Review
BibTex RIS Cite

The Role of Molecularly Imprinted Polymers In Sensor Technology: Electrochemical, Optical and Piezoelectric Sensor Applications

Year 2023, Volume: 10 Issue: 4, 1081 - 1098, 11.11.2023
https://doi.org/10.18596/jotcsa.1285655

Abstract

With the help of molecular imprinting technology, artificial receptors can be made and used for identification. This technique's limitless application increases polymer technology and makes it adaptable to other technologies. In this study, examples of sensor applications are used to explain molecular imprinting technology (MIT) and its brief history. MIT can be used to create polymer-based artificial receptors with remarkable selectivity and affinity to detect any target molecules that can be imprinted on a polymer. A monomer is synthesized around a template molecule to create a selective cavity that serves as an artificial receptor. Molecularly imprinted polymers (MIP) offer a wide range of uses and have recently garnered much attention. These polymers' production methods, production kinds, and molecular imprinting techniques are all thoroughly detailed. The outstanding properties of MIPs make a crucial contribution to sensor applications offering selective, fast, easy, and cost-effective analysis, which became very popular after Clark published his first biosensor study. Apart from the biological recognition receptors, MIPs have the advantage that they are not affected by physical conditions of the environment, such as temperature, pH, and ion strength. To overcome the biological recognition receptors' disadvantages, molecularly imprinted polymers can be used for sensor development. From the point of view of the review, the combination of MIPs and sensors was explained and proposed as an informative paper.

Ethical Statement

Authors declare that they have no conflict of interest in The Role of Molecularly Imprinted Polymers In Sensor Technology: Electrochemical, Optical and Piezoelectric Sensor Applications.

References

  • 1. Clark LC, Kaplan S, Matthews EC, Edwards PK, Helmsworth JA. Monitor and control of blood oxygen tension and pH during total body perfusion. J Thorac Surg [Internet]. 1958 Oct;36(4):488–96. Available from: <URL>.
  • 2. Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci [Internet]. 1962 Oct 15;102(1):29–45. Available from: <URL>.
  • 3. Turner A, Swain A. Commercial perspectives for diagnostics using biosensor technologies. Am Biotechnol Lab [Internet]. 1988;6(8):10. Available from: <URL>.
  • 4. Wang J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis [Internet]. 2001;13(12):983–8. Available from: <URL>.
  • 5. Newman JD, Turner APF. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron [Internet]. 2005 Jun 15;20(12):2435–53. Available from: <URL>.
  • 6. Marli C, Gouvea CP. Biosensors for health applications. In: Serra PA, editor. Biosensors for Health, Environment and Biosecurity [Internet]. InTech; 2011. Available from: <URL>.
  • 7. Cieplak M, Kutner W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol [Internet]. 2016 Nov 1;34(11):922–41. Available from: <URL>.
  • 8. Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al-Mamun MR, et al. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron X [Internet]. 2021 Sep 1;8:100075. Available from: <URL>.
  • 9. Mehrotra P. Biosensors and their applications – A review. J Oral Biol Craniofacial Res [Internet]. 2016 May 1;6(2):153–9. Available from: <URL>.
  • 10. Yano K, Karube I. Molecularly imprinted polymers for biosensor applications. TrAC Trends Anal Chem [Internet]. 1999 Mar 1;18(3):199–204. Available from: <URL>.
  • 11. Jia S, Zhou Y, Li J, Gong B, Ma S, Ou J. Highly selective enrichment and direct determination of imazethapyr residues from milk using magnetic solid-phase extraction based on restricted-access molecularly imprinted polymers. Anal Methods [Internet]. 2021 Jan 28;13(3):426–35. Available from: <URL>.
  • 12. Fang X, Wang Z, Sun N, Deng C. Magnetic metal oxide affinity chromatography-based molecularly imprinted approach for effective separation of serous and urinary phosphoprotein biomarker. Talanta [Internet]. 2021 May 1;226:122143. Available from: <URL>.
  • 13. Mohebali A, Abdouss M, Kazemi Y, Daneshnia S. Fabrication and characterization of pH-responsive poly (methacrylic acid)-based molecularly imprinted polymers nanosphere for controlled release of amitriptyline hydrochloride. Polym Adv Technol [Internet]. 2021 Nov 6;32(11):4386–96. Available from: <URL>.
  • 14. Kirsch N, Hedin-Dahlström J, Henschel H, Whitcombe MJ, Wikman S, Nicholls IA. Molecularly imprinted polymer catalysis of a Diels-Alder reaction. J Mol Catal B Enzym [Internet]. 2009 Jun 1;58(1–4):110–7. Available from: <URL>.
  • 15. Ertuğrul Uygun HD, Demir MN. A Novel Fullerene‐Pyrrole‐Pyrrole‐3‐Carboxylic Acid Nanocomposite Modified Molecularly Imprinted Impedimetric Sensor for Dopamine Determination in Urine. Electroanalysis [Internet]. 2020 Sep 27;32(9):1971–6. Available from: <URL>.
  • 16. BelBruno JJ. Molecularly Imprinted Polymers. Chem Rev [Internet]. 2019 Jan 9;119(1):94–119. Available from: <URL>.
  • 17. Ramström O, Ansell RJ. Molecular Imprinting Technology: Challenges and Prospects for the Future. Chirality [Internet]. 1998;10(3):195–209. Available from: <URL>.
  • 18. Turiel E, Martín-Esteban A. Molecularly imprinted polymers for sample preparation: A review. Anal Chim Acta [Internet]. 2010 Jun 4;668(2):87–99. Available from: <URL>.
  • 19. Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron [Internet]. 2018 Feb 15;100:56–70. Available from: <URL>.
  • 20. Ali HR. New Trends for Removal of Water Pollutants. In: Heimann RB, editor. Prime Archives in Material Science [Internet]. India: Vide Leaf; 2020. p. 1–57. Available from: <URL>.
  • 21. Andersson L, Sellergren B, Mosbach K. Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Lett [Internet]. 1984 Jan 1;25(45):5211–4. Available from: <URL>.
  • 22. Wulff G, Oberkobusch D, Minárik M. Enzyme-analogue built polymers, 18 chiral cavities in polymer layers coated on wide-pore silica. React Polym Ion Exch Sorbents [Internet]. 1985 Oct 1;3(4):261–75. Available from: <URL>.
  • 23. Cao Y, Feng T, Xu J, Xue C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens Bioelectron [Internet]. 2019 Sep 15;141:111447. Available from: <URL>.
  • 24. Cormack PA., Elorza AZ. Molecularly imprinted polymers: synthesis and characterisation. J Chromatogr B [Internet]. 2004 May 5;804(1):173–82. Available from: <URL>.
  • 25. Hasanah AN, Safitri N, Zulfa A, Neli N, Rahayu D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules [Internet]. 2021 Sep 16;26(18):5612. Available from: <URL>.
  • 26. Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater [Internet]. 2012 Feb 1;8(2):461–73. Available from: <URL>.
  • 27. Iskierko Z, Sharma PS, Bartold K, Pietrzyk-Le A, Noworyta K, Kutner W. Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol Adv [Internet]. 2016 Jan 1;34(1):30–46. Available from: <URL>.
  • 28. Ouyang Y, Bai L, Tian H, Li X, Yuan F. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos Part A Appl Sci Manuf [Internet]. 2022 Jan 1;152:106685. Available from: <URL>.
  • 29. Wackerlig J, Schirhagl R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal Chem [Internet]. 2016 Jan 5;88(1):250–61. Available from: <URL>.
  • 30. Caro E, Masqué N, Marcé RM, Borrull F, Cormack PA., Sherrington DC. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. J Chromatogr A [Internet]. 2002 Jul;963(1–2):169–78. Available from: <URL>.
  • 31. Uygun ZO, Ertugrul Uygun HD, Ermis N, Canbay E. Molecularly Imprinted Sensors — New Sensing Technologies. In: Rinken T, editor. Biosensors - Micro and Nanoscale Applications [Internet]. InTech; 2015. p. 85–108. Available from: <URL>.
  • 32. Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. In: Comprehensive Analytical Chemistry [Internet]. Elsevier; 2019. p. 17–40. Available from: <URL>.
  • 33. Brooks B. Suspension Polymerization Processes. Chem Eng Technol [Internet]. 2010 Nov 25;33(11):1737–44. Available from: <URL>.
  • 34. Lovell PA, Schork FJ. Fundamentals of Emulsion Polymerization. Biomacromolecules [Internet]. 2020 Nov 9;21(11):4396–441. Available from: <URL>.
  • 35. Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J [Internet]. 2021 Feb 15;145:110231. Available from: <URL>.
  • 36. Bisht HS, Chatterjee AK. Living free-radical polymerization-A review. J Macromol Sci Part C Polym Rev [Internet]. 2001 Jul 31;41(3):139–73. Available from: <URL>.
  • 37. Renkecz T, László K, Horváth V. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high‐viscosity polymerization solvents. J Mol Recognit [Internet]. 2012 Jun 25;25(6):320–9. Available from: <URL>.
  • 38. Ertuğrul Uygun HD, Uygun ZO, Canbay E, Girgin Sağın F, Sezer E. Non-invasive cortisol detection in saliva by using molecularly cortisol imprinted fullerene-acrylamide modified screen printed electrodes. Talanta [Internet]. 2020 Jan 1;206:120225. Available from: <URL>.
  • 39. Uzun L, Turner APF. Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron [Internet]. 2016 Feb 15;76:131–44. Available from: <URL>.
  • 40. Pohanka M. Sensors Based on Molecularly Imprinted Polymers. Int J Electrochem Sci [Internet]. 2017 Sep 1;12(9):8082–94. Available from: <URL>.
  • 41. Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) [Internet]. 2021 Mar 22 [cited 2023 Sep 28];13(6):974. Available from: <URL>.
  • 42. Brüggemann O, Haupt K, Ye L, Yilmaz E, Mosbach K. New configurations and applications of molecularly imprinted polymers. J Chromatogr A [Internet]. 2000 Aug 11;889(1–2):15–24. Available from: <URL>.
  • 43. Zahedi P, Ziaee M, Abdouss M, Farazin A, Mizaikoff B. Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. Polym Adv Technol [Internet]. 2016 Sep 1;27(9):1124–42. Available from: <URL>.
  • 44. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft Lithography in Biology and Biochemistry. Annu Rev Biomed Eng [Internet]. 2001 Aug 28;3(1):335–73. Available from: <URL>.
  • 45. Mujahid A, Iqbal N, Afzal A. Bioimprinting strategies: From soft lithography to biomimetic sensors and beyond. Biotechnol Adv [Internet]. 2013 Dec;31(8):1435–47. Available from: <URL>.
  • 46. Voicu R, Faid K, Farah AA, Bensebaa F, Barjovanu R, Py C, et al. Nanotemplating for Two-Dimensional Molecular Imprinting. Langmuir [Internet]. 2007 May 1;23(10):5452–8. Available from: <URL>.
  • 47. Bonatti AF, De Maria C, Vozzi G. Molecular Imprinting Strategies for Tissue Engineering Applications: A Review. Polymers (Basel) [Internet]. 2021 Feb 12;13(4):548. Available from: <URL>.
  • 48. Tan CJ, Chua HG, Ker KH, Tong YW. Preparation of Bovine Serum Albumin Surface-Imprinted Submicrometer Particles with Magnetic Susceptibility through Core−Shell Miniemulsion Polymerization. Anal Chem [Internet]. 2008 Feb 1;80(3):683–92. Available from: <URL>.
  • 49. Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim Biophys Acta - Protein Struct Mol Enzymol [Internet]. 2001 Jan 12;1544(1–2):255–66. Available from: <URL>.
  • 50. Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, et al. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends Food Sci Technol [Internet]. 2021 Oct 1;116:387–404. Available from: <URL>.
  • 51. Cui F, Zhou Z, Zhou HS. Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. Sensors [Internet]. 2020 Feb 13;20(4):996. Available from: <URL>.
  • 52. Sundhoro M, Agnihotra SR, Amberger B, Augustus K, Khan ND, Barnes A, et al. An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chem [Internet]. 2021 May 15;344:128648. Available from: <URL>.
  • 53. Aghoutane Y, Diouf A, Österlund L, Bouchikhi B, El Bari N. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry [Internet]. 2020 Apr 1;132:107404. Available from: <URL>.
  • 54. Ayankojo AG, Reut J, Ciocan V, Öpik A, Syritski V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta [Internet]. 2020 Mar 1;209:120502. Available from: <URL>.
  • 55. Mazouz Z, Mokni M, Fourati N, Zerrouki C, Barbault F, Seydou M, et al. Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens Bioelectron [Internet]. 2020 Mar 1;151:111978. Available from: <URL>.
  • 56. Raziq A, Kidakova A, Boroznjak R, Reut J, Öpik A, Syritski V. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron [Internet]. 2021 Apr 15;178:113029. Available from: <URL>.
  • 57. Zeb S, Wong A, Khan S, Hussain S, Sotomayor MDPT. Using magnetic nanoparticles/MIP-based electrochemical sensor for quantification of tetracycline in milk samples. J Electroanal Chem [Internet]. 2021 Nov 1;900:115713. Available from: <URL>.
  • 58. Moncer F, Adhoum N, Catak D, Monser L. Electrochemical sensor based on MIP for highly sensitive detection of 5-hydroxyindole-3-acetic acid carcinoid cancer biomarker in human biological fluids. Anal Chim Acta [Internet]. 2021 Oct 9;1181:338925. Available from: <URL>.
  • 59. Onur Uygun Z, Ertuğrul Uygun HD. A Novel Chronoimpedimetric Glucose Sensor in Real Blood Samples Modified by Glucose‐imprinted Pyrrole‐Aminophenylboronic Acid Modified Screen Printed Electrode. Electroanalysis [Internet]. 2020 Feb 24;32(2):226–9. Available from: <URL>.
  • 60. Choi DY, Yang JC, Park J. Optimization and characterization of electrochemical protein Imprinting on hemispherical porous gold patterns for the detection of trypsin. Sensors Actuators B Chem [Internet]. 2022 Jan 1;350:130855. Available from: <URL>.
  • 61. Zhao H, Wang H, Quan X, Tan F. Amperometric Sensor for Tetracycline Determination Based on Molecularly Imprinted Technique. Procedia Environ Sci [Internet]. 2013 Jan 1;18:249–57. Available from: <URL>.
  • 62. Pesavento M, Merli D, Biesuz R, Alberti G, Marchetti S, Milanese C. A MIP-based low-cost electrochemical sensor for 2-furaldehyde detection in beverages. Anal Chim Acta [Internet]. 2021 Jan 15;1142:201–10. Available from: <URL>.
  • 63. Amouzadeh Tabrizi M, Fernández-Blázquez JP, Medina DM, Acedo P. An ultrasensitive molecularly imprinted polymer-based electrochemical sensor for the determination of SARS-CoV-2-RBD by using macroporous gold screen-printed electrode. Biosens Bioelectron [Internet]. 2022 Jan 15;196:113729. Available from: <URL>.
  • 64. Bakas I, Salmi Z, Jouini M, Geneste F, Mazerie I, Floner D, et al. Picomolar Detection of Melamine Using Molecularly Imprinted Polymer‐Based Electrochemical Sensors Prepared by UV‐Graft Photopolymerization. Electroanalysis [Internet]. 2015 Feb 15;27(2):429–39. Available from: <URL>.
  • 65. Zhang Z, Chen S, Ren J, Han F, Yu X, Tang F, et al. Facile construction of a molecularly imprinted polymer–based electrochemical sensor for the detection of milk amyloid A. Microchim Acta [Internet]. 2020 Dec 1;187(12):1–10. Available from: <URL>.
  • 66. Silva BVM, Rodríguez BAG, Sales GF, Sotomayor MDPT, Dutra RF. An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer. Biosens Bioelectron [Internet]. 2016 Mar 15;77:978–85. Available from: <URL>.
  • 67. Moreira FTC, Dutra RAF, Noronha JPC, Sales MGF. Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochim Acta [Internet]. 2013 Sep 30;107:481–7. Available from: <URL>.
  • 68. Siciliano G, Chiriacò MS, Ferrara F, Turco A, Velardi L, Signore MA, et al. Development of an MIP based electrochemical sensor for TGF-β1 detection and its application in liquid biopsy. Analyst [Internet]. 2023 Sep 11;148(18):4447–55. Available from: <URL>.
  • 69. Budak F, Cetinkaya A, Kaya SI, Atici EB, Ozkan SA. A molecularly imprinted polymer-based electrochemical sensor for the determination of tofacitinib. Microchim Acta [Internet]. 2023 Jun 10;190(6):205. Available from: <URL>.
  • 70. Ding M, Niu H, Guan P, Hu X. Molecularly imprinted sensor based on poly-o-phenylenediamine-hydroquinone polymer for β-amyloid-42 detection. Anal Bioanal Chem [Internet]. 2023 Mar 18;415(8):1545–57. Available from: <URL>.
  • 71. Atef Abdel Fatah M, Abd El-Moghny MG, El-Deab MS, Mohamed El Nashar R. Application of molecularly imprinted electrochemical sensor for trace analysis of Metribuzin herbicide in food samples. Food Chem [Internet]. 2023 Mar 15;404:134708. Available from: <URL>.
  • 72. Soliman SS, Mahmoud AM, Elghobashy MR, Zaazaa HE, Sedik GA. Point-of-care electrochemical sensor for selective determination of date rape drug “ketamine” based on core-shell molecularly imprinted polymer. Talanta [Internet]. 2023 Mar 1;254:124151. Available from: <URL>.
  • 73. Ma J, Yan M, Feng G, Ying Y, Chen G, Shao Y, et al. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications. Talanta [Internet]. 2021 Apr 1;225:122031. Available from: <URL>.
  • 74. Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol [Internet]. 2019 Mar 1;37(3):294–309. Available from: <URL>.
  • 75. Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, et al. SPR Sensor Chip for Detection of Small Molecules Using Molecularly Imprinted Polymer with Embedded Gold Nanoparticles. Anal Chem [Internet]. 2005 Jul 1;77(13):4282–5. Available from: <URL>.
  • 76. Singh P. SPR Biosensors: Historical Perspectives and Current Challenges. Sensors Actuators B Chem [Internet]. 2016 Jun 28;229:110–30. Available from: <URL>.
  • 77. Luo Q, Yu N, Shi C, Wang X, Wu J. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array. Talanta [Internet]. 2016 Dec 1;161:797–803. Available from: <URL>.
  • 78. Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors [Internet]. 2021 Feb 5;21(4):1109. Available from: <URL>.
  • 79. Altintas Z, Guerreiro A, Piletsky SA, Tothill IE. NanoMIP based optical sensor for pharmaceuticals monitoring. Sensors Actuators B Chem [Internet]. 2015 Jul 5;213:305–13. Available from: <URL>.
  • 80. Motaharian A, Hajebrahimi M, Hosseini MRM, Khosrokhavar R. Molecularly Imprinted Sol‐Gel Sensing Film‐Based Optical Sensor for Determination of Sulfasalazine Antibiotic. ChemistrySelect [Internet]. 2020 Nov 13;5(42):13191–7. Available from: <URL>.
  • 81. Chen Y-C, Brazier JJ, Yan M, Bargo PR, Prahl SA. Fluorescence-based optical sensor design for molecularly imprinted polymers. Sensors Actuators B Chem [Internet]. 2004 Sep 1;102(1):107–16. Available from: <URL>.
  • 82. Sa-nguanprang S, Phuruangrat A, Bunkoed O. An optosensor based on a hybrid sensing probe of mesoporous carbon and quantum dots embedded in imprinted polymer for ultrasensitive detection of thiamphenicol in milk. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2022 Jan 5;264:120324. Available from: <URL>.
  • 83. Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O. A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sensors Actuators B Chem [Internet]. 2018 Jan 1;254:255–63. Available from: <URL>.
  • 84. Yu J, Liu H, Wang Y, Li J, Wu D, Wang X. Fluorescent sensing system based on molecularly imprinted phase-change microcapsules and carbon quantum dots for high-efficient detection of tetracycline. J Colloid Interface Sci [Internet]. 2021 Oct 1;599:332–50. Available from: <URL>.
  • 85. Sari E, Üzek R, Duman M, Denizli A. Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites. J Biomater Sci Polym Ed [Internet]. 2018 Jul 24;29(11):1302–18. Available from: <URL>.
  • 86. Ertürk Bergdahl G, Andersson T, Allhorn M, Yngman S, Timm R, Lood R. In Vivo Detection and Absolute Quantification of a Secreted Bacterial Factor from Skin Using Molecularly Imprinted Polymers in a Surface Plasmon Resonance Biosensor for Improved Diagnostic Abilities. ACS Sensors [Internet]. 2019 Mar 22;4(3):717–25. Available from: <URL>.
  • 87. Suda N, Sunayama H, Kitayama Y, Kamon Y, Takeuchi T. Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. R Soc Open Sci [Internet]. 2017 Aug 16;4(8):170300. Available from: <URL>.
  • 88. Xu X, Zhang Y, Wang B, Luo L, Xu Z, Tian X. A novel surface plasmon resonance sensor based on a functionalized graphene oxide/molecular-imprinted polymer composite for chiral recognition of L-tryptophan. RSC Adv [Internet]. 2018 Sep 19;8(57):32538–44. Available from: <URL>.
  • 89. Zhang L, Zhu C, Chen C, Zhu S, Zhou J, Wang M, et al. Determination of kanamycin using a molecularly imprinted SPR sensor. Food Chem [Internet]. 2018 Nov 15;266:170–4. Available from: <URL>.
  • 90. Ashley J, Shukor Y, D’Aurelio R, Trinh L, Rodgers TL, Temblay J, et al. Synthesis of Molecularly Imprinted Polymer Nanoparticles for α-Casein Detection Using Surface Plasmon Resonance as a Milk Allergen Sensor. ACS Sensors [Internet]. 2018 Feb 23;3(2):418–24. Available from: <URL>.
  • 91. Weber P, Riegger BR, Niedergall K, Tovar GEM, Bach M, Gauglitz G. Nano-MIP based sensor for penicillin G: Sensitive layer and analytical validation. Sensors Actuators B Chem [Internet]. 2018 Aug 15;267:26–33. Available from: <URL>.
  • 92. Meza López F de L, Khan S, Picasso G, Sotomayor MDPT. A novel highly sensitive imprinted polymer-based optical sensor for the detection of Pb(II) in water samples. Environ Nanotechnology, Monit Manag [Internet]. 2021 Dec 1;16:100497. Available from: <URL>.
  • 93. Sistani S, Shekarchizadeh H. Fabrication of fluorescence sensor based on molecularly imprinted polymer on amine-modified carbon quantum dots for fast and highly sensitive and selective detection of tannic acid in food samples. Anal Chim Acta [Internet]. 2021 Nov 22;1186:339122. Available from: <URL>.
  • 94. Huang J, Tong J, Luo J, Zhu Y, Gu Y, Liu X. Green Synthesis of Water-Compatible Fluorescent Molecularly Imprinted Polymeric Nanoparticles for Efficient Detection of Paracetamol. ACS Sustain Chem Eng [Internet]. 2018 Aug 6;6(8):9760–70. Available from: <URL>.
  • 95. Sergeyeva T, Yarynka D, Piletska E, Linnik R, Zaporozhets O, Brovko O, et al. Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes. Talanta [Internet]. 2019 Aug 15;201:204–10. Available from: <URL>.
  • 96. Wu L, Yan H, Li G, Xu X, Zhu L, Chen X, et al. Surface-Imprinted Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Sensitive and Specific Detection of Patulin in Food Samples. Food Anal Methods [Internet]. 2019 Jul 25;12(7):1648–57. Available from: <URL>.
  • 97. Kurt ZT, Çimen D, Denizli A, Bereli N. Development of Optical-Based Molecularly Imprinted Nanosensors for Adenosine Detection. ACS Omega [Internet]. 2023 May 30;8(21):18839–50. Available from: <URL>.
  • 98. Arcadio F, Noël L, Del Prete D, Maniglio D, Seggio M, Soppera O, et al. Soft molecularly imprinted nanoparticles with simultaneous lossy mode and surface plasmon multi-resonances for femtomolar sensing of serum transferrin protein. Sci Rep [Internet]. 2023 Jul 11;13(1):11210. Available from: <URL>.
  • 99. Çapar N, Yola BB, Polat İ, Bekerecioğlu S, Atar N, Yola ML. A zearalenone detection based on molecularly imprinted surface plasmon resonance sensor including sulfur-doped g-C3N4/Bi2S3 nanocomposite. Microchem J [Internet]. 2023 Oct 1;193:109141. Available from: <URL>.
  • 100. Çorman ME, Armutcu C, Karasu T, Özgür E, Uzun L. Highly Selective Benzo[a]Pyrene Detection Even under Competitive Conditions with Molecularly Imprinted Surface Plasmon Resonance Sensor. Polycycl Aromat Compd [Internet]. 2023 May 28;43(5):3896–909. Available from: <URL>.
  • 101. Alberti G, Spina S, Arcadio F, Pesavento M, De Maria L, Cennamo N, et al. MIP-Assisted 3-Hole POF Chip Faced with SPR-POF Sensor for Glyphosate Detection. Chemosensors [Internet]. 2023 Jul 22;11(7):414. Available from: <URL>.
  • 102. Pohanka M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials (Basel) [Internet]. 2018 Mar 19;11(3):448. Available from: <URL>.
  • 103. Spieker E, Lieberzeit PA. Molecular Imprinting Studies for Developing QCM-sensors for Bacillus Cereus. Procedia Eng [Internet]. 2016 Jan 1;168:561–4. Available from: <URL>.
  • 104. Suedee R, Intakong W, Lieberzeit PA, Wanichapichart P, Chooto P, Dickert FL. Trichloroacetic acid-imprinted polypyrrole film and its property in piezoelectric quartz crystal microbalance and electrochemical sensors to application for determination of haloacetic acids disinfection by-product in drinking water. J Appl Polym Sci [Internet]. 2007 Dec 15;106(6):3861–71. Available from: <URL>.
  • 105. Pan M, Fang G, Lu Y, Kong L, Yang Y, Wang S. Molecularly imprinted biomimetic QCM sensor involving a poly(amidoamine) dendrimer as a functional monomer for the highly selective and sensitive determination of methimazole. Sensors Actuators B Chem [Internet]. 2015 Feb 1;207(PartA):588–95. Available from: <URL>.
  • 106. Çiçek Ç, Yılmaz F, Özgür E, Yavuz H, Denizli A. Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM) for Bilirubin Detection. Chemosensors [Internet]. 2016 Nov 18;4(4):21. Available from: <URL>.
  • 107. Mirmohseni A, Houjaghan MR. Measurement of the pesticide methomyl by modified quartz crystal nanobalance with molecularly imprinted polymer. J Environ Sci Heal Part B [Internet]. 2013 Mar;48(4):278–84. Available from: <URL>.
  • 108. Bi X, Yang K-L. On-Line Monitoring Imidacloprid and Thiacloprid in Celery Juice Using Quartz Crystal Microbalance. Anal Chem [Internet]. 2009 Jan 15;81(2):527–32. Available from: <URL>.
  • 109. Hussain M, Kotova K, Lieberzeit P. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors [Internet]. 2016 Jun 30;16(7):1011. Available from: <URL>.
  • 110. Ayankojo AG, Reut J, Boroznjak R, Öpik A, Syritski V. Molecularly imprinted poly(meta-phenylenediamine) based QCM sensor for detecting Amoxicillin. Sensors Actuators B Chem [Internet]. 2018 Apr 1;258:766–74. Available from: <URL>.
  • 111. Kumar Singh A, Singh M. QCM sensing of melphalan via electropolymerized molecularly imprinted polythiophene films. Biosens Bioelectron [Internet]. 2015 Dec 15;74:711–7. Available from: <URL>.
  • 112. Prabakaran K, Jandas PJ, Luo J, Fu C, Wei Q. Molecularly imprinted poly(methacrylic acid) based QCM biosensor for selective determination of L-tryptophan. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021 Feb 20;611:125859. Available from: <URL>.
  • 113. Kushwaha A, Srivastava J, Singh M. EQCM sensor for targeting psychoactive drug via rationally designed molecularly imprinted polymeric nanoparticles (nanoMIPs). Mater Today Proc [Internet]. 2022 Jan 1;49:3345–56. Available from: <URL>.
  • 114. Kadirsoy S, Atar N, Yola ML. Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New J Chem [Internet]. 2020 Apr 27;44(16):6524–32. Available from: <URL>.
  • 115. Çapar N, Polat İ, Yola BB, Atar N, Yola ML. A novel molecular imprinted QCM sensor based on MoS2NPs-MWCNT nanocomposite for zearalenone determination. Microchim Acta [Internet]. 2023 Jul 17;190(7):262. Available from: <URL>.
  • 116. Cai X, Liu J, Liang D, Tang S, Xu B. Construction of a QCM sensor for detecting diethylstilbestrol in water based on the computational design of molecularly imprinted polymers. Arab J Chem [Internet]. 2023 Apr 1;16(4):104601. Available from: <URL>.
  • 117. Acet Ö, Odabaşı M. Detection of N-hexanoyl-L-homoserine lactone via MIP-based QCM sensor: preparation and characterization. Polym Bull [Internet]. 2023 Jun 22;80(6):6657–74. Available from: <URL>.
  • 118. Wen T, He W, Nie Q, Gong Z, Li D, Wen L, et al. Discrimination of citrus infested with Bactrocera dorsalis (Hendel) using an olfactory detection system based on MIPs-QCM sensor array and Bayesian optimized classification algorithms. Sensors Actuators B Chem [Internet]. 2023 Jun 15;385:133687. Available from: <URL>.
  • 119. Humairah NA, Nurijal I, Ainus Sofa S, Chaerunnisa A, Roto R, Kusumaatmaja A, et al. Molecularly imprinted polyvinyl acetate doped with boric acid for sensitivity and selectivity of ammonia sensing by QCM. Biosens Bioelectron X [Internet]. 2023 May 1;13:100320. Available from: <URL>.
  • 120. Shiokawa S, Kondoh J. Surface Acoustic Wave Sensors. Jpn J Appl Phys [Internet]. 2004 May 1;43(5S):2799. Available from: <URL>.
  • 121. Ermolaeva TN, Farafonova O V., Chernyshova VN, Zyablov AN, Tarasova N V. A Piezoelectric Sensor Based on Nanoparticles of Ractopamine Molecularly Imprinted Polymers. J Anal Chem [Internet]. 2020 Oct 2;75(10):1270–7. Available from: <URL>.
  • 122. Debabhuti N, Neogi S, Mukherjee S, Dhar A, Sharma P, Vekariya RL, et al. Development of QCM sensor to detect α-terpinyl acetate in cardamom. Sensors Actuators A Phys [Internet]. 2021 Mar 1;319:112521. Available from: <URL>.
Year 2023, Volume: 10 Issue: 4, 1081 - 1098, 11.11.2023
https://doi.org/10.18596/jotcsa.1285655

Abstract

References

  • 1. Clark LC, Kaplan S, Matthews EC, Edwards PK, Helmsworth JA. Monitor and control of blood oxygen tension and pH during total body perfusion. J Thorac Surg [Internet]. 1958 Oct;36(4):488–96. Available from: <URL>.
  • 2. Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci [Internet]. 1962 Oct 15;102(1):29–45. Available from: <URL>.
  • 3. Turner A, Swain A. Commercial perspectives for diagnostics using biosensor technologies. Am Biotechnol Lab [Internet]. 1988;6(8):10. Available from: <URL>.
  • 4. Wang J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis [Internet]. 2001;13(12):983–8. Available from: <URL>.
  • 5. Newman JD, Turner APF. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron [Internet]. 2005 Jun 15;20(12):2435–53. Available from: <URL>.
  • 6. Marli C, Gouvea CP. Biosensors for health applications. In: Serra PA, editor. Biosensors for Health, Environment and Biosecurity [Internet]. InTech; 2011. Available from: <URL>.
  • 7. Cieplak M, Kutner W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol [Internet]. 2016 Nov 1;34(11):922–41. Available from: <URL>.
  • 8. Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al-Mamun MR, et al. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron X [Internet]. 2021 Sep 1;8:100075. Available from: <URL>.
  • 9. Mehrotra P. Biosensors and their applications – A review. J Oral Biol Craniofacial Res [Internet]. 2016 May 1;6(2):153–9. Available from: <URL>.
  • 10. Yano K, Karube I. Molecularly imprinted polymers for biosensor applications. TrAC Trends Anal Chem [Internet]. 1999 Mar 1;18(3):199–204. Available from: <URL>.
  • 11. Jia S, Zhou Y, Li J, Gong B, Ma S, Ou J. Highly selective enrichment and direct determination of imazethapyr residues from milk using magnetic solid-phase extraction based on restricted-access molecularly imprinted polymers. Anal Methods [Internet]. 2021 Jan 28;13(3):426–35. Available from: <URL>.
  • 12. Fang X, Wang Z, Sun N, Deng C. Magnetic metal oxide affinity chromatography-based molecularly imprinted approach for effective separation of serous and urinary phosphoprotein biomarker. Talanta [Internet]. 2021 May 1;226:122143. Available from: <URL>.
  • 13. Mohebali A, Abdouss M, Kazemi Y, Daneshnia S. Fabrication and characterization of pH-responsive poly (methacrylic acid)-based molecularly imprinted polymers nanosphere for controlled release of amitriptyline hydrochloride. Polym Adv Technol [Internet]. 2021 Nov 6;32(11):4386–96. Available from: <URL>.
  • 14. Kirsch N, Hedin-Dahlström J, Henschel H, Whitcombe MJ, Wikman S, Nicholls IA. Molecularly imprinted polymer catalysis of a Diels-Alder reaction. J Mol Catal B Enzym [Internet]. 2009 Jun 1;58(1–4):110–7. Available from: <URL>.
  • 15. Ertuğrul Uygun HD, Demir MN. A Novel Fullerene‐Pyrrole‐Pyrrole‐3‐Carboxylic Acid Nanocomposite Modified Molecularly Imprinted Impedimetric Sensor for Dopamine Determination in Urine. Electroanalysis [Internet]. 2020 Sep 27;32(9):1971–6. Available from: <URL>.
  • 16. BelBruno JJ. Molecularly Imprinted Polymers. Chem Rev [Internet]. 2019 Jan 9;119(1):94–119. Available from: <URL>.
  • 17. Ramström O, Ansell RJ. Molecular Imprinting Technology: Challenges and Prospects for the Future. Chirality [Internet]. 1998;10(3):195–209. Available from: <URL>.
  • 18. Turiel E, Martín-Esteban A. Molecularly imprinted polymers for sample preparation: A review. Anal Chim Acta [Internet]. 2010 Jun 4;668(2):87–99. Available from: <URL>.
  • 19. Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron [Internet]. 2018 Feb 15;100:56–70. Available from: <URL>.
  • 20. Ali HR. New Trends for Removal of Water Pollutants. In: Heimann RB, editor. Prime Archives in Material Science [Internet]. India: Vide Leaf; 2020. p. 1–57. Available from: <URL>.
  • 21. Andersson L, Sellergren B, Mosbach K. Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Lett [Internet]. 1984 Jan 1;25(45):5211–4. Available from: <URL>.
  • 22. Wulff G, Oberkobusch D, Minárik M. Enzyme-analogue built polymers, 18 chiral cavities in polymer layers coated on wide-pore silica. React Polym Ion Exch Sorbents [Internet]. 1985 Oct 1;3(4):261–75. Available from: <URL>.
  • 23. Cao Y, Feng T, Xu J, Xue C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens Bioelectron [Internet]. 2019 Sep 15;141:111447. Available from: <URL>.
  • 24. Cormack PA., Elorza AZ. Molecularly imprinted polymers: synthesis and characterisation. J Chromatogr B [Internet]. 2004 May 5;804(1):173–82. Available from: <URL>.
  • 25. Hasanah AN, Safitri N, Zulfa A, Neli N, Rahayu D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules [Internet]. 2021 Sep 16;26(18):5612. Available from: <URL>.
  • 26. Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater [Internet]. 2012 Feb 1;8(2):461–73. Available from: <URL>.
  • 27. Iskierko Z, Sharma PS, Bartold K, Pietrzyk-Le A, Noworyta K, Kutner W. Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol Adv [Internet]. 2016 Jan 1;34(1):30–46. Available from: <URL>.
  • 28. Ouyang Y, Bai L, Tian H, Li X, Yuan F. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos Part A Appl Sci Manuf [Internet]. 2022 Jan 1;152:106685. Available from: <URL>.
  • 29. Wackerlig J, Schirhagl R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal Chem [Internet]. 2016 Jan 5;88(1):250–61. Available from: <URL>.
  • 30. Caro E, Masqué N, Marcé RM, Borrull F, Cormack PA., Sherrington DC. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. J Chromatogr A [Internet]. 2002 Jul;963(1–2):169–78. Available from: <URL>.
  • 31. Uygun ZO, Ertugrul Uygun HD, Ermis N, Canbay E. Molecularly Imprinted Sensors — New Sensing Technologies. In: Rinken T, editor. Biosensors - Micro and Nanoscale Applications [Internet]. InTech; 2015. p. 85–108. Available from: <URL>.
  • 32. Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. In: Comprehensive Analytical Chemistry [Internet]. Elsevier; 2019. p. 17–40. Available from: <URL>.
  • 33. Brooks B. Suspension Polymerization Processes. Chem Eng Technol [Internet]. 2010 Nov 25;33(11):1737–44. Available from: <URL>.
  • 34. Lovell PA, Schork FJ. Fundamentals of Emulsion Polymerization. Biomacromolecules [Internet]. 2020 Nov 9;21(11):4396–441. Available from: <URL>.
  • 35. Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J [Internet]. 2021 Feb 15;145:110231. Available from: <URL>.
  • 36. Bisht HS, Chatterjee AK. Living free-radical polymerization-A review. J Macromol Sci Part C Polym Rev [Internet]. 2001 Jul 31;41(3):139–73. Available from: <URL>.
  • 37. Renkecz T, László K, Horváth V. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high‐viscosity polymerization solvents. J Mol Recognit [Internet]. 2012 Jun 25;25(6):320–9. Available from: <URL>.
  • 38. Ertuğrul Uygun HD, Uygun ZO, Canbay E, Girgin Sağın F, Sezer E. Non-invasive cortisol detection in saliva by using molecularly cortisol imprinted fullerene-acrylamide modified screen printed electrodes. Talanta [Internet]. 2020 Jan 1;206:120225. Available from: <URL>.
  • 39. Uzun L, Turner APF. Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron [Internet]. 2016 Feb 15;76:131–44. Available from: <URL>.
  • 40. Pohanka M. Sensors Based on Molecularly Imprinted Polymers. Int J Electrochem Sci [Internet]. 2017 Sep 1;12(9):8082–94. Available from: <URL>.
  • 41. Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) [Internet]. 2021 Mar 22 [cited 2023 Sep 28];13(6):974. Available from: <URL>.
  • 42. Brüggemann O, Haupt K, Ye L, Yilmaz E, Mosbach K. New configurations and applications of molecularly imprinted polymers. J Chromatogr A [Internet]. 2000 Aug 11;889(1–2):15–24. Available from: <URL>.
  • 43. Zahedi P, Ziaee M, Abdouss M, Farazin A, Mizaikoff B. Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. Polym Adv Technol [Internet]. 2016 Sep 1;27(9):1124–42. Available from: <URL>.
  • 44. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft Lithography in Biology and Biochemistry. Annu Rev Biomed Eng [Internet]. 2001 Aug 28;3(1):335–73. Available from: <URL>.
  • 45. Mujahid A, Iqbal N, Afzal A. Bioimprinting strategies: From soft lithography to biomimetic sensors and beyond. Biotechnol Adv [Internet]. 2013 Dec;31(8):1435–47. Available from: <URL>.
  • 46. Voicu R, Faid K, Farah AA, Bensebaa F, Barjovanu R, Py C, et al. Nanotemplating for Two-Dimensional Molecular Imprinting. Langmuir [Internet]. 2007 May 1;23(10):5452–8. Available from: <URL>.
  • 47. Bonatti AF, De Maria C, Vozzi G. Molecular Imprinting Strategies for Tissue Engineering Applications: A Review. Polymers (Basel) [Internet]. 2021 Feb 12;13(4):548. Available from: <URL>.
  • 48. Tan CJ, Chua HG, Ker KH, Tong YW. Preparation of Bovine Serum Albumin Surface-Imprinted Submicrometer Particles with Magnetic Susceptibility through Core−Shell Miniemulsion Polymerization. Anal Chem [Internet]. 2008 Feb 1;80(3):683–92. Available from: <URL>.
  • 49. Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim Biophys Acta - Protein Struct Mol Enzymol [Internet]. 2001 Jan 12;1544(1–2):255–66. Available from: <URL>.
  • 50. Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, et al. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends Food Sci Technol [Internet]. 2021 Oct 1;116:387–404. Available from: <URL>.
  • 51. Cui F, Zhou Z, Zhou HS. Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. Sensors [Internet]. 2020 Feb 13;20(4):996. Available from: <URL>.
  • 52. Sundhoro M, Agnihotra SR, Amberger B, Augustus K, Khan ND, Barnes A, et al. An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chem [Internet]. 2021 May 15;344:128648. Available from: <URL>.
  • 53. Aghoutane Y, Diouf A, Österlund L, Bouchikhi B, El Bari N. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry [Internet]. 2020 Apr 1;132:107404. Available from: <URL>.
  • 54. Ayankojo AG, Reut J, Ciocan V, Öpik A, Syritski V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta [Internet]. 2020 Mar 1;209:120502. Available from: <URL>.
  • 55. Mazouz Z, Mokni M, Fourati N, Zerrouki C, Barbault F, Seydou M, et al. Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens Bioelectron [Internet]. 2020 Mar 1;151:111978. Available from: <URL>.
  • 56. Raziq A, Kidakova A, Boroznjak R, Reut J, Öpik A, Syritski V. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron [Internet]. 2021 Apr 15;178:113029. Available from: <URL>.
  • 57. Zeb S, Wong A, Khan S, Hussain S, Sotomayor MDPT. Using magnetic nanoparticles/MIP-based electrochemical sensor for quantification of tetracycline in milk samples. J Electroanal Chem [Internet]. 2021 Nov 1;900:115713. Available from: <URL>.
  • 58. Moncer F, Adhoum N, Catak D, Monser L. Electrochemical sensor based on MIP for highly sensitive detection of 5-hydroxyindole-3-acetic acid carcinoid cancer biomarker in human biological fluids. Anal Chim Acta [Internet]. 2021 Oct 9;1181:338925. Available from: <URL>.
  • 59. Onur Uygun Z, Ertuğrul Uygun HD. A Novel Chronoimpedimetric Glucose Sensor in Real Blood Samples Modified by Glucose‐imprinted Pyrrole‐Aminophenylboronic Acid Modified Screen Printed Electrode. Electroanalysis [Internet]. 2020 Feb 24;32(2):226–9. Available from: <URL>.
  • 60. Choi DY, Yang JC, Park J. Optimization and characterization of electrochemical protein Imprinting on hemispherical porous gold patterns for the detection of trypsin. Sensors Actuators B Chem [Internet]. 2022 Jan 1;350:130855. Available from: <URL>.
  • 61. Zhao H, Wang H, Quan X, Tan F. Amperometric Sensor for Tetracycline Determination Based on Molecularly Imprinted Technique. Procedia Environ Sci [Internet]. 2013 Jan 1;18:249–57. Available from: <URL>.
  • 62. Pesavento M, Merli D, Biesuz R, Alberti G, Marchetti S, Milanese C. A MIP-based low-cost electrochemical sensor for 2-furaldehyde detection in beverages. Anal Chim Acta [Internet]. 2021 Jan 15;1142:201–10. Available from: <URL>.
  • 63. Amouzadeh Tabrizi M, Fernández-Blázquez JP, Medina DM, Acedo P. An ultrasensitive molecularly imprinted polymer-based electrochemical sensor for the determination of SARS-CoV-2-RBD by using macroporous gold screen-printed electrode. Biosens Bioelectron [Internet]. 2022 Jan 15;196:113729. Available from: <URL>.
  • 64. Bakas I, Salmi Z, Jouini M, Geneste F, Mazerie I, Floner D, et al. Picomolar Detection of Melamine Using Molecularly Imprinted Polymer‐Based Electrochemical Sensors Prepared by UV‐Graft Photopolymerization. Electroanalysis [Internet]. 2015 Feb 15;27(2):429–39. Available from: <URL>.
  • 65. Zhang Z, Chen S, Ren J, Han F, Yu X, Tang F, et al. Facile construction of a molecularly imprinted polymer–based electrochemical sensor for the detection of milk amyloid A. Microchim Acta [Internet]. 2020 Dec 1;187(12):1–10. Available from: <URL>.
  • 66. Silva BVM, Rodríguez BAG, Sales GF, Sotomayor MDPT, Dutra RF. An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer. Biosens Bioelectron [Internet]. 2016 Mar 15;77:978–85. Available from: <URL>.
  • 67. Moreira FTC, Dutra RAF, Noronha JPC, Sales MGF. Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochim Acta [Internet]. 2013 Sep 30;107:481–7. Available from: <URL>.
  • 68. Siciliano G, Chiriacò MS, Ferrara F, Turco A, Velardi L, Signore MA, et al. Development of an MIP based electrochemical sensor for TGF-β1 detection and its application in liquid biopsy. Analyst [Internet]. 2023 Sep 11;148(18):4447–55. Available from: <URL>.
  • 69. Budak F, Cetinkaya A, Kaya SI, Atici EB, Ozkan SA. A molecularly imprinted polymer-based electrochemical sensor for the determination of tofacitinib. Microchim Acta [Internet]. 2023 Jun 10;190(6):205. Available from: <URL>.
  • 70. Ding M, Niu H, Guan P, Hu X. Molecularly imprinted sensor based on poly-o-phenylenediamine-hydroquinone polymer for β-amyloid-42 detection. Anal Bioanal Chem [Internet]. 2023 Mar 18;415(8):1545–57. Available from: <URL>.
  • 71. Atef Abdel Fatah M, Abd El-Moghny MG, El-Deab MS, Mohamed El Nashar R. Application of molecularly imprinted electrochemical sensor for trace analysis of Metribuzin herbicide in food samples. Food Chem [Internet]. 2023 Mar 15;404:134708. Available from: <URL>.
  • 72. Soliman SS, Mahmoud AM, Elghobashy MR, Zaazaa HE, Sedik GA. Point-of-care electrochemical sensor for selective determination of date rape drug “ketamine” based on core-shell molecularly imprinted polymer. Talanta [Internet]. 2023 Mar 1;254:124151. Available from: <URL>.
  • 73. Ma J, Yan M, Feng G, Ying Y, Chen G, Shao Y, et al. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications. Talanta [Internet]. 2021 Apr 1;225:122031. Available from: <URL>.
  • 74. Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol [Internet]. 2019 Mar 1;37(3):294–309. Available from: <URL>.
  • 75. Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, et al. SPR Sensor Chip for Detection of Small Molecules Using Molecularly Imprinted Polymer with Embedded Gold Nanoparticles. Anal Chem [Internet]. 2005 Jul 1;77(13):4282–5. Available from: <URL>.
  • 76. Singh P. SPR Biosensors: Historical Perspectives and Current Challenges. Sensors Actuators B Chem [Internet]. 2016 Jun 28;229:110–30. Available from: <URL>.
  • 77. Luo Q, Yu N, Shi C, Wang X, Wu J. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array. Talanta [Internet]. 2016 Dec 1;161:797–803. Available from: <URL>.
  • 78. Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors [Internet]. 2021 Feb 5;21(4):1109. Available from: <URL>.
  • 79. Altintas Z, Guerreiro A, Piletsky SA, Tothill IE. NanoMIP based optical sensor for pharmaceuticals monitoring. Sensors Actuators B Chem [Internet]. 2015 Jul 5;213:305–13. Available from: <URL>.
  • 80. Motaharian A, Hajebrahimi M, Hosseini MRM, Khosrokhavar R. Molecularly Imprinted Sol‐Gel Sensing Film‐Based Optical Sensor for Determination of Sulfasalazine Antibiotic. ChemistrySelect [Internet]. 2020 Nov 13;5(42):13191–7. Available from: <URL>.
  • 81. Chen Y-C, Brazier JJ, Yan M, Bargo PR, Prahl SA. Fluorescence-based optical sensor design for molecularly imprinted polymers. Sensors Actuators B Chem [Internet]. 2004 Sep 1;102(1):107–16. Available from: <URL>.
  • 82. Sa-nguanprang S, Phuruangrat A, Bunkoed O. An optosensor based on a hybrid sensing probe of mesoporous carbon and quantum dots embedded in imprinted polymer for ultrasensitive detection of thiamphenicol in milk. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2022 Jan 5;264:120324. Available from: <URL>.
  • 83. Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O. A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sensors Actuators B Chem [Internet]. 2018 Jan 1;254:255–63. Available from: <URL>.
  • 84. Yu J, Liu H, Wang Y, Li J, Wu D, Wang X. Fluorescent sensing system based on molecularly imprinted phase-change microcapsules and carbon quantum dots for high-efficient detection of tetracycline. J Colloid Interface Sci [Internet]. 2021 Oct 1;599:332–50. Available from: <URL>.
  • 85. Sari E, Üzek R, Duman M, Denizli A. Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites. J Biomater Sci Polym Ed [Internet]. 2018 Jul 24;29(11):1302–18. Available from: <URL>.
  • 86. Ertürk Bergdahl G, Andersson T, Allhorn M, Yngman S, Timm R, Lood R. In Vivo Detection and Absolute Quantification of a Secreted Bacterial Factor from Skin Using Molecularly Imprinted Polymers in a Surface Plasmon Resonance Biosensor for Improved Diagnostic Abilities. ACS Sensors [Internet]. 2019 Mar 22;4(3):717–25. Available from: <URL>.
  • 87. Suda N, Sunayama H, Kitayama Y, Kamon Y, Takeuchi T. Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. R Soc Open Sci [Internet]. 2017 Aug 16;4(8):170300. Available from: <URL>.
  • 88. Xu X, Zhang Y, Wang B, Luo L, Xu Z, Tian X. A novel surface plasmon resonance sensor based on a functionalized graphene oxide/molecular-imprinted polymer composite for chiral recognition of L-tryptophan. RSC Adv [Internet]. 2018 Sep 19;8(57):32538–44. Available from: <URL>.
  • 89. Zhang L, Zhu C, Chen C, Zhu S, Zhou J, Wang M, et al. Determination of kanamycin using a molecularly imprinted SPR sensor. Food Chem [Internet]. 2018 Nov 15;266:170–4. Available from: <URL>.
  • 90. Ashley J, Shukor Y, D’Aurelio R, Trinh L, Rodgers TL, Temblay J, et al. Synthesis of Molecularly Imprinted Polymer Nanoparticles for α-Casein Detection Using Surface Plasmon Resonance as a Milk Allergen Sensor. ACS Sensors [Internet]. 2018 Feb 23;3(2):418–24. Available from: <URL>.
  • 91. Weber P, Riegger BR, Niedergall K, Tovar GEM, Bach M, Gauglitz G. Nano-MIP based sensor for penicillin G: Sensitive layer and analytical validation. Sensors Actuators B Chem [Internet]. 2018 Aug 15;267:26–33. Available from: <URL>.
  • 92. Meza López F de L, Khan S, Picasso G, Sotomayor MDPT. A novel highly sensitive imprinted polymer-based optical sensor for the detection of Pb(II) in water samples. Environ Nanotechnology, Monit Manag [Internet]. 2021 Dec 1;16:100497. Available from: <URL>.
  • 93. Sistani S, Shekarchizadeh H. Fabrication of fluorescence sensor based on molecularly imprinted polymer on amine-modified carbon quantum dots for fast and highly sensitive and selective detection of tannic acid in food samples. Anal Chim Acta [Internet]. 2021 Nov 22;1186:339122. Available from: <URL>.
  • 94. Huang J, Tong J, Luo J, Zhu Y, Gu Y, Liu X. Green Synthesis of Water-Compatible Fluorescent Molecularly Imprinted Polymeric Nanoparticles for Efficient Detection of Paracetamol. ACS Sustain Chem Eng [Internet]. 2018 Aug 6;6(8):9760–70. Available from: <URL>.
  • 95. Sergeyeva T, Yarynka D, Piletska E, Linnik R, Zaporozhets O, Brovko O, et al. Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes. Talanta [Internet]. 2019 Aug 15;201:204–10. Available from: <URL>.
  • 96. Wu L, Yan H, Li G, Xu X, Zhu L, Chen X, et al. Surface-Imprinted Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Sensitive and Specific Detection of Patulin in Food Samples. Food Anal Methods [Internet]. 2019 Jul 25;12(7):1648–57. Available from: <URL>.
  • 97. Kurt ZT, Çimen D, Denizli A, Bereli N. Development of Optical-Based Molecularly Imprinted Nanosensors for Adenosine Detection. ACS Omega [Internet]. 2023 May 30;8(21):18839–50. Available from: <URL>.
  • 98. Arcadio F, Noël L, Del Prete D, Maniglio D, Seggio M, Soppera O, et al. Soft molecularly imprinted nanoparticles with simultaneous lossy mode and surface plasmon multi-resonances for femtomolar sensing of serum transferrin protein. Sci Rep [Internet]. 2023 Jul 11;13(1):11210. Available from: <URL>.
  • 99. Çapar N, Yola BB, Polat İ, Bekerecioğlu S, Atar N, Yola ML. A zearalenone detection based on molecularly imprinted surface plasmon resonance sensor including sulfur-doped g-C3N4/Bi2S3 nanocomposite. Microchem J [Internet]. 2023 Oct 1;193:109141. Available from: <URL>.
  • 100. Çorman ME, Armutcu C, Karasu T, Özgür E, Uzun L. Highly Selective Benzo[a]Pyrene Detection Even under Competitive Conditions with Molecularly Imprinted Surface Plasmon Resonance Sensor. Polycycl Aromat Compd [Internet]. 2023 May 28;43(5):3896–909. Available from: <URL>.
  • 101. Alberti G, Spina S, Arcadio F, Pesavento M, De Maria L, Cennamo N, et al. MIP-Assisted 3-Hole POF Chip Faced with SPR-POF Sensor for Glyphosate Detection. Chemosensors [Internet]. 2023 Jul 22;11(7):414. Available from: <URL>.
  • 102. Pohanka M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials (Basel) [Internet]. 2018 Mar 19;11(3):448. Available from: <URL>.
  • 103. Spieker E, Lieberzeit PA. Molecular Imprinting Studies for Developing QCM-sensors for Bacillus Cereus. Procedia Eng [Internet]. 2016 Jan 1;168:561–4. Available from: <URL>.
  • 104. Suedee R, Intakong W, Lieberzeit PA, Wanichapichart P, Chooto P, Dickert FL. Trichloroacetic acid-imprinted polypyrrole film and its property in piezoelectric quartz crystal microbalance and electrochemical sensors to application for determination of haloacetic acids disinfection by-product in drinking water. J Appl Polym Sci [Internet]. 2007 Dec 15;106(6):3861–71. Available from: <URL>.
  • 105. Pan M, Fang G, Lu Y, Kong L, Yang Y, Wang S. Molecularly imprinted biomimetic QCM sensor involving a poly(amidoamine) dendrimer as a functional monomer for the highly selective and sensitive determination of methimazole. Sensors Actuators B Chem [Internet]. 2015 Feb 1;207(PartA):588–95. Available from: <URL>.
  • 106. Çiçek Ç, Yılmaz F, Özgür E, Yavuz H, Denizli A. Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM) for Bilirubin Detection. Chemosensors [Internet]. 2016 Nov 18;4(4):21. Available from: <URL>.
  • 107. Mirmohseni A, Houjaghan MR. Measurement of the pesticide methomyl by modified quartz crystal nanobalance with molecularly imprinted polymer. J Environ Sci Heal Part B [Internet]. 2013 Mar;48(4):278–84. Available from: <URL>.
  • 108. Bi X, Yang K-L. On-Line Monitoring Imidacloprid and Thiacloprid in Celery Juice Using Quartz Crystal Microbalance. Anal Chem [Internet]. 2009 Jan 15;81(2):527–32. Available from: <URL>.
  • 109. Hussain M, Kotova K, Lieberzeit P. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors [Internet]. 2016 Jun 30;16(7):1011. Available from: <URL>.
  • 110. Ayankojo AG, Reut J, Boroznjak R, Öpik A, Syritski V. Molecularly imprinted poly(meta-phenylenediamine) based QCM sensor for detecting Amoxicillin. Sensors Actuators B Chem [Internet]. 2018 Apr 1;258:766–74. Available from: <URL>.
  • 111. Kumar Singh A, Singh M. QCM sensing of melphalan via electropolymerized molecularly imprinted polythiophene films. Biosens Bioelectron [Internet]. 2015 Dec 15;74:711–7. Available from: <URL>.
  • 112. Prabakaran K, Jandas PJ, Luo J, Fu C, Wei Q. Molecularly imprinted poly(methacrylic acid) based QCM biosensor for selective determination of L-tryptophan. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021 Feb 20;611:125859. Available from: <URL>.
  • 113. Kushwaha A, Srivastava J, Singh M. EQCM sensor for targeting psychoactive drug via rationally designed molecularly imprinted polymeric nanoparticles (nanoMIPs). Mater Today Proc [Internet]. 2022 Jan 1;49:3345–56. Available from: <URL>.
  • 114. Kadirsoy S, Atar N, Yola ML. Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New J Chem [Internet]. 2020 Apr 27;44(16):6524–32. Available from: <URL>.
  • 115. Çapar N, Polat İ, Yola BB, Atar N, Yola ML. A novel molecular imprinted QCM sensor based on MoS2NPs-MWCNT nanocomposite for zearalenone determination. Microchim Acta [Internet]. 2023 Jul 17;190(7):262. Available from: <URL>.
  • 116. Cai X, Liu J, Liang D, Tang S, Xu B. Construction of a QCM sensor for detecting diethylstilbestrol in water based on the computational design of molecularly imprinted polymers. Arab J Chem [Internet]. 2023 Apr 1;16(4):104601. Available from: <URL>.
  • 117. Acet Ö, Odabaşı M. Detection of N-hexanoyl-L-homoserine lactone via MIP-based QCM sensor: preparation and characterization. Polym Bull [Internet]. 2023 Jun 22;80(6):6657–74. Available from: <URL>.
  • 118. Wen T, He W, Nie Q, Gong Z, Li D, Wen L, et al. Discrimination of citrus infested with Bactrocera dorsalis (Hendel) using an olfactory detection system based on MIPs-QCM sensor array and Bayesian optimized classification algorithms. Sensors Actuators B Chem [Internet]. 2023 Jun 15;385:133687. Available from: <URL>.
  • 119. Humairah NA, Nurijal I, Ainus Sofa S, Chaerunnisa A, Roto R, Kusumaatmaja A, et al. Molecularly imprinted polyvinyl acetate doped with boric acid for sensitivity and selectivity of ammonia sensing by QCM. Biosens Bioelectron X [Internet]. 2023 May 1;13:100320. Available from: <URL>.
  • 120. Shiokawa S, Kondoh J. Surface Acoustic Wave Sensors. Jpn J Appl Phys [Internet]. 2004 May 1;43(5S):2799. Available from: <URL>.
  • 121. Ermolaeva TN, Farafonova O V., Chernyshova VN, Zyablov AN, Tarasova N V. A Piezoelectric Sensor Based on Nanoparticles of Ractopamine Molecularly Imprinted Polymers. J Anal Chem [Internet]. 2020 Oct 2;75(10):1270–7. Available from: <URL>.
  • 122. Debabhuti N, Neogi S, Mukherjee S, Dhar A, Sharma P, Vekariya RL, et al. Development of QCM sensor to detect α-terpinyl acetate in cardamom. Sensors Actuators A Phys [Internet]. 2021 Mar 1;319:112521. Available from: <URL>.
There are 122 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section REVIEW ARTICLES
Authors

Hilmiye Deniz Ertuğrul Uygun 0000-0003-1631-527X

Münire Nalan Demir 0000-0001-9863-7023

Publication Date November 11, 2023
Submission Date April 19, 2023
Acceptance Date August 30, 2023
Published in Issue Year 2023 Volume: 10 Issue: 4

Cite

Vancouver Ertuğrul Uygun HD, Demir MN. The Role of Molecularly Imprinted Polymers In Sensor Technology: Electrochemical, Optical and Piezoelectric Sensor Applications. JOTCSA. 2023;10(4):1081-98.