016/j.fbp.2018.03.001.
  • 7. T. Mumladze, S. Yousef, M. Tatariants, R. Kriukiene, V. Makarevicius, S.I. Lukošiute, Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents, Green Chem. 20 (2018) 3604-3618. https://doi.org/10.1039/c8gc01062e.
  • 8. G. Cravotto, L. Boffa, S. Mantegna, P. Perego, M. Avogadro, P. Cintas, Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves, Ultrason. Sonochem. 15 (2008) 898-902. https://doi.org/10.1016/j.ultsonch.2007.10.009.
  • 9. F. Chemat, M.A. Vian, G. Cravotto, Green extraction of natural products: Concept and principles, Int. J. Mol. Sci. 13 (2012) 8615-8627. https://doi.org/10.3390/ijms13078615.
  • 10. A. Bernhoft, H. Siem, E. Bjertness, M. Meltzer, T. Flaten, E. Holmsen, Bioactive compounds in plants. Benefits and risks for man and animals, The Norwegian Academy of Science and Letters, ISBN 978-82-7099-583-7. Printed in Norway 2010 by AIT Otta AS Oslo.
  • 11. P. Anastas, N. Eghbali, Green chemistry: Principles and practice, Chem. Soc. Rev. 39 (2010) 301-312. https://doi.org/10.1039/b918763b
  • 12. S. Sadravi, F. Honarasa, Spectrophotometric nanomolar determination of glucose by using C-dots/ Fe 3O 4 magnetic nanozyme, J. Chem. Sci. Springer India. 131 (2019) 1-7. https://doi.org/10.1007/s12039-019-1629-2.
  • 13. Y. Gu, F. Jérôme, Glycerol as a sustainable solvent for green chemistry, Green Chem. 12 (2010) 1127-1138. https://doi.org/10.1039/C001628D.
  • 14. H.M. Ammani, A.G. Usman, Synthesis and charcterization of 2-benzoxazolone and its derivatives, Asian J. Appl. Sci. 7 (2018) 24-33.
  • 15. X. Li, H. Lu, D. Liu, B. Wang, Preparation of composite switchable water with hydrophobic tertiary amine for washing oil sands, J. CO2 Util. 29 (2019) 254-261. https://doi.org/10.1016/j.jcou.2018.12.012.
  • 16. J.S. Aher, A. V. Kardel, M.R. Gaware, D.D. Lokhande, A.M. Bhagare, One pot synthesis of pyrimidine-5-carbonitrile and pyrimidine-5-carboxamide using ammonium chloride under solvent free condition, J. Chem. Sci. 131 (2019). https://doi.org/10.1007/s12039-019-1633-6.
  • 17. P. T. Anastas, J. C. Warner, Green chemistry, Frontiers 640 (1998). http://ccc.chem.pitt.edu/wipf/Frontiers/Zhiyong.pdf.
  • 18. G.K. Verma, K. Raghuvanshi, R. Kumar, M.S. Singh, An efficient one-pot three-component synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water, Tetrahedron Lett. 53 (2012) 399-402. https://doi.org/10.1016/j.tetlet.2011.11.047.
  • 19. K. Torokhtii, N. Pompeo, E. Silva, Surface impedance measurements in thin conducting films: Substrate and finite-thickness-induced uncertainties, 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 22-25 May 2017. https://doi.org/10.1109/I2MTC.2017.7969902.
  • 20. X. Wang, M. Gao, Z. Zhang, H. Gu, T. Liu,, N. Yu, Development of CO 2 -Mediated Switchable Hydrophilicity Solvent-Based Microextraction Combined with HPLC-UV for the Determination of Bisphenols in Foods and Drinks, Food Anal. Methods 11 (2018) 2093-2104. https://doi.org/10.1007/s12161-018-1187-0.
  • 21. X. Yuan, B. E. Richter, K. Jiang, K. J. Boniface, A. Cormier, C. A. Sanders, Carbonated water for the separation of carboxylic compounds: a chromatography approach, Green Chem. 20 (2018) 440-448. https://doi.org/10.1039/C7GC02812A.
  • 22. B.B. Asare Bediako, P. Zhou, B. Rugabirwa, Q. Liu, Y. Su, H. A. Wang, Switchable hydrophilicity solvent mediated process to prepare fine silica aerogel powder as an excellent flatting agent, Adv. Powder Technol. 30 (2019) 565-571. https://doi.org/10.1016/j.apt.2018.12.009.
  • 23. E. Yilmaz, M. Soylak, Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples, Talanta 160 (2016) 680-685. https://doi.org/10.1016/j.talanta.2016.08.001.
  • 24. G. S. Kanberoglu, E. Yilmaz, M. Soylak, Application of deep eutectic solvent in ultrasound-assisted emulsification microextraction of quercetin from some fruits and vegetables, J. Mol. Liq. 279 (2019) 571-577. https://doi.org/10.1016/j.molliq.2019.01.130.
  • 25. F. Diederich, Y. Rubin, International Edition in English Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes, Networks 31 (1992) 1101-23. https://doi.org/10.1002/anie.199211013.
  • 26. C. Leder, T. Rastogi, K. Kümmerer, Putting benign by design into practice-novel concepts for green and sustainable pharmacy: Designing green drug derivatives by non-targeted synthesis and screening for biodegradability, Sustain. Chem. Pharm. 2 (2015) 31-36. https://doi.org/10.1016/j.scp.2015.07.001.
  • 27. M. Tuerhong, X.U. Yang, Y.I.N. Xue-bo, Review on Carbon Dots and Their Applications, Chinese J. Anal. Chem. 45 (2017) 139-150. https://doi.org/10.1016/S1872-2040(16)60990-8.
  • 28. J.M. Rooney, Carbocationic Polymerization: N-Vinylcarbazole. Comprehensive Polymer Science and Supplements (1989) 697-704. https://doi.org/10.1016/B978-0-08-096701-1.00105-1.
  • 29. T.R. Madhura, G.G. Kumar, R. Ramaraj, Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application, J. Chem. Sci. 131 (2019) 1-11. https://doi.org/10.1007/s12039-019-1611-z.
  • 30. N. Zou, X. Wei, Z. Zong, X. Li, Z. Wang, X. Wang, A novel enzymatic biosensor for detection of intracellular hydrogen peroxide based on 1-aminopyrene and reduced graphene oxides, J. Chem. Sci. 131 (2019) 1-8. https://doi.org/10.1007/s12039-019-1604-y. 31. L. Fang, Y. Leng, P. Gao, Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications, Biomaterials 26 (2005) 3471-3478. https://doi.org/10.1016/j.biomaterials.2004.09.022.
  • 32. M.E. Lucchesi, F. Chemat, J. Smadja, An original solvent free microwave extraction of essential oils from spices, Flavour Fragr. J. 19 (2004) 134-138. https://doi.org/10.1002/ffj.1274.
  • 33. M. E. Lucchesi, F. Chemat, J. Smadja, Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation, J. Chromatogr. A 1043 (2004) 323-327. https://doi.org/10.1016/j.chroma.2004.05.083.
  • 34. O.O. Okoh, A.P. Sadimenko, A.J. Afolayan, Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods, Food Chem. 120 (2010) 308-312. https://doi.org/10.1016/j.foodchem.2009.09.084.
  • 35. L. Xu, Recent advances on supercritical fluid extraction of essential oils, Afr. J. Pharmacy Pharmacol. 5 (2014) 1196-1211. https://doi.org/10.5897/ajpp11.228.
  • 36. S. Alhamimi, Extraction and chromatography of bioactive compounds in complex samples using supercritical CO2 technology (Doctoral dissertation, Lund University) (2018). https://lup.lub.lu.se/search/publication/9f2f4ca2-e59c-4bf0-b37a-10cee9eddc07.
  • 37. F.M. Gumerov, V.F. Khairutdinov, T.R. Akhmetzyanov, F.R. Gabitov, Z.I. Zaripov, M.I. Farakhov, Supercritical Fluid Propane-Butane Extraction Treatment of Oil Sludge, Russ. J. Phys. Chem. B 11 (2017) 1103-1108. https://doi.org/10.1134/s1990793117070090.
  • 38. K. Mothibedi, J. Mokgadi, N. Torto, Determination of Flavonoids in Ginkgo Biloba Using Bond Elut Plexa Solid Phase Extraction Sorbent for Cleanup and HPLC-DAD Analysis, Agilent Technologies (2011) 1-5. https://www.agilent.com/cs/library/applications/5990-9547EN.pdf.
  • 39. H. El-Adawi, A.A. El-Wahab, Y. Abdel-Fattah, Application of numerical modeling for optimization of selective hot water extraction of taxifolin from “milk thistle” seeds, Afr. J. Biotechnol. 10 (2011) 9804-9811. https://doi.org/10.5897/AJB10.1352.
  • 40. S.M. Pourmortazavi, S.S. Hajimirsadeghi, Supercritical fluid extraction in plant essential and volatile oil analysis, J. Chromatogr. A 1163 , (2007) 2-24. https://doi.org/10.1016/j.chroma.2007.06.021.
  • 41. M. Cvjetko Bubalo, N. Ćurko, M. Tomašević, K. Kovačević Ganić, I. Radojcic Redovnikovic, Green extraction of grape skin phenolics by using deep eutectic solvents, Food Chem. 200 (2016) 159-166. https://doi.org/10.1016/j.foodchem.2016.01.040.
  • 42. S. Jokić, M. Bijuk, K. Aladić, M. Bilić, M. Molnar, Optimisation of supercritical CO2 extraction of grape seed oil using response surface methodology, Int. J. Food Sci. Technol. 51 (2016) 403-410. https://doi.org/10.1111/ijfs.12986.
  • 43. E. Yilmaz, M. Soylak, Switchable solvent-based liquid phase microextraction of copper(ii): optimization and application to environmental samples, J. Anal. At. Spectrom. 30 (2015) 1629-1635. https://doi.org/10.1039/c5ja00012b.
  • 44. J.R. Vanderveen, S. Burra, J. Geng, A. Goyon, A. Jardine, H.E. Shin, Characterizing the Effects of a “Switchable Water” Additive on the Aqueous Solubility of Small Molecules, Chemphyschem 19 (2018) 2093-2100. https://doi.org/10.1002/cphc.201701303.
  • 45. S. Wang, C. Zheng, J. Zhao, X. Li, H. Lu, Extracting and recovering diesel from oil-based drill cuttings using switchable hydrophilic solvents, Chem. Eng. Res. Des . 128 (2017) 27-36. https://doi.org/10.1016/j.cherd.2017.09.036.
  • 46. M. Soylak, M. Khan, E. Yilmaz, Switchable solvent based liquid phase microextraction of uranium in environmental samples: A green approach, Anal. Methods 8 (2016) 979-986. https://doi.org/10.1039/c5ay02631h.
  • 47. F. Zare, M. Ghaedi, R. Jannesar, L. Tayebi, Switchable polarity solvents for preconcentration and simultaneous determination of amino acids in human plasma samples, New J. Chem. 42 (2018) 10007-10015. https://doi.org/10.1039/c7nj04576j. 48. B. Grabner, Master's Thesis. Switchable Solvents and Room-Temperature Solid Phase Ionic Liquids in Biocatalysis. Department of Chemical and Pharmaceutical Engineering, Institute of Process and Particle Engineering, Graz University of Technology, (2015). Graz. https://diglib.tugraz.at/download.php?id=576a71ee38885&location=browse.
  • 49. H. Ahmar, M. Nejati-Yazdinejad, M. Najafi, K.S. Hasheminasab, Switchable Hydrophilicity Solvent-Based Homogenous Liquid–Liquid Microextraction (SHS-HLLME) Combined with GC-FID for the Quantification of Methadone and Tramadol, Chromatographia 81 (2018) 1063-1070. https://doi.org/10.1007/s10337-018-3528-y.
  • 50. M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis, Desalination 312 (2013) 124-129. https://doi.org/10.1016/j.desal.2012.07.034.
  • 51. K.K. Reimund, B.J. Coscia, J.T. Arena, A.D. Wilson, J.R. McCutcheon, Characterization and membrane stability study for the switchable polarity solvent N,N-dimethylcyclohexylamine as a draw solute in forward osmosis, J. Membr. Sci. 501 (2016) 93-99. https://doi.org/10.1016/j.memsci.2015.10.039.
  • 52. S. Hardy, I.M. De Wispelaere, W. Leitner, M.A. Liauw, Comprehensive monitoring of a biphasic switchable solvent synthesis, Analyst 138 (2013) 819-824. https://doi.org/10.1039/c2an36044f.
  • 53. J.R. Vanderveen, J. Geng, S. Zhang, P.G. Jessop, Diamines as switchable-hydrophilicity solvents with improved phase behaviour, RSC Adv. 8 (2018) 27318-27325. https://doi.org/10.1039/c8ra05751f.
  • 54. P.G. Jessop, Fundamental properties and practical applications of ionic liquids: Concluding remarks, Faraday Discuss. 206 (2018) 587-601. https://doi.org/10.1039/c7fd90090b.
  • 55. M. Ezoddin, K. Abdi, N. Lamei, Development of air assisted liquid phase microextraction based on switchable-hydrophilicity solvent for the determination of palladium in environmental samples, Talanta 153 (2016) 247-252. https://doi.org/10.1016/j.talanta.2016.03.018.
  • 56. P.G. Jessop, L. Kozycz, Z.G. Rahami, D. Schoenmakers, A.R. Boyd, D. Wechsler, Tertiary amine solvents having switchable hydrophilicity, Green Chem. 13 (2011) 619-623. https://doi.org/10.1039/c0gc00806k.
  • 57. M.E. Donaldson, V.L. Mestre, D. Vinci, C.L. Liotta, C.A. Eckert, Switchable solvents for in-situ acid-catalyzed hydrolysis of #-pinene, Ind. Eng. Chem. Res. 48 (2009) 2542-2547. https://doi.org/10.1021/ie801149z.
  • 58. P.G. Jessop, L. Phan, A. Carrier, S. Robinson, C.J. Dürr, J.R. Harjani, A solvent having switchable hydrophilicity, Green Chem. 12 (2010) 809-814. https://doi.org/10.1039/b926885e.
  • 59. J. Durelle, Master's Thesis. Designing Switchable-Hydrophilicity Solvents and Modelling their Behaviour. Department of Chemistry, Queen’s University, Canada (2014).. https://central.bac-lac.gc.ca/.item?id=TC-OKQ12528&op=pdf&app=Library&oclc_number= 1033176130.
  • 60. D. Fu, S. Farag, J. Chaouki, P.G. Jessop, Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent, Bioresour. Technol. 154 (2014) 101-108. https://doi.org/10.1016/j.biortech.2013.11.091.
  • 61. S.K. Shahvandi, M.H. Banitaba, H. Ahmar, Development of a new pH assisted homogeneous liquid-liquid microextraction by a solvent with switchable hydrophilicity: Application for GC-MS determination of methamphetamine, Talanta 184 (2018) 103-108. https://doi.org/10.1016/j.talanta.2018.02.115.
  • 62. Z.M. Memon, E. Yilmaz, M. Soylak, Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination, J. Mol. Liq. 229 (2017) 459-464. https://doi.org/10.1016/j.molliq.2016.12.098.
  • 63. I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, Virtual computational chemistry laboratory - Design and description, J. Comput. Aided Mol. Des. 19 (2005) 453-463. https://doi.org/10.1007/s10822-005-8694-y.
  • 64. O.F. Sendur, Y. Turan, S. Bal, A. Gurgan, Toxic neuropathy due to N-hexane: Report of three cases, Inhal. Toxicol. 21 (2009) 210-214. https://doi.org/10.1080/08958370802311169.
  • 65. G. Lasarte-Aragonés, Lucena, R., Cárdenas, S. ve Valcárcel, M. (2015). Use of switchable solvents in the microextraction context. Talanta, 131, 645-649. https://doi.org/10.1016/j.talanta.2014.08.031.
  • 66. Phan, L., Andreatta, J.R., Horvey, L.K., Edie, C.F., Luco, A.L., Mirchandani, A. (2008). Switchable-polarity solvents prepared with a single liquid component. Journal of Organic Chemistry, 73, 127-132. https://doi.org/10.1021/jo7017697.
  • 67. Soylak, M., Unsal, Y.E. (2011). Solid-phase extraction of heavy metal ions on bucky tubes disc in natural water and herbal plant samples. Environmental Monitoring and Assessment, 181, 577-586. https://doi.org/10.1007/s10661-010-1852-2.
  • 68. Campbell, K. N., Sommers, A. H., Campbell, B. K. (1944). The Preparation of Unsymmetrical Secondary Aliphatic Amines 1. Journal of the American Chemical Society, 66, 82-84. https://pubs.acs.org/doi/pdf/10.1021/ja01229a023.
  • 69. Soylak, M., Şahin, U., Elçi, L. (1996). Spectrophotometric determination of molybdenum in steel samples utilizing selective sorbent extraction on Amberlite XAD-8 resin. Analytica Chimica Acta, 322, 111-115. https://doi.org/10.1016/0003-2670(95)00603-6.
  • 70. Vanderveen, J.R., Durelle, J., Jessop, P.G. (2014). Design and evaluation of switchable-hydrophilicity solvents. Green Chemistry, 16, 1187-1197. https://doi.org/10.1039/c3gc42164c.
  • 71. Hardy, S., Liauw, M.A. (2013). Mixing behaviour investigation of a switchable solvent synthesis using ATR-IR spectroscopy. Chemical Engineering Journal, 233, 292-296. https://doi.org/10.1016/j.cej.2013.08.031.
  • 72. Memon, Z. M., Yilmaz, E., Soylak, M. (2017). Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination. Journal of Molecular Liquids, 229, 459-464. https://doi.org/10.1016/j.molliq.2016.12.098.
  • 73. Caruso, R. V., O’Connor, R.J., Stephens, W.E., Cummings, K.M., Fong, G.T. (2013). Toxic metal concentrations in cigarettes obtained from U.S. smokers in 2009: Results from the International Tobacco Control (ITC) United States survey cohort. International Journal of Environmental Research and Public Health, 11, 202-217. https://doi.org/10.3390/ijerph110100202. 74. Oliveira, P.R., Lamy-Mendes, A.C., Rezende, E.I.P., Mangrich, A.S., Marcolino Junior, L.H., Bergamini, M.F. (2015). Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chemistry, 171, 426-431. https://doi.org/10.1016/j.foodchem.2014.09.023.
  • 75. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V. (2003). Novel Solvent Properties of Choline Chloride /Urea Mixtures_Supplementaryinfo. Chemical Communication, 1, 70-71. https://pubs.rsc.org/en/content/articlehtml/2003/cc/b210714g.
  • 76. Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., Tambyrajah, V. (2001). Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications, 1, 2010-2011. https://doi.org/10.1039/b106357j. 77. Sitze, M. S., Schreiter, E. R., Patterson, E. V., Freeman, R. G. (2001). Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations. Inorganic chemistry, 40, 2298-2304. https://doi.org/10.1021/ic001042r.
  • 78. Miao, X., Liu, T., Zhang, C., Geng, X., Meng, Y., Li, X. (2016). Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms. Physical Chemistry Chemical Physics, 18, 4295-4299. https://doi.org/10.1039/C5CP07134H.
  • 79. Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41, 7108-7146. https://doi.org/10.1039/c2cs35178a.
  • 80. Choi, Y.H., Van, S. J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E. (2011). Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology. Plant Physiology, 156, 1701-1705. https://doi.org/10.1104/pp.111.178426.
  • 81. Faggian, M., Sut, S., Perissutti, B., Baldan, V., Grabnar, I., Dall’Acqua, S. (2016). Natural Deep Eutectic Solvents (NADES) as a tool for bioavailability improvement: Pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: Possible application in nutraceuticals. Molecules, 21, 1-11. https://doi.org/10.3390/molecules21111531.
  • 82. Zainal-Abidin, M.H., Hayyan, M., Hayyan, A., Jayakumar, N.S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979, 1-23. https://doi.org/10.1016/j.aca.2017.05.012.
  • 83. Mbous, Y.P., Hayyan, M., Hayyan, A., Wong, W.F., Hashim, M.A., Looi, C.Y. (2017). Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnology Advances, 35, 105-134. https://doi.org/10.1016/j.biotechadv.2016.11.006.
  • 84. Radošević, K., Ćurko, N., Gaurina Srček, V., Cvjetko Bubalo, M., Tomašević, M., Kovačević Ganić, K. (2016). Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT - Food Science and Technology, 73, 45-51. https://doi.org/10.1016/j.lwt.2016.05.037.
  • 85. Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61-68. https://doi.org/10.1016/j.aca.2012.12.019.
  • 86. Wang, M., Wang, J., Zhang, Y., Xia, Q., Bi, W., Yang, X. (2016). Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. Journal of Chromatography A, 1443, 262-266. https://doi.org/10.1016/j.chroma.2016.03.061.
  • 87. Dai, Y., Verpoorte, R., Choi, Y.H. (2014). Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chemistry, 159, 116-121. https://doi.org/10.1016/j.foodchem.2014.02.155.
  • 88. Dai, Y., Rozema, E., Verpoorte, R., Choi, Y.H. (2016). Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A, 1434, 50-56. https://doi.org/10.1016/j.chroma.2016.01.037.
  • 89. Castañeda-Ovando, A., Pacheco-Hernández, M. de L., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113, 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001.
  • 90. Wei, Z.F., Wang, X.Q., Peng, X., Wang, W., Zhao, C.J., Zu, Y.G. (2015). Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Industrial Crops and Products, 63, 175-181. https://doi.org/10.1016/j.indcrop.2014.10.013.
  • 91. Biswal, M.R., Rai, S., Prakash, M.K. (2019). Molecular dynamics based antimicrobial activity descriptors for synthetic cationic peptides. Journal of Chemical Sciences, 131, 16. https://doi.org/10.1007/s12039-019-1590-0.
  • 92. Qi, X.L., Peng, X., Huang, Y.Y., Li, L., Wei, Z.F., Zu, Y.G. (2015). Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Industrial Crops and Products, 70, 142-148. https://doi.org/10.1016/j.indcrop.2015.03.026.
  • 93. Bi, W., Tian, M., Row, K.H. (2013). Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. Journal of Chromatography A, 1285, 22-30. https://doi.org/10.1016/j.chroma.2013.02.041.
  • 94. Huang, Y., Feng, F., Jiang, J., Qiao, Y., Wu, T., Voglmeir, J. (2017). Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chemistry, 221, 1400-1405. https://doi.org/10.1016/j.foodchem.2016.11.013.
  • 95. Bajkacz, S., Adamek, J. (2017). Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta, 168, 329-335. https://doi.org/10.1016/j.talanta.2017.02.065.
  • 96. Cunha, S.C., Fernandes, J.O. (2018). Extraction techniques with deep eutectic solvents. TrAC - Trends in Analytical Chemistry, 105, 225-239. https://doi.org/10.1016/j.trac.2018.05.001.
  • 97. Wei, Z., Qi, X., Li, T., Luo, M., Wang, W., Zu, Y. (2015). Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Separation and Purification Technology, 149, 237-244. https://doi.org/10.1016/j.seppur.2015.05.015.
  • 98. Bajkacz, S., Adamek, J. (2018). Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Analytical Methods, 11, 1330-1344. https://doi.org/10.1007/s12161-017-1118-5.
  • 99. Fernández, M. de los Á., Boiteux, J., Espino, M., Gomez, F.J.V., Silva, M.F. (2018). Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Analytica Chimica Acta, 1038, 1-10. https://doi.org/10.1016/j.aca.2018.07.059.
  • 100. Shishov, A., Bulatov, A., Locatelli, M., Carradori, S., Andruch, V. (2017). Application of deep eutectic solvents in analytical chemistry. A review. Microchemical Journal, 135, 33-38. https://doi.org/10.1016/j.microc.2017.07.015.
  • 101. Mehariya, S., Fratini, F., Lavecchia, R., Zuorro, A. (2021). Green extraction of value-added compounds form microalgae: A short review on Natural Deep Eutectic Solvent (NaDES) and related pre-treatments. Journal of Environmental Chemical Engineering, 105989. https://doi.org/10.1016/j.jece.2021.105989.
  • 102. Popovic, B. M., Micic, N., Potkonjak, A., Blagojevic, B., Pavlovic, K., Milanov, D., Juric, T. (2022). Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents–Ultrafast microwave-assisted NADES preparation and extraction. Food Chemistry, 366, 130562. https://doi.org/10.1016/j.foodchem.2021.130562.
  • 103. Hikmawanti, N. P. E., Ramadon, D., Jantan, I., Mun’im, A. (2021). Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants, 10(10), 2091. https://doi.org/10.3390/plants10102091.
  • 104. Nystedt, H. L., Grønlien, K. G., Tønnesen, H. H. (2021). Interactions of natural deep eutectic solvents (NADES) with artificial and natural membranes. Journal of Molecular Liquids, 328, 115452. https://doi.org/10.1016/j.molliq.2021.115452.
  • 105. Canales, R., Espino, M., Pasini, S., Silva, M. F. (2021). Chemometric and green metric strategies for sustainable analytical methods: phenolic compounds in lettuce-NADES extracts. Analytical Methods, 13(10), 1261-1268. https://doi.org/10.1039/D0AY02318C.
Toplam 101 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm DERLEME MAKALELER
Yazarlar

Selin Işık 0000-0001-7601-3746

Abdullahi Usman 0000-0001-5660-4581

Yayımlanma Tarihi 28 Şubat 2023
Gönderilme Tarihi 22 Eylül 2022
Kabul Tarihi 19 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

Vancouver Işık S, Usman A. Applications of New Generation Solvents for Extraction of Herbal Products Prior to Atomic and Molecular Analysis. JOTCSA. 2023;10(1):117-28.