Araştırma Makalesi
BibTex RIS Kaynak Göster

Spectrophotometric and Smartphone-based Dual Monitoring Method for the Determination of Al(III) Ions Using Fermented Black Carrot Juice (Şalgam/Shalgam) as a Green Chromogenic Agent

Yıl 2023, Cilt: 10 Sayı: 1, 161 - 176, 28.02.2023
https://doi.org/10.18596/jotcsa.1201498

Öz

In this study, anthocyanin-rich fermented black carrot juice (şalgam/shalgam) was used as a chromogenic agent in order to develop eco-friendly, low-cost, simple, fast, and practical both visible spectrophotometric and smartphone-based methods for the determination of Al(III) ions in water samples. Formation of Al(III)-anthocyanin complex results in a color change from red to purple in direct proportion to the increasing Al(III) concentration. For the spectrophotometric analysis, the analytical response of the developed method between absorbance and logarithm of Al(III) concentration exhibits a satisfying wide linear concentration range from 37.0 to 1850.0 µM. The LOD and LOQ values are 6.67 µM and 22.0 µM, respectively. For smartphone-based analysis, the analytical response of the developed method between B values and Al(III) concentration obtained a linear concentration range from 18.5 to 111.0 µM. The LOD and LOQ values are 4.40 µM and 14.5 µM, respectively. LOD values are below the acceptable limit of Al(III) in water according to WHO (7.41 µM) for both methods. The interfering effect of common water ions was investigated, and the observed interferences from Sn2+, Fe2+, and Fe3+ were easily eliminated using enough concentration of Na2EDTA without affecting the blank absorbance/B value of the Al(III)−anthocyanin complex for two monitoring methods. The selectivity of the developed method was investigated in the presence of possible species such as benzoic acid, lactic acid, amino acids, and salt. Developed spectrophotometric and smartphone-based methods applied to real water samples and validated against the reference ICP-OES method at 95% confidence level using Student’s t- and F-tests.

Kaynakça

  • 1. Goswami S, Paul S, Manna A. Selective “naked eye” detection of Al (III) and PPi in aqueous media on a rhodamine–isatin hybrid moiety. RSC Adv. 2013;3(27):10639-10643.
  • 2. Imadi SR, Waseem S, Kazi AG, Azooz MM, Ahmad P. Aluminum toxicity in plants: an overview. Plant Metal Interaction. 2016;1-20.
  • 3. Maity D, Govindaraju T. Naphthaldehyde–Urea/Thiourea conjugates as turn‐on fluorescent probes for Al3+ based on restricted C=N isomerization. European Journal of Inorganic Chemistry. 2011;(36):5479-5485.
  • 4. Al-Kindy SM, Al-Hinai A, Al-Rasbi NK, Suliman FEO, Al-Lawati HJ. Spectrofluorimetric determination of aluminium in water samples using N-((2-hydroxynaphthalen-1-yl) methylene) acetylhydrazide. Journal of Taibah University for Science. 2015;9(4):601-609.
  • 5. Michael JK. Powder-Metallurgy Aluminum Alloys. Aluminum Alloys-Contemporary Research and Applications: Contemporary Research and Applications. 2012;1:323.
  • 6. Frankowski M, Zioła-Frankowska A, Siepak J. New method for speciation analysis of aluminium fluoride complexes by HPLC–FAAS hyphenated technique. Talanta. 2010;80(5): 2120-2126.
  • 7. Melnyk LJ, Morgan JN, Fernando R, Pellizzari ED, Akinbo O. Determination of metals in composite diet samples by inductively coupled plasma-mass spectrometry. Journal of AOAC International. 2003;86(2):439-448.
  • 8. Mahdavi M, Nezamzadeh-Ejhieh A. An aluminum selective electrode via modification of PVC membrane by modified clinoptilolite nanoparticles with hexadecyltrimethyl ammonium bromide (HDTMA-Br) surfactant containing Arsenazo III. Journal of colloid and interface science. 2017; 494:317-324.
  • 9. Zuziak J, Reczyński W, Baś B, Jakubowska M. Voltammetric determination of aluminum (III) as Al-Alizarin S complex in tea leaves and infusions. Analytical biochemistry. 2018;558:69-79.
  • 10. Guha S, Lohar S, Sahana A, Banerjee A, Safin DA, Babashkina MG et al. Coumarin-based “turn-on” fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties. Dalton Transactions. 2013;42(28):10198-10207.
  • 11. Wang B, Liu X, Duan W, Dai S, Lu H. Visual and ratiometric fluorescent determination of Al3+ by a red-emission carbon dot-quercetin system. Microchemical Journal. 2020;156: 104807.
  • 12. Huang P, Li J, Liu X, Wu F. Colorimetric determination of aluminum (III) based on the aggregation of Schiff base-functionalized gold nanoparticles. Microchimica Acta. 2016;183(2): 863-869.
  • 13. Zezzi-Arruda MA, Poppi RJ. Spectrophotometry / Inorganic Compounds. Encyclopedia of Analytical Science. 2005;351–358.
  • 14. Alawsi T, Mattia GP, Al-Bawi Z, Beraldi R. Smartphone-based colorimetric sensor application for measuring biochemical material concentration. Sensing and Bio-Sensing Research. 2021;32:100404.
  • 15. Liu T, Zhang S, Liu W, Zhao S, Lu Z, Wang Y, Wang G, Zou P, Wang X, Zhao Q, Rao H. Smartphone based platform for ratiometric fluorometric and colorimetric determination H2O2 and glucose. Sensors and Actuators B: Chemical. 2020;305:127524.
  • 16. Serhan M, Jackemeyer D, Long M, Sprowls M, Perez ID et al. Total iron measurement in human serum with a novel smartphone-based assay. IEEE Journal of Translational Engineering in Health and Medicine. 2020;8:1-9.
  • 17. Saranchina NV, Slizhov YG, Vodova YM, Murzakasymova NS, Ilyina AM et al. Smartphone-based colorimetric determination of fluoride anions using polymethacrylate optode. Talanta. 2021;226:122103.
  • 18. Fang J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition. 2015;31(11-12):1301-1306.
  • 19. Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. Anthocyanin extraction from plant tissues: A review. Critical reviews in food science and nutrition. 2017;57(14):3072-30833.
  • 20. Clifford MN. Anthocyanins–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture. 2000;80(7):1063-1072.
  • 21. Fedenko VS, Shemet SA, Landi M. UV–vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. Journal of plant physiology. 2017;212:13-28.
  • 22. Tanguler H, Erten H. Chemical and microbiological characteristics of shalgam (salgam); A traditional Turkish lactic acid fermented beverage. Journal of Food Quality. 2012;35(4):298–306.
  • 23. Tanguler H, Selli, S, Sen K, Cabaroglu T, Erten, H. Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage. Journal of Food Science and Technology. 2017;54(7):2011-2019.
  • 24. Canbaş A, Fenercioglu H. Salgam suyu üzerinde bir araştırma. Gıda. 1984;9(5):279–286 (in Turkish).
  • 25. Erten H, Tanguler H, Canbaş A, A traditional Turkish lactic acid fermented beverage: Shalgam (Salgam). Food Reviews International. 2008;24 (3):352-359.
  • 26. Kammerer D, Carle R, Schieber A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology. 2004;219(5):479–486.
  • 27. Narayan MS, Venkataraman LV. Characterisation of anthocyanins derived from carrot (Daucus carota) cell culture. Food Chemistry. 2000;70:361–363.
  • 28. Canbas A. Siyah havucun renk maddesi üzerine bir araştırma. Doğa. 1985;9(3):394–398 (in Turkish).
  • 29. Ekinci FY, Baser GM, Özcan E, Üstündağ ÖG, Korachi M. Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. European Food Research and Technology. 2016;242(8):1355-1368.
  • 30. Porrawatkul P, Pimsen R, Kuyyogsuy A, Nuengmatcha P. Simple and selective naked-eye and visual detection of Cu2+ and Al3+ ions using Hibiscus Rosa-Sinensis Linn flower Extract. Oriental Journal of Chemistry. 2018;34(1):188.
  • 31. Khaodee W, Aeungmaitrepirom W, Tuntulani T. Effectively simultaneous naked-eye detection of Cu (II), Pb (II), Al (III) and Fe (III) using cyanidin extracted from red cabbage as chelating agent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;126:98-104.
  • 32. Park S, Kang S, Jeong DY, Jeong SY, Park JJ et al. Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes & nutrition. 2015;10(2):1-14.
  • 33. Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends in Analytical Chemistry. 2013;50:78-84.
  • 34. U. USEPA, Method 200.7: determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Rev. 4.4, 1994; EPA600/R‐94‐111.
  • 35. Zolgharnein J, Shahrjerdi A, Azimi G, Ghasemi J. Spectrophotometric determination of trace amounts of fluoride using an Al-xylenol orange complex as a colored reagent. Analytical Sciences. 2009;25(10):1249-1253.
  • 36. Krupińska I. Aluminium drinking water treatment residuals and their toxic impact on human health. Molecules. 2020;25(3):641.
  • 37. Grotewold, E. The genetics and biochemistry of floral pigments. Annual review of plant biology. 2006;57(1):761-780.
  • 38. Schreiber HD, Swink AM, Godsey TD. The chemical mechanism for Al3+ complexing with delphinidin: A model for the bluing of hydrangea sepals. Journal of inorganic biochemistry. 2010;104(7):732-739.
  • 39. Ren J, Meng S, Lekka CE, Kaxiras E. Complexation of flavonoids with iron:structure and optical signatures. The Journal of Physical Chemistry B. 2008;112(6):1845-1850.
  • 40. Ravishankara MN, Shrivastava N, Padh H, Rajani M. Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br.(Anantmul). Phytomedicine. 2002;9(2):153-160.
  • 41. Jiang Y, Miao Y, Ding Z, Lu Y. In situ formed silicon-based nanoparticles enabled highly efficient dual-mode biosensing of chlorpyrifos. Food Chemistry. 2023;403:134243.
  • 42. Shang C, Li Y, Zhang Q, Tang S, Tang X, Ren H, Hu P, Lu S, Li P, Zhou, Y. Alkaline phosphatase-triggered dual-signal immunoassay for colorimetric and electrochemical detection of zearalenone in cornmeal. Sensors and Actuators B: Chemical.M2022;358:131525.
  • 43. Durmazel S, Üzer A, Apak, R. Naked-Eye Detection of 3-Nitro-1, 2, 4-triazole-5-one at Sub-Femtomolar Levels with Melamine and Unlabeled Au Nanoparticles. ACS Applied Nano Materials. 2022;5(4): 5244-5257.
  • 44. Ular N, Uzer A, Durmazel S, Ercag E, Apak R. Diaminocyclohexane-functionalized/thioglycolic acid-modified gold nanoparticle-based colorimetric sensing of trinitrotoluene and tetryl. ACS sensors. 2018;3(11): 2335-2342.
  • 45. Shahvar A, Shamsaei D, Saraji M. A portable smartphone-based colorimetric sensor for rapid determination of water content in ethanol. Measurement. 2020;150:107068.
  • 46. Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Kim NH, Kim JC, Lee SH. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical. 2021;330:129330.
  • 47. Han T, Feng X, Tong B, Shi J, Chen L et al. A novel “turn-on” fluorescent chemosensor for the selective detection of Al3+ based on aggregation-induced emission. Chemical communications. 2012;48(3):416-418.
  • 48. Kim Y, Jang G, Lee TS. New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS applied materials & interfaces. 2015;7(28):15649-15657.
  • 49. Kumar A, Bhatt M, Vyas G, Bhatt S, Paul P. Sunlight induced preparation of functionalized gold nanoparticles as recyclable colorimetric dual sensor for aluminum and fluoride in water. ACS applied materials & interfaces. 2017;9(20):17359-17368.
  • 50. Wei W, Huang J, Gao W, Lu X, Shi X. Carbon dots fluorescence-based colorimetric sensor for sensitive detection of aluminum ions with a smartphone. Chemosensors. 2021;9(2):25.
  • 51. Park H, Kim W, Kim M, Lee G, Lee W et al. Eco-friendly and enhanced colorimetric detection of aluminum ions using pectin-rich apple extract-based gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;245:118880.
  • 52. da Silva HM, Mageste AB, e Silva SJB, Ferreira GMD, Ferreira GMD. Anthocyanin immobilization in carboxymethylcellulose/starch films: A sustainable sensor for the detection of Al(III) ions in aqueous matrices. Carbohydrate Polymers. 2020;230:115679.
  • 53. Canbas A, Deryaoglu A. Şalgam suyunun üretim tekniği ve bileşimi üzerinde bir araştirma. Doga-Turkish Journal of Agricultural and Forestry 1993;17:119–129.
  • 54. Coskun F. A traditional Turkish fermented non-alcoholic beverage, “Shalgam”. Beverages 2017; 3: 49
Yıl 2023, Cilt: 10 Sayı: 1, 161 - 176, 28.02.2023
https://doi.org/10.18596/jotcsa.1201498

Öz

Kaynakça

  • 1. Goswami S, Paul S, Manna A. Selective “naked eye” detection of Al (III) and PPi in aqueous media on a rhodamine–isatin hybrid moiety. RSC Adv. 2013;3(27):10639-10643.
  • 2. Imadi SR, Waseem S, Kazi AG, Azooz MM, Ahmad P. Aluminum toxicity in plants: an overview. Plant Metal Interaction. 2016;1-20.
  • 3. Maity D, Govindaraju T. Naphthaldehyde–Urea/Thiourea conjugates as turn‐on fluorescent probes for Al3+ based on restricted C=N isomerization. European Journal of Inorganic Chemistry. 2011;(36):5479-5485.
  • 4. Al-Kindy SM, Al-Hinai A, Al-Rasbi NK, Suliman FEO, Al-Lawati HJ. Spectrofluorimetric determination of aluminium in water samples using N-((2-hydroxynaphthalen-1-yl) methylene) acetylhydrazide. Journal of Taibah University for Science. 2015;9(4):601-609.
  • 5. Michael JK. Powder-Metallurgy Aluminum Alloys. Aluminum Alloys-Contemporary Research and Applications: Contemporary Research and Applications. 2012;1:323.
  • 6. Frankowski M, Zioła-Frankowska A, Siepak J. New method for speciation analysis of aluminium fluoride complexes by HPLC–FAAS hyphenated technique. Talanta. 2010;80(5): 2120-2126.
  • 7. Melnyk LJ, Morgan JN, Fernando R, Pellizzari ED, Akinbo O. Determination of metals in composite diet samples by inductively coupled plasma-mass spectrometry. Journal of AOAC International. 2003;86(2):439-448.
  • 8. Mahdavi M, Nezamzadeh-Ejhieh A. An aluminum selective electrode via modification of PVC membrane by modified clinoptilolite nanoparticles with hexadecyltrimethyl ammonium bromide (HDTMA-Br) surfactant containing Arsenazo III. Journal of colloid and interface science. 2017; 494:317-324.
  • 9. Zuziak J, Reczyński W, Baś B, Jakubowska M. Voltammetric determination of aluminum (III) as Al-Alizarin S complex in tea leaves and infusions. Analytical biochemistry. 2018;558:69-79.
  • 10. Guha S, Lohar S, Sahana A, Banerjee A, Safin DA, Babashkina MG et al. Coumarin-based “turn-on” fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties. Dalton Transactions. 2013;42(28):10198-10207.
  • 11. Wang B, Liu X, Duan W, Dai S, Lu H. Visual and ratiometric fluorescent determination of Al3+ by a red-emission carbon dot-quercetin system. Microchemical Journal. 2020;156: 104807.
  • 12. Huang P, Li J, Liu X, Wu F. Colorimetric determination of aluminum (III) based on the aggregation of Schiff base-functionalized gold nanoparticles. Microchimica Acta. 2016;183(2): 863-869.
  • 13. Zezzi-Arruda MA, Poppi RJ. Spectrophotometry / Inorganic Compounds. Encyclopedia of Analytical Science. 2005;351–358.
  • 14. Alawsi T, Mattia GP, Al-Bawi Z, Beraldi R. Smartphone-based colorimetric sensor application for measuring biochemical material concentration. Sensing and Bio-Sensing Research. 2021;32:100404.
  • 15. Liu T, Zhang S, Liu W, Zhao S, Lu Z, Wang Y, Wang G, Zou P, Wang X, Zhao Q, Rao H. Smartphone based platform for ratiometric fluorometric and colorimetric determination H2O2 and glucose. Sensors and Actuators B: Chemical. 2020;305:127524.
  • 16. Serhan M, Jackemeyer D, Long M, Sprowls M, Perez ID et al. Total iron measurement in human serum with a novel smartphone-based assay. IEEE Journal of Translational Engineering in Health and Medicine. 2020;8:1-9.
  • 17. Saranchina NV, Slizhov YG, Vodova YM, Murzakasymova NS, Ilyina AM et al. Smartphone-based colorimetric determination of fluoride anions using polymethacrylate optode. Talanta. 2021;226:122103.
  • 18. Fang J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition. 2015;31(11-12):1301-1306.
  • 19. Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. Anthocyanin extraction from plant tissues: A review. Critical reviews in food science and nutrition. 2017;57(14):3072-30833.
  • 20. Clifford MN. Anthocyanins–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture. 2000;80(7):1063-1072.
  • 21. Fedenko VS, Shemet SA, Landi M. UV–vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. Journal of plant physiology. 2017;212:13-28.
  • 22. Tanguler H, Erten H. Chemical and microbiological characteristics of shalgam (salgam); A traditional Turkish lactic acid fermented beverage. Journal of Food Quality. 2012;35(4):298–306.
  • 23. Tanguler H, Selli, S, Sen K, Cabaroglu T, Erten, H. Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage. Journal of Food Science and Technology. 2017;54(7):2011-2019.
  • 24. Canbaş A, Fenercioglu H. Salgam suyu üzerinde bir araştırma. Gıda. 1984;9(5):279–286 (in Turkish).
  • 25. Erten H, Tanguler H, Canbaş A, A traditional Turkish lactic acid fermented beverage: Shalgam (Salgam). Food Reviews International. 2008;24 (3):352-359.
  • 26. Kammerer D, Carle R, Schieber A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology. 2004;219(5):479–486.
  • 27. Narayan MS, Venkataraman LV. Characterisation of anthocyanins derived from carrot (Daucus carota) cell culture. Food Chemistry. 2000;70:361–363.
  • 28. Canbas A. Siyah havucun renk maddesi üzerine bir araştırma. Doğa. 1985;9(3):394–398 (in Turkish).
  • 29. Ekinci FY, Baser GM, Özcan E, Üstündağ ÖG, Korachi M. Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. European Food Research and Technology. 2016;242(8):1355-1368.
  • 30. Porrawatkul P, Pimsen R, Kuyyogsuy A, Nuengmatcha P. Simple and selective naked-eye and visual detection of Cu2+ and Al3+ ions using Hibiscus Rosa-Sinensis Linn flower Extract. Oriental Journal of Chemistry. 2018;34(1):188.
  • 31. Khaodee W, Aeungmaitrepirom W, Tuntulani T. Effectively simultaneous naked-eye detection of Cu (II), Pb (II), Al (III) and Fe (III) using cyanidin extracted from red cabbage as chelating agent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;126:98-104.
  • 32. Park S, Kang S, Jeong DY, Jeong SY, Park JJ et al. Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes & nutrition. 2015;10(2):1-14.
  • 33. Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends in Analytical Chemistry. 2013;50:78-84.
  • 34. U. USEPA, Method 200.7: determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Rev. 4.4, 1994; EPA600/R‐94‐111.
  • 35. Zolgharnein J, Shahrjerdi A, Azimi G, Ghasemi J. Spectrophotometric determination of trace amounts of fluoride using an Al-xylenol orange complex as a colored reagent. Analytical Sciences. 2009;25(10):1249-1253.
  • 36. Krupińska I. Aluminium drinking water treatment residuals and their toxic impact on human health. Molecules. 2020;25(3):641.
  • 37. Grotewold, E. The genetics and biochemistry of floral pigments. Annual review of plant biology. 2006;57(1):761-780.
  • 38. Schreiber HD, Swink AM, Godsey TD. The chemical mechanism for Al3+ complexing with delphinidin: A model for the bluing of hydrangea sepals. Journal of inorganic biochemistry. 2010;104(7):732-739.
  • 39. Ren J, Meng S, Lekka CE, Kaxiras E. Complexation of flavonoids with iron:structure and optical signatures. The Journal of Physical Chemistry B. 2008;112(6):1845-1850.
  • 40. Ravishankara MN, Shrivastava N, Padh H, Rajani M. Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br.(Anantmul). Phytomedicine. 2002;9(2):153-160.
  • 41. Jiang Y, Miao Y, Ding Z, Lu Y. In situ formed silicon-based nanoparticles enabled highly efficient dual-mode biosensing of chlorpyrifos. Food Chemistry. 2023;403:134243.
  • 42. Shang C, Li Y, Zhang Q, Tang S, Tang X, Ren H, Hu P, Lu S, Li P, Zhou, Y. Alkaline phosphatase-triggered dual-signal immunoassay for colorimetric and electrochemical detection of zearalenone in cornmeal. Sensors and Actuators B: Chemical.M2022;358:131525.
  • 43. Durmazel S, Üzer A, Apak, R. Naked-Eye Detection of 3-Nitro-1, 2, 4-triazole-5-one at Sub-Femtomolar Levels with Melamine and Unlabeled Au Nanoparticles. ACS Applied Nano Materials. 2022;5(4): 5244-5257.
  • 44. Ular N, Uzer A, Durmazel S, Ercag E, Apak R. Diaminocyclohexane-functionalized/thioglycolic acid-modified gold nanoparticle-based colorimetric sensing of trinitrotoluene and tetryl. ACS sensors. 2018;3(11): 2335-2342.
  • 45. Shahvar A, Shamsaei D, Saraji M. A portable smartphone-based colorimetric sensor for rapid determination of water content in ethanol. Measurement. 2020;150:107068.
  • 46. Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Kim NH, Kim JC, Lee SH. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical. 2021;330:129330.
  • 47. Han T, Feng X, Tong B, Shi J, Chen L et al. A novel “turn-on” fluorescent chemosensor for the selective detection of Al3+ based on aggregation-induced emission. Chemical communications. 2012;48(3):416-418.
  • 48. Kim Y, Jang G, Lee TS. New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS applied materials & interfaces. 2015;7(28):15649-15657.
  • 49. Kumar A, Bhatt M, Vyas G, Bhatt S, Paul P. Sunlight induced preparation of functionalized gold nanoparticles as recyclable colorimetric dual sensor for aluminum and fluoride in water. ACS applied materials & interfaces. 2017;9(20):17359-17368.
  • 50. Wei W, Huang J, Gao W, Lu X, Shi X. Carbon dots fluorescence-based colorimetric sensor for sensitive detection of aluminum ions with a smartphone. Chemosensors. 2021;9(2):25.
  • 51. Park H, Kim W, Kim M, Lee G, Lee W et al. Eco-friendly and enhanced colorimetric detection of aluminum ions using pectin-rich apple extract-based gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;245:118880.
  • 52. da Silva HM, Mageste AB, e Silva SJB, Ferreira GMD, Ferreira GMD. Anthocyanin immobilization in carboxymethylcellulose/starch films: A sustainable sensor for the detection of Al(III) ions in aqueous matrices. Carbohydrate Polymers. 2020;230:115679.
  • 53. Canbas A, Deryaoglu A. Şalgam suyunun üretim tekniği ve bileşimi üzerinde bir araştirma. Doga-Turkish Journal of Agricultural and Forestry 1993;17:119–129.
  • 54. Coskun F. A traditional Turkish fermented non-alcoholic beverage, “Shalgam”. Beverages 2017; 3: 49
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm Makaleler
Yazarlar

Batuhan Yardımcı 0000-0002-4041-8183

Yayımlanma Tarihi 28 Şubat 2023
Gönderilme Tarihi 8 Kasım 2022
Kabul Tarihi 11 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

Vancouver Yardımcı B. Spectrophotometric and Smartphone-based Dual Monitoring Method for the Determination of Al(III) Ions Using Fermented Black Carrot Juice (Şalgam/Shalgam) as a Green Chromogenic Agent. JOTCSA. 2023;10(1):161-76.