Anthraquinone and its derivatives are considered intermediate agents with superior properties due to their activities in chemical and biological reaction. A new, economical, practical and one-step synthesis method was developed by our research team for the synthesis of amino and thioanthraquinones in previous studies (1). With this synthesis method, thioanthraquinone analogs 2(a-d) were obtained from 1,5-Dichloroanthraquinone (1) and bioactive thiols. The synthesized organic molecules were purified by column chromatography and their structures were identified with spectroscopic methods. Fluorescence analyzes of synthesized thioanthraquinone analogues were performed. It was determined that all thioanthraquinone analogues synthesized and characterized in the study showed fluorescence activity. These new analogues with fluorescence are expected to find application in drug delivery systems and sensor studies.
I am grateful to Istanbul University-Cerrahpaşa Chemistry Department, Eskişehir Osmangazi University Central Research Laboratory Application and Research Center (ARUM) and Kastamonu University Central Research Laboratory Application and Research Center for laboratory and analysis.
References
1. Ozkok F, Şahin YM. Biyoaktif antrakinon anologlarının sentezine yönelik özgün metot geliştirilmesi. TURKEY; TR 2016/19610; 2016.
2. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer [Internet]. 2018 Nov 18;18(11):669–80.
3. Stasevich M V., Zvarich VI, Novikov VP, Zagorodnyaya SD, Povnitsa OY, Chaika MA, et al. 9,10-Anthraquinone Dithiocarbamates as Potential Pharmaceutical Substances with Pleiotropic Actions: Computerized Prediction of Biological Activity and Experimental Validation. Pharm Chem J [Internet]. 2020 Jan 16;53(10):905–13.
4. Mohamadzadeh M, Zarei M, Vessal M. Synthesis, in vitro biological evaluation and in silico molecular docking studies of novel β-lactam-anthraquinone hybrids. Bioorg Chem [Internet]. 2020 Jan;95:103515.
5. Zvarych V, Stasevych M, Novikov V, Rusanov E, Vovk M, Szweda P, et al. Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation. Molecules [Internet]. 2019 Dec 13;24(24):4581.
6. Comini LR, Núñez Montoya SC, Páez PL, Argüello GA, Albesa I, Cabrera JL. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae). J Photochem Photobiol B Biol [Internet]. 2011 Feb 7;102(2):108–14.
7. Wang Q, Wang Y, Li Y, Wen B, Dai Z, Ma S, et al. Identification and characterization of the structure–activity relationships involved in UGT1A1 inhibition by anthraquinone and dianthrone constituents of Polygonum multiflorum. Sci Rep [Internet]. 2017 Dec 20;7(1):17952.
8. Shadrack DM, K. Ndesendo VM. Molecular Docking and ADMET Study of Emodin Derivatives as Anticancer Inhibitors of NAT2, COX2 and TOP1 Enzymes. Comput Mol Biosci [Internet]. 2017 Mar 16;07(01):1–18.
9. Ogbole OO, Akinleye TE, Faleye TOC, Adeniji AJ. Enterovirus inhibiting activities of two lupane triterpenoids and anthraquinones from senna siamea stem bark against three serotypes of echovirus. ACTA Pharm Sci [Internet]. 2019;57(3):105–15.
10. Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol [Internet]. 2016 Sep 25;90(9):2063–76.
11. Varadwaj P, Misra K, Sharma A, Kumar R. Mitoxantrone: an agent with promises for anticancer therapies. Electron J Biol [Internet]. 2010;6(2):36–42.
12. Neuhaus O, Kieseier BC, Hartung H-P. Therapeutic role of mitoxantrone in multiple sclerosis. Pharmacol Ther [Internet]. 2006 Jan 1;109(1–2):198–209.
13. Dias-Carvalho A, Ferreira M, Reis-Mendes A, Ferreira R, Bastos ML, Fernandes E, et al. Chemobrain: mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice. Arch Toxicol [Internet]. 2022 Jun 19;96(6):1767–82.
14. Pan D, Zhang X, Zheng H, Zheng Z, Nong X, Liang X, et al. Novel anthraquinone derivatives as inhibitors of protein tyrosine phosphatases and indoleamine 2,3-dioxygenase 1 from the deep-sea derived fungus Alternaria tenuissima DFFSCS013. Org Chem Front [Internet]. 2019 Sep 10;6(18):3252–8.
15. Debbab A, Aly AH, Edrada-Ebel RA, Wray V, Müller WEG, Totzke F, et al. Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod [Internet]. 2009 Apr 24 [cited 2023 Jun 26];72(4):626–31.
16. Lee HJ, Choi JS, Jung JH, Kang SS. Alaternin glucoside isomer from cassia tora. Phytochemistry [Internet]. 1998 Nov 5;49(5):1403–4.
17. Zheng C-J, Shao C-L, Guo Z-Y, Chen J-F, Deng D-S, Yang K-L, et al. Bioactive Hydroanthraquinones and Anthraquinone Dimers from a Soft Coral-Derived Alternaria sp. Fungus. J Nat Prod [Internet]. 2012 Feb 24;75(2):189–97.
18. Aly AH, Edrada-Ebel R, Wray V, Müller WEG, Kozytska S, Hentschel U, et al. Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry [Internet]. 2008 May 1;69(8):1716–25.
19. Gill M, Giménez A, Jhingran AG, Qureshi A. Austrocortilutein stereoisomers from Australian fungi of the genus Dermocybe. Phytochemistry [Internet]. 1992 Mar 1;31(3):947–51.
20. Yagi A, Okamura N, Haraguchi H, Abot T, Hashimoto K. Antimicrobial tetrahydroanthraquinones from a strain of Alternaria solani. Phytochemistry [Internet]. 1993 Apr 29;33(1):87–91.
21. Wang S, Wang Q, Wang Y, Liu L, Weng X, Li G, et al. Novel anthraquinone derivatives: Synthesis via click chemistry approach and their induction of apoptosis in BGC gastric cancer cells via reactive oxygen species(ROS)-dependent mitochondrial pathway. Bioorg Med Chem Lett [Internet]. 2008 Dec 15;18(24):6505–8.
22. Deep G, Oberlies NH, Kroll DJ, Agarwal R. Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. Int J Cancer [Internet]. 2008 Jul 1;123(1):41–50.
23. Gupta N, Linschitz H. Hydrogen-Bonding and Protonation Effects in Electrochemistry of Quinones in Aprotic Solvents. J Am Chem Soc [Internet]. 1997 Jul 1;119(27):6384–91.
24. Quan M, Sanchez D, Wasylkiw MF, Smith DK. Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones. J Am Chem Soc [Internet]. 2007 Oct 1;129(42):12847–56.
25. Blankespoor RL, Hsung R, Schutt DL. Electroreductive cleavage of substituted 9,10-anthraquinones in 50% aqueous THF buffers: a pH-dependent process. J Org Chem. 1988 Jun 1;53(13):3032–5.
26. Bachman JE, Curtiss LA, Assary RS. Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory. J Phys Chem A [Internet]. 2014 Sep 25;118(38):8852–60.
27. Huskinson B, Nawar S, Gerhardt MR, Aziz MJ. Novel Quinone-Based Couples for Flow Batteries. ECS Trans [Internet]. 2013 May 3;53(7):101–5.
28. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, et al. A metal-free organic–inorganic aqueous flow battery. Nature [Internet]. 2014 Jan 8;505(7482):195–8.
29. Ozkok F, Boga M, Tuneg M, Enisoglu Atalay V, Onul N, Asgarova K, et al. Evaluation of Acetyl- and Butyrylcholinesterase Enzyme Inhibitory Activities and Cytotoxic Activities of Anthraquinone Derivatives. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Aug 31;9(3):729–40.
30. Celik S, Vagifli F, Akyuz S, Ozkok F, E. Ozel A, Dosler S, et al. Synthesis, vibrational spectroscopic investigation, molecular docking, antibacterial and antimicrobial studies of a new anthraquinone derivative compound. Spectrosc Lett [Internet]. 2022 Apr 21;55(4):259–77.
31. Celik S, Ozkok F, Ozel AE, Müge Sahin Y, Akyuz S, Sigirci BD, et al. Synthesis, FT-IR and NMR characterization, antimicrobial activity, cytotoxicity and DNA docking analysis of a new anthraquinone derivate compound. J Biomol Struct Dyn [Internet]. 2020 Feb 11;38(3):756–70.
32. Sahin YM. Synthesis of an Antimicrobial Thioanthraquinone Compound to Produce Biodegradable Electrospun Mats for Tissue Engineering Purposes. J Turkish Chem Soc Sect A Chem [Internet]. 2018 Sep 1;5(3):1119–34.
Year 2023,
Volume: 10 Issue: 3, 671 - 676, 30.08.2023
1. Ozkok F, Şahin YM. Biyoaktif antrakinon anologlarının sentezine yönelik özgün metot geliştirilmesi. TURKEY; TR 2016/19610; 2016.
2. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer [Internet]. 2018 Nov 18;18(11):669–80.
3. Stasevich M V., Zvarich VI, Novikov VP, Zagorodnyaya SD, Povnitsa OY, Chaika MA, et al. 9,10-Anthraquinone Dithiocarbamates as Potential Pharmaceutical Substances with Pleiotropic Actions: Computerized Prediction of Biological Activity and Experimental Validation. Pharm Chem J [Internet]. 2020 Jan 16;53(10):905–13.
4. Mohamadzadeh M, Zarei M, Vessal M. Synthesis, in vitro biological evaluation and in silico molecular docking studies of novel β-lactam-anthraquinone hybrids. Bioorg Chem [Internet]. 2020 Jan;95:103515.
5. Zvarych V, Stasevych M, Novikov V, Rusanov E, Vovk M, Szweda P, et al. Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation. Molecules [Internet]. 2019 Dec 13;24(24):4581.
6. Comini LR, Núñez Montoya SC, Páez PL, Argüello GA, Albesa I, Cabrera JL. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae). J Photochem Photobiol B Biol [Internet]. 2011 Feb 7;102(2):108–14.
7. Wang Q, Wang Y, Li Y, Wen B, Dai Z, Ma S, et al. Identification and characterization of the structure–activity relationships involved in UGT1A1 inhibition by anthraquinone and dianthrone constituents of Polygonum multiflorum. Sci Rep [Internet]. 2017 Dec 20;7(1):17952.
8. Shadrack DM, K. Ndesendo VM. Molecular Docking and ADMET Study of Emodin Derivatives as Anticancer Inhibitors of NAT2, COX2 and TOP1 Enzymes. Comput Mol Biosci [Internet]. 2017 Mar 16;07(01):1–18.
9. Ogbole OO, Akinleye TE, Faleye TOC, Adeniji AJ. Enterovirus inhibiting activities of two lupane triterpenoids and anthraquinones from senna siamea stem bark against three serotypes of echovirus. ACTA Pharm Sci [Internet]. 2019;57(3):105–15.
10. Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol [Internet]. 2016 Sep 25;90(9):2063–76.
11. Varadwaj P, Misra K, Sharma A, Kumar R. Mitoxantrone: an agent with promises for anticancer therapies. Electron J Biol [Internet]. 2010;6(2):36–42.
12. Neuhaus O, Kieseier BC, Hartung H-P. Therapeutic role of mitoxantrone in multiple sclerosis. Pharmacol Ther [Internet]. 2006 Jan 1;109(1–2):198–209.
13. Dias-Carvalho A, Ferreira M, Reis-Mendes A, Ferreira R, Bastos ML, Fernandes E, et al. Chemobrain: mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice. Arch Toxicol [Internet]. 2022 Jun 19;96(6):1767–82.
14. Pan D, Zhang X, Zheng H, Zheng Z, Nong X, Liang X, et al. Novel anthraquinone derivatives as inhibitors of protein tyrosine phosphatases and indoleamine 2,3-dioxygenase 1 from the deep-sea derived fungus Alternaria tenuissima DFFSCS013. Org Chem Front [Internet]. 2019 Sep 10;6(18):3252–8.
15. Debbab A, Aly AH, Edrada-Ebel RA, Wray V, Müller WEG, Totzke F, et al. Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod [Internet]. 2009 Apr 24 [cited 2023 Jun 26];72(4):626–31.
16. Lee HJ, Choi JS, Jung JH, Kang SS. Alaternin glucoside isomer from cassia tora. Phytochemistry [Internet]. 1998 Nov 5;49(5):1403–4.
17. Zheng C-J, Shao C-L, Guo Z-Y, Chen J-F, Deng D-S, Yang K-L, et al. Bioactive Hydroanthraquinones and Anthraquinone Dimers from a Soft Coral-Derived Alternaria sp. Fungus. J Nat Prod [Internet]. 2012 Feb 24;75(2):189–97.
18. Aly AH, Edrada-Ebel R, Wray V, Müller WEG, Kozytska S, Hentschel U, et al. Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry [Internet]. 2008 May 1;69(8):1716–25.
19. Gill M, Giménez A, Jhingran AG, Qureshi A. Austrocortilutein stereoisomers from Australian fungi of the genus Dermocybe. Phytochemistry [Internet]. 1992 Mar 1;31(3):947–51.
20. Yagi A, Okamura N, Haraguchi H, Abot T, Hashimoto K. Antimicrobial tetrahydroanthraquinones from a strain of Alternaria solani. Phytochemistry [Internet]. 1993 Apr 29;33(1):87–91.
21. Wang S, Wang Q, Wang Y, Liu L, Weng X, Li G, et al. Novel anthraquinone derivatives: Synthesis via click chemistry approach and their induction of apoptosis in BGC gastric cancer cells via reactive oxygen species(ROS)-dependent mitochondrial pathway. Bioorg Med Chem Lett [Internet]. 2008 Dec 15;18(24):6505–8.
22. Deep G, Oberlies NH, Kroll DJ, Agarwal R. Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. Int J Cancer [Internet]. 2008 Jul 1;123(1):41–50.
23. Gupta N, Linschitz H. Hydrogen-Bonding and Protonation Effects in Electrochemistry of Quinones in Aprotic Solvents. J Am Chem Soc [Internet]. 1997 Jul 1;119(27):6384–91.
24. Quan M, Sanchez D, Wasylkiw MF, Smith DK. Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones. J Am Chem Soc [Internet]. 2007 Oct 1;129(42):12847–56.
25. Blankespoor RL, Hsung R, Schutt DL. Electroreductive cleavage of substituted 9,10-anthraquinones in 50% aqueous THF buffers: a pH-dependent process. J Org Chem. 1988 Jun 1;53(13):3032–5.
26. Bachman JE, Curtiss LA, Assary RS. Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory. J Phys Chem A [Internet]. 2014 Sep 25;118(38):8852–60.
27. Huskinson B, Nawar S, Gerhardt MR, Aziz MJ. Novel Quinone-Based Couples for Flow Batteries. ECS Trans [Internet]. 2013 May 3;53(7):101–5.
28. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, et al. A metal-free organic–inorganic aqueous flow battery. Nature [Internet]. 2014 Jan 8;505(7482):195–8.
29. Ozkok F, Boga M, Tuneg M, Enisoglu Atalay V, Onul N, Asgarova K, et al. Evaluation of Acetyl- and Butyrylcholinesterase Enzyme Inhibitory Activities and Cytotoxic Activities of Anthraquinone Derivatives. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Aug 31;9(3):729–40.
30. Celik S, Vagifli F, Akyuz S, Ozkok F, E. Ozel A, Dosler S, et al. Synthesis, vibrational spectroscopic investigation, molecular docking, antibacterial and antimicrobial studies of a new anthraquinone derivative compound. Spectrosc Lett [Internet]. 2022 Apr 21;55(4):259–77.
31. Celik S, Ozkok F, Ozel AE, Müge Sahin Y, Akyuz S, Sigirci BD, et al. Synthesis, FT-IR and NMR characterization, antimicrobial activity, cytotoxicity and DNA docking analysis of a new anthraquinone derivate compound. J Biomol Struct Dyn [Internet]. 2020 Feb 11;38(3):756–70.
32. Sahin YM. Synthesis of an Antimicrobial Thioanthraquinone Compound to Produce Biodegradable Electrospun Mats for Tissue Engineering Purposes. J Turkish Chem Soc Sect A Chem [Internet]. 2018 Sep 1;5(3):1119–34.
Özkök F. Design, Synthesis and Structural Characterization of Novel Thioanthraquinone Analogues from 1,5-Dichloroanthraquinone. JOTCSA. 2023;10(3):671-6.