Research Article
BibTex RIS Cite

Effect of Nd3+ Doping on Structural, Near-Infrared, and Cathodoluminescent Properties for Cadmium Tantalate Phosphors

Year 2023, Volume: 10 Issue: 1, 77 - 88, 28.02.2023
https://doi.org/10.18596/jotcsa.1202284

Abstract

Cd1-xTa2O6:xNd3+ (x=0.5, 1.5, 3, 5, 7, and 10 mol%) phosphor series were fabricated by conventional solid state method at 1100 °C for 17 hours. The samples of cadmium tantalate were investigated by structural (XRD, SEM) and spectroscopic (CL, PL) analyses. In XRD results, the symmetry of CdTa2O6 phase with orthorhombic columbite structure was confirmed between 0.5 and 10 mol% Nd3+ doping concentrations. SEM analysis of the grains revealed round and shapeless morphology while grain sizes ranged from submicron to several microns. The emission spectra of Cd1-xTa2O6:xNd3+ (x=0.5, 1.5, 3, 5, 7 and 10 mol%) phosphor series recorded with the transitions of 4F3/2→4I9/2 and 4F3/2→4I11/2. Among these transitions, the transition 4F3/2→4I9/2 (at 889 nm) has a high near-infrared emission intensity, which can be attributed to the laser potential of the phosphor. The NIR emission of the phosphor increased with increasing concentration of Nd3+ up to 5 mol% and then declined because of concentration quenching phenomenon. The CL emission peak at about 450 nm found in all samples is related to the intrinsic emission of the cadmium tantalate host. In addition, Nd3+ doped phosphors exhibited the 4F3/2→4I9/2 transition of Nd3+ and defect-related CL emissions at 670 nm. Decreasing crystallinity with increasing Nd3+ concentration caused a decrease in host emission intensity at 450 nm.

References

  • 1. Ekmekçi MK. Influence of europium doping on the crystallization, morphology, and cathodoluminescent properties of PbNb2O6:Eu3+ phosphors. JOTCSA. 2022;1129–1140.
  • 2. Nagaraj R, Rajagopal V, Raja A, Ranjith S. Influence of Dy3+ ion concentration on photoluminescence and energy transfer mechanism of promising KBaScSi3O9 phosphors for warm white LEDs. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022;264:120212.
  • 3. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J. Alloy. Comp. 2022;901:163626.
  • 4. Yao S, Lv S, Feng Z. Synthesis and photoluminescent properties of Dy3+:CaYAlO4 phosphors. Appl. Phys. A 2021;127:773.
  • 5. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik. 2017 Oct;128:26–33.
  • 6. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021 Feb;11:10451.
  • 7. İlhan M, Ekmekçi MK. Synthesis and photoluminescence properties of Dy3+ doped white light emitting CdTa2O6 phosphors. J. Solid State Chem. 2015;226:243–249.
  • 8. İlhan M, Keskin İÇ Photoluminescence, radioluminescence and thermoluminescence properties of Eu3+ doped cadmium tantalate phosphor. Dalton Trans. 2018;47:13939-13948.
  • 9. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl. Surf. Sci. 2017;421:240-246.
  • 10. Başak AS, Ekmekçi MK, Erdem M, İlhan M, Mergen A. Investigation of boron-doping effect on photoluminescence properties of CdNb2O6:Eu3+ phosphors. J. Fluoresc 2016;26:719–724.
  • 11. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6:Dy3+ phosphors synthesized via molten salt method. Phys. Chem. Chem. Phys. 2020;2:19769.
  • 12. He X, Fang B, Zhang S, Lu X, Ding J. Preparation and properties of Nd-doped BCTH lead-free ceramics by solid-phase twin crystal method. Curr. Appl. Phys. 2022;38;30–39.
  • 13. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 14. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 15. He X, Fang B, Zhang S, Lu X, Ding J. Preparation of nanoscale [(Ba0.85Ca0.15)0.995Nd0.005](Ti0.9Hf0.1)O3 ceramics via hydrothermal method and effect of grain size on multifunctional performance. J. Alloys Compd. 2022;925:166249.
  • 16. İlhan M, Keskin İÇ, Çatalgöl Z, Samur R. NIR photoluminescence and radioluminescence characteristics of Nd3+ doped BaTa2O6 phosphor. Int. J. Appl. Ceram. Technol. 2018;15: 1594–1601.
  • 17. Wang X, Zhao H, Li A, Tian K, Brambilla G, Wang P. Near-infrared luminescence and single-mode laser emission from Nd3+ doped compound glass and glass microsphere. Front. Mater. Sci. 2019;6:237.
  • 18. Prasad RNA, Vijaya N, Babu P, Mohan NK, Praveena R. Optical absorption and NIR photoluminescence of Nd3+-activated strontium phosphate glasses. J. Electron. Mater. 2020;49:6358-6368.
  • 19. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 20. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 21. Ekmekçi MK, Erdem M, Başak AS, İlhan M, Mergen A. Molten salt synthesis and optical properties of Eu3+, Dy3+ or Nd3+ doped NiNb2O6 columbite-type phosphors. Ceram. Int. 2015;41:9680–9685.
  • 22. Mahamuda Sk, Swapna K, Rao AS, Jayasimhadri M, Sasikala T, Pavani K, Moorthy LR. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses. J. Phys. Chem. 2013;74;1308–1315.
  • 23. Edwards PR, Martin RW. Cathodoluminescence nano-characterization of semiconductors. Semicond. Sci. Technol. 2011;26:064005.
  • 24. Ma DDD, Lee ST, Mueller P, Alvarado SF. Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires. Nano Lett. 2006;6:926.
  • 25. Dierre B, Yuan XL, Sekiguchi T. Sci. Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Technol. Adv. Mater. 2010;11:043001.
  • 26. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 27. Mitsui T, Yamamoto N, Tadokoro T, Ohta S. Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs(100). J. Appl. Phys. 1996;80:6972.
  • 28. İlhan M. Heat capacities and thermodynamic functions of CdNb2O6 and CdTa2O6. J. Therm. Anal. Calorim. 2022;147:12383–12389.
  • 29. European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry, COCIR application for new exemption Page 1-12, Blvd A. Reyers 80 1020 Brussels, 2011.
  • 30. Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994;370:354–357.
  • 31. Chaar LE, Lamont LA, Zein NE. Review of photovoltaic technologies. Renewable Sustainable Energy Rev. 2011;15:2165–75.
  • 32. Iorgu AI, Berger D, Alexandrescu L, Vasile BS, Matei C. Synthesis of photoluminescent pure and doped cadmium sulfide by reverse microemulsion method. Chalcogenide Lett. 2013;10:525–531.
  • 33. Willner I, Baron R, Willner B. Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 2007;22:1841.
  • 34. Choi YJ, Kim YJ, Lee JW, Lee Y, Lim YB, Chung HW. Cyto-/genotoxic effect of CdSe/ZnS quantum dots in human lung adenocarcinoma cells for potential photodynamic UV therapy applications. J. Nanosci. Nanotechnol. 2012;12:2160–2168.
  • 35. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C. The cytotoxicity of cadmium based, aqueous phase – Synthesized, quantum dots and its modulation by surface coating. Biomaterials 2009;30:19–25.
  • 36. Wong-Ng W, McMurdie HF, Paretzkin B, Kuchinski MA, Dragoo AL. Standard X-Ray Diffraction Powder Patterns of Fourteen Ceramic Phases. Powder Diffr. 1988;3:246-254.
  • 37. Tealdi C, Mozzati MC, Malavasi L, Ciabattoni T, Amantea R, Azzoni CB. Columbite-type FexMn1-xNb2O6 solid solution: structural and magnetic characterization. Phys. Chem. Chem. Phys. 2004;6:4056-4061.
  • 38. Wachs IE. Infrared spectroscopy of supported metal oxide catalysts. Colloid Surface A. 1995;105:143–149.
  • 39. Ayvacıkli M, Kotan Z, Ekdal E, Karabulut Y, Canimoglu A, Guinea JG, Khatab A, Henini M, Can N. Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties. J. Lumin. 2013;144:128–132.
  • 40. Sontakke AD, Biswas K, Mandal AK, Annapurna K. Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses. Appl. Phys. B 2010;101:235–244.
  • 41. MacRae CM, Wilson NC, Torpy A, Davidson CJ. Hyperspectral cathodoluminescence imaging and analysis extending from ultraviolet to near infrared. Microsc. Microanal. 2012;18:1239–1245.
  • 42. Lamrani MA, Addou M, Sofiani Z, Sahraoui B, Ebothe J, El Hichou A, Fellahi N, Bernede JC, Dounia R. Cathodoluminescent and nonlinear optical properties of undoped and erbium doped nanostructured ZnO films deposited by spray pyrolysis. Opt. Commun. 2007;277:196–201.
  • 43. Hsiao YJ, Fang TH, Ji LW, Chi SS. Surface and photoluminescence characteristics of CdNb2O6 Nanocrystals. Open Surf. Sci. J. 2009;1:30-33.
  • 44. Hsiao YJ, Chang YS, Chen GJ, Chang YH. Synthesis and the luminescent properties of CdNb2O6 oxides by sol–gel process. J. Alloys Compd. 2009;471:259-262.
  • 45. Cherrad H, Addou M, Hssein M, Bahedi K, Jbilou M, Mrigal A, Salmani E, Rouchdi M, Mezred A, Ftouhi H, Diani M, Jouad ME. Theoretical and experimental investigation of structural, electronic and optical properties of neodymium doped ZnO. MATEC Web of Conferences 2020;307:01018.
  • 46. El Hichou A, Addou M, Ebothé J, Troyon M. Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysisJ. Lumin. 2005;113:183–190.
  • 47. Sittner J, Götze J. Cathodoluminescence (CL) characteristics of quartz from different metamorphic rocks within the Kaoko Belt (Namibia). Minerals 2018:8;190.
  • 48. Siegel GH, Marrone MJ. Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers. J. Non Cryst. Solids 1981;45:235–247.
  • 49. Karl A, Gschneidner Jr, LeRoy E. Handbook on the Physics and Chemistry of Rare Earths volume 4 Non-Metallic Compounds – II. 293, 1979.
Year 2023, Volume: 10 Issue: 1, 77 - 88, 28.02.2023
https://doi.org/10.18596/jotcsa.1202284

Abstract

References

  • 1. Ekmekçi MK. Influence of europium doping on the crystallization, morphology, and cathodoluminescent properties of PbNb2O6:Eu3+ phosphors. JOTCSA. 2022;1129–1140.
  • 2. Nagaraj R, Rajagopal V, Raja A, Ranjith S. Influence of Dy3+ ion concentration on photoluminescence and energy transfer mechanism of promising KBaScSi3O9 phosphors for warm white LEDs. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022;264:120212.
  • 3. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J. Alloy. Comp. 2022;901:163626.
  • 4. Yao S, Lv S, Feng Z. Synthesis and photoluminescent properties of Dy3+:CaYAlO4 phosphors. Appl. Phys. A 2021;127:773.
  • 5. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik. 2017 Oct;128:26–33.
  • 6. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021 Feb;11:10451.
  • 7. İlhan M, Ekmekçi MK. Synthesis and photoluminescence properties of Dy3+ doped white light emitting CdTa2O6 phosphors. J. Solid State Chem. 2015;226:243–249.
  • 8. İlhan M, Keskin İÇ Photoluminescence, radioluminescence and thermoluminescence properties of Eu3+ doped cadmium tantalate phosphor. Dalton Trans. 2018;47:13939-13948.
  • 9. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl. Surf. Sci. 2017;421:240-246.
  • 10. Başak AS, Ekmekçi MK, Erdem M, İlhan M, Mergen A. Investigation of boron-doping effect on photoluminescence properties of CdNb2O6:Eu3+ phosphors. J. Fluoresc 2016;26:719–724.
  • 11. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6:Dy3+ phosphors synthesized via molten salt method. Phys. Chem. Chem. Phys. 2020;2:19769.
  • 12. He X, Fang B, Zhang S, Lu X, Ding J. Preparation and properties of Nd-doped BCTH lead-free ceramics by solid-phase twin crystal method. Curr. Appl. Phys. 2022;38;30–39.
  • 13. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 14. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 15. He X, Fang B, Zhang S, Lu X, Ding J. Preparation of nanoscale [(Ba0.85Ca0.15)0.995Nd0.005](Ti0.9Hf0.1)O3 ceramics via hydrothermal method and effect of grain size on multifunctional performance. J. Alloys Compd. 2022;925:166249.
  • 16. İlhan M, Keskin İÇ, Çatalgöl Z, Samur R. NIR photoluminescence and radioluminescence characteristics of Nd3+ doped BaTa2O6 phosphor. Int. J. Appl. Ceram. Technol. 2018;15: 1594–1601.
  • 17. Wang X, Zhao H, Li A, Tian K, Brambilla G, Wang P. Near-infrared luminescence and single-mode laser emission from Nd3+ doped compound glass and glass microsphere. Front. Mater. Sci. 2019;6:237.
  • 18. Prasad RNA, Vijaya N, Babu P, Mohan NK, Praveena R. Optical absorption and NIR photoluminescence of Nd3+-activated strontium phosphate glasses. J. Electron. Mater. 2020;49:6358-6368.
  • 19. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 20. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 21. Ekmekçi MK, Erdem M, Başak AS, İlhan M, Mergen A. Molten salt synthesis and optical properties of Eu3+, Dy3+ or Nd3+ doped NiNb2O6 columbite-type phosphors. Ceram. Int. 2015;41:9680–9685.
  • 22. Mahamuda Sk, Swapna K, Rao AS, Jayasimhadri M, Sasikala T, Pavani K, Moorthy LR. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses. J. Phys. Chem. 2013;74;1308–1315.
  • 23. Edwards PR, Martin RW. Cathodoluminescence nano-characterization of semiconductors. Semicond. Sci. Technol. 2011;26:064005.
  • 24. Ma DDD, Lee ST, Mueller P, Alvarado SF. Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires. Nano Lett. 2006;6:926.
  • 25. Dierre B, Yuan XL, Sekiguchi T. Sci. Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Technol. Adv. Mater. 2010;11:043001.
  • 26. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 27. Mitsui T, Yamamoto N, Tadokoro T, Ohta S. Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs(100). J. Appl. Phys. 1996;80:6972.
  • 28. İlhan M. Heat capacities and thermodynamic functions of CdNb2O6 and CdTa2O6. J. Therm. Anal. Calorim. 2022;147:12383–12389.
  • 29. European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry, COCIR application for new exemption Page 1-12, Blvd A. Reyers 80 1020 Brussels, 2011.
  • 30. Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994;370:354–357.
  • 31. Chaar LE, Lamont LA, Zein NE. Review of photovoltaic technologies. Renewable Sustainable Energy Rev. 2011;15:2165–75.
  • 32. Iorgu AI, Berger D, Alexandrescu L, Vasile BS, Matei C. Synthesis of photoluminescent pure and doped cadmium sulfide by reverse microemulsion method. Chalcogenide Lett. 2013;10:525–531.
  • 33. Willner I, Baron R, Willner B. Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 2007;22:1841.
  • 34. Choi YJ, Kim YJ, Lee JW, Lee Y, Lim YB, Chung HW. Cyto-/genotoxic effect of CdSe/ZnS quantum dots in human lung adenocarcinoma cells for potential photodynamic UV therapy applications. J. Nanosci. Nanotechnol. 2012;12:2160–2168.
  • 35. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C. The cytotoxicity of cadmium based, aqueous phase – Synthesized, quantum dots and its modulation by surface coating. Biomaterials 2009;30:19–25.
  • 36. Wong-Ng W, McMurdie HF, Paretzkin B, Kuchinski MA, Dragoo AL. Standard X-Ray Diffraction Powder Patterns of Fourteen Ceramic Phases. Powder Diffr. 1988;3:246-254.
  • 37. Tealdi C, Mozzati MC, Malavasi L, Ciabattoni T, Amantea R, Azzoni CB. Columbite-type FexMn1-xNb2O6 solid solution: structural and magnetic characterization. Phys. Chem. Chem. Phys. 2004;6:4056-4061.
  • 38. Wachs IE. Infrared spectroscopy of supported metal oxide catalysts. Colloid Surface A. 1995;105:143–149.
  • 39. Ayvacıkli M, Kotan Z, Ekdal E, Karabulut Y, Canimoglu A, Guinea JG, Khatab A, Henini M, Can N. Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties. J. Lumin. 2013;144:128–132.
  • 40. Sontakke AD, Biswas K, Mandal AK, Annapurna K. Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses. Appl. Phys. B 2010;101:235–244.
  • 41. MacRae CM, Wilson NC, Torpy A, Davidson CJ. Hyperspectral cathodoluminescence imaging and analysis extending from ultraviolet to near infrared. Microsc. Microanal. 2012;18:1239–1245.
  • 42. Lamrani MA, Addou M, Sofiani Z, Sahraoui B, Ebothe J, El Hichou A, Fellahi N, Bernede JC, Dounia R. Cathodoluminescent and nonlinear optical properties of undoped and erbium doped nanostructured ZnO films deposited by spray pyrolysis. Opt. Commun. 2007;277:196–201.
  • 43. Hsiao YJ, Fang TH, Ji LW, Chi SS. Surface and photoluminescence characteristics of CdNb2O6 Nanocrystals. Open Surf. Sci. J. 2009;1:30-33.
  • 44. Hsiao YJ, Chang YS, Chen GJ, Chang YH. Synthesis and the luminescent properties of CdNb2O6 oxides by sol–gel process. J. Alloys Compd. 2009;471:259-262.
  • 45. Cherrad H, Addou M, Hssein M, Bahedi K, Jbilou M, Mrigal A, Salmani E, Rouchdi M, Mezred A, Ftouhi H, Diani M, Jouad ME. Theoretical and experimental investigation of structural, electronic and optical properties of neodymium doped ZnO. MATEC Web of Conferences 2020;307:01018.
  • 46. El Hichou A, Addou M, Ebothé J, Troyon M. Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysisJ. Lumin. 2005;113:183–190.
  • 47. Sittner J, Götze J. Cathodoluminescence (CL) characteristics of quartz from different metamorphic rocks within the Kaoko Belt (Namibia). Minerals 2018:8;190.
  • 48. Siegel GH, Marrone MJ. Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers. J. Non Cryst. Solids 1981;45:235–247.
  • 49. Karl A, Gschneidner Jr, LeRoy E. Handbook on the Physics and Chemistry of Rare Earths volume 4 Non-Metallic Compounds – II. 293, 1979.
There are 49 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Lütfiye Feray Güleryüz 0000-0003-0052-6187

Publication Date February 28, 2023
Submission Date November 10, 2022
Acceptance Date December 29, 2022
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

Vancouver Güleryüz LF. Effect of Nd3+ Doping on Structural, Near-Infrared, and Cathodoluminescent Properties for Cadmium Tantalate Phosphors. JOTCSA. 2023;10(1):77-88.