Voltammetric performance of nanofiber structured over-oxidized poly(3,4-ethylenedioxythiophene) modified pencil graphite electrodes for dobutamine sensing
Yıl 2024,
Cilt: 11 Sayı: 1, 55 - 70, 04.02.2024
Ayşegül Özbek
,
Levent Özcan
Öz
A modified electrode was developed for the electrochemical sensing of dobutamine (DBT), one of the catecholamines. For this modification process, pencil graphite electrodes (PGE) were modified with over-oxidized nanofiber structured poly (3,4-ethylenedioxythiophene) (PGE/OPEDOTNF) by electropolymerization. The electrochemical performance of PGE/OPEDOTNF was evaluated by cyclic and differential pulse voltammetry. In addition, the performances of non-nanofiber PEDOT-modified PGE electrodes were also examined for comparison. The characterization of the modified electrodes was carried out by scanning electron microscopy and electrochemical methods. The signal of the modified electrodes was observed in a linear range of 0.1-2.0 µM against DBT using the differential pulse voltammetry method. The limit of detection and quantification are calculated as 0.026 µM and 0.086 µM, respectively. The effect of the interfering species was examined. It has been shown that DBT can be detected sensitively and selectively using pencil graphite electrodes modified with nanofiber-structured poly(3,4-ethylenedioxythiophene). The repeatability of PGE/OPEDOTNF electrodes was found to be 5.2%. PGE/OPEDOTNF electrodes remained stable for 15 days without losing their electrochemical activity.
Destekleyen Kurum
Afyon Kocatepe University Scientific Research Projects Coordination Unit
Proje Numarası
20.FEN.BİL.11
Teşekkür
The authors would like to thank Afyon Kocatepe University Scientific Research Projects Coordination Unit (Project number 20.FEN.BİL.11) for their financial support of this study.
Kaynakça
- 1. Venton BJ, Wightman RM. Psychoanalytical electrochemistry: Dopamine and behavior. Analytical Chemistry. 2003;75:414A-421A. Available from: <URL>
- 2. Zhang Y. Voltammetric behavior of dobutamine at poly (Acridine orange) film modified electrode and its determination by adsorptive stripping voltammetry. Analytical Letters. 2004;37:2031-2042. Available from: <URL>
- 3. Atta NF, Galal A, Abdel-Gawad FM, Mohamed EF. Electrochemistry and detection of dobutamine at gold nanoparticles cobalt-phthalocyanine modified carbon paste electrode. Journal of The Electrochemical Society. 2015;162:B304-B311. Available from: <URL>
- 4. Ekram H, Atta NF, Galal A, El-Gohary AR. Nano-Perovskite decorated carbon nanotubes composite for ultrasensitive determination of a cardio-stimulator drug. Journal of The Electrochemical Society. 2018;16:149-159. Available from: <URL>
- 5. Hasanpour F, Nekoeinia M, Semnani A, Shojaei S. NiMnO3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine. Microchemical Journal. 2018;142:17-23. Available from: <URL>
- 6. Reddy S, Xiao Q, Liu H, Li C, Chen S et al. Bionanotube/Poly (3, 4-ethylenedioxythiophene) nanohybrid as an electrode for the neural interface and dopamine sensor. ACS Applied Materials & Interfaces. 2019;11:18254-18267. Available from: <URL>
- 7. Ozkorucuklu SP, Ozcan L, Sahin Y. Alsancak G. Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes. Australian Journal of Chemistry. 2011;64(7):965-972. Available from: <URL>
- 8. Şahin M, Özcan L, Usta B, Şahin Y. Determination of ascorbic acid by polypyrrole potentiometric detector in ion chromatography. Biosensors and Bioelectronics. 2009;24(12):3492-3497. Available from: <URL>
- 9. Hosseinian M, Najafpour G, Rahimpour A. Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode. Turkish Journal of Chemistry. 2019;43(4):1063-1074. Available from: <URL>
- 10. Gorduk O. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube-over-oxidized Poly(3,4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters. 2020;53:1034-1052. Available from: <URL>
- 11. Chen L, Liu X, Wang C, Lv S, Chen C. Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Microchimica Acta, 2017;184:2073-2079. Available from: <URL>
- 12. Dinesh B, Vilian AE, Kwak CH, Huh YS, Saraswathi R et al. The Facile and simple synthesis of poly(3,4-ethylenedioxythiophene) anchored reduced graphene oxide nanocomposite for biochemical analysis. Analytica Chimica Acta. 2019;1077:150-159. Available from: <URL>
- 13. Liu S, Jiang X, Waterhouse GIN, Zhang ZM, Yu LMA. Cu2O/PEDOT/graphene-modified electrode for the enzyme-free detection and quantification of glucose. Journal of Electroanalytical Chemistry. 2021;897:115558. Available from: <URL>
- 14. Butina K, Löffler S, Rhen M, Richter-Dahlfors A. Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers. Sensors and Actuators B: Chemical. 2019;297:126703. Available from: <URL>
- 15. Mariani F, Gualandi I, Tessarolo M, Fraboni B, Scavetta E. PEDOT: Dye-Based, flexible organic electrochemical transistor for highly sensitive pH monitoring. ACS Applied Materials & Interfaces. 2018;10:22474-22484. Available from: <URL>
- 16. Qian Y, Ma C, Zhang S, Gao J, Liu M et al. High performance electrochemical electrode based on polymeric composite film for sensing of dopamine and catechol. Sensors and Actuators B: Chemical. 2018;255:1655-1662. Available from: <URL>
- 17. Özcan A, İlkbaş S. Preparation of poly (3, 4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Analytica Chimica Acta. 2015;891:312-320. Available from: <URL>
- 18. Rajaram R, Kanagavalli P, Senthilkumar S, Mathiyarasu L. Au nanoparticle-decorated nanoporous PEDOT modified glassy carbon electrode: A new electrochemical sensing platform for the detection of glutathione. Biotechnology and Bioprocess Engineering. 2020;25(5):715-723. Available from: <URL>
- 19. Shvedene NV, Nazarova IA, Formanovsky AA, Otkidach DS, Pletnev IV. 3-(4-tolylazo) phenylboronic acid as the active component of polyhydroxy compounds-selective electrodes. Electrochemistry Communications. 2002;4:978-984. Available from: <URL>
- 20. Chernyshov DV, Shvedene NV, Antipova ER, Pletnev IV. Ionic Liquid-Based miniature electrochemical sensors for the voltammetric determination of catecholamines. Analytica Chimica Acta. 2008;621:178-184. Available from: <URL>
- 21. Rastogi PK, Ganesan V, Krishnamoorthi S. Ion exchange voltammetry at permselective copolymer modified electrode and its application for the determination of catecholamines. Journal of Electroanalytical Chemistry. 2012;676:13-19. Available from: <URL>
- 22. Ling YY, Huang QA,. Feng DX, Lii XZ, Wei Y. Electrochemical oxidation of dobutamine on a magnesium oxide microflowers–nafion composite film modified glassy carbon electrode. Analytical Methods. 2013;5:4580-4584. Available from: <URL>
- 23. Asadian E, Shahrokhian S, Jokar E. In-Situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sensors and Actuators B: Chemical. 2014;196:582-588. Available from: <URL>
- 24. Negahban S, Fouladgar M, Amiri G. Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid. Journal of the Taiwan Institute of Chemical Engineers. 2017;78:51-55. Available from: <URL>
- 25. Atta NF, Galal A, Ahmed YM, Ekram H. Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine. Sensors and Actuators B: Chemical. 2019;297:126648. Available from: <URL>
- 26. Ibrahim H, Temerk Y. Synergistic electrocatalytic activity of In2O3@ FMWCNTs nanocomposite for electrochemical quantification of dobutamine in clinical patient blood and in injection dosage form. Talanta 2020;208:120362. Available from: <URL>
- 27. Karakaya S, Kartal B, Dilgin Y. Development and application of a sensitive, disposable and low-cost electrochemical sensing platform for an antimalarial drug: amodiaquine based on poly(calcein)-modified pencil graphite electrode. International Journal of Environmental Analytical Chemistry. 2020;1-14. Available from: <URL>
- 28. Gorduk O. Poly(glutamic acid) Modified pencil graphite electrode for the voltammetric determination of
bisphenol A. Journal of the Turkish Chemical Society Section A: Chemistry. 2021;8(1):173-186. Available from: <URL>
- 29. Özcan A, İlkbaş S, Özcan AA. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta 2017;165:489-495. Available from: <URL>
- 30. Özcan L. Electrochemical dopamine determination by Cu(II), Ni(II), Co(II) and Fe(II) metallophthalocyaninetetrasulfonate modified pencil graphite electrodes. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2019;19(2):291-300. Available from: <URL>
- 31. Šafranko S, Stanković A, Asserghine A, Jakovljević M, Hajra S et al. Electroactivated disposable pencil graphite electrode-new, cost-effective, and sensitive electrochemical detection of bioflavonoid hesperidin. Electroanalysis. 2021;33(4):1063-1071. Available from: <URL>
- 32. Navratil R, Kotzianova A, Halouzka V, Opletal T, Triskova I et al. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and raman study. Journal of Electroanalytical Chemistry. 2016;783:152-160. Available from: <URL>
- 33. Gao W, Song J, Wu N. Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode. Journal of Electroanalytical Chemistry. 2005;576:1-7. Available from: <URL>
- 34. David IG, Popa DE, Buleandra M. Pencil graphite electrodes: A versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry. 2017;1905968. Available from: <URL>
- 35. Kolahi-Ahari S, Deiminiat B, Rounaghi GH. Modification of a pencil graphite electrode with multiwalled carbon nanotubes capped gold nanoparticles for electrochemical determination of tramadol. Journal of Electroanalytical Chemistry. 2020;862:113996. Available from: <URL>
- 36. Tavares PHCP, Barbeira PJS. Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes. Journal of Applied Electrochemistry. 2008;38:827-832. Available from: <URL>
- 37. Özcan L, Şahin Y and Türk H. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate. Biosensors and Bioelectronics. 2008;24(4):512-517. Available from: <URL>
- 38. Özcan L. Electrochemical epinephrine determination by nanofiber structured overoxidized polypyrrole modified pencil graphite electrodes. Avrupa Bilim ve Teknoloji Dergisi 2019;16:355-362. Available from: <URL>
- 39. Ghalkhani M, Salehi M. Electrochemical sensor based on multi-walled carbon nanotubes-boehmite nanoparticle composite modified electrode. Journal of Materials Science. 2017;52:12390-12400. Available from: <URL>
- 40. Fouladgar M. Direct voltammetric determination of dobutamine in pharmaceutical samples using multiwall carbon nanotubes paste electrode. ECS Solid State Letters. 2015;4:M15
- 41. Özcan L and Şahin Y. Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sensors and Actuators B: Chemical. 2007; 127: 362–369. Available from: <URL>
- 42. Menon S, Jesny S, Kumar KG. A Voltammetric sensor for acetaminophen based on electropolymerized-molecularly imprinted poly(o-aminophenol) modified gold Electrode. Talanta 2018;179:668-675. Available from: <URL>
- 43. Crapnell RD, Hudson A, Foster CW, Eersels K, van Grinsven B et al. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors 2019;19:1204. Available from: <URL>
Yıl 2024,
Cilt: 11 Sayı: 1, 55 - 70, 04.02.2024
Ayşegül Özbek
,
Levent Özcan
Proje Numarası
20.FEN.BİL.11
Kaynakça
- 1. Venton BJ, Wightman RM. Psychoanalytical electrochemistry: Dopamine and behavior. Analytical Chemistry. 2003;75:414A-421A. Available from: <URL>
- 2. Zhang Y. Voltammetric behavior of dobutamine at poly (Acridine orange) film modified electrode and its determination by adsorptive stripping voltammetry. Analytical Letters. 2004;37:2031-2042. Available from: <URL>
- 3. Atta NF, Galal A, Abdel-Gawad FM, Mohamed EF. Electrochemistry and detection of dobutamine at gold nanoparticles cobalt-phthalocyanine modified carbon paste electrode. Journal of The Electrochemical Society. 2015;162:B304-B311. Available from: <URL>
- 4. Ekram H, Atta NF, Galal A, El-Gohary AR. Nano-Perovskite decorated carbon nanotubes composite for ultrasensitive determination of a cardio-stimulator drug. Journal of The Electrochemical Society. 2018;16:149-159. Available from: <URL>
- 5. Hasanpour F, Nekoeinia M, Semnani A, Shojaei S. NiMnO3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine. Microchemical Journal. 2018;142:17-23. Available from: <URL>
- 6. Reddy S, Xiao Q, Liu H, Li C, Chen S et al. Bionanotube/Poly (3, 4-ethylenedioxythiophene) nanohybrid as an electrode for the neural interface and dopamine sensor. ACS Applied Materials & Interfaces. 2019;11:18254-18267. Available from: <URL>
- 7. Ozkorucuklu SP, Ozcan L, Sahin Y. Alsancak G. Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes. Australian Journal of Chemistry. 2011;64(7):965-972. Available from: <URL>
- 8. Şahin M, Özcan L, Usta B, Şahin Y. Determination of ascorbic acid by polypyrrole potentiometric detector in ion chromatography. Biosensors and Bioelectronics. 2009;24(12):3492-3497. Available from: <URL>
- 9. Hosseinian M, Najafpour G, Rahimpour A. Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode. Turkish Journal of Chemistry. 2019;43(4):1063-1074. Available from: <URL>
- 10. Gorduk O. Differential pulse voltammetric determination of serotonin using an acid-activated multiwalled carbon nanotube-over-oxidized Poly(3,4-ethylenedioxythiophene) modified pencil graphite electrode. Analytical Letters. 2020;53:1034-1052. Available from: <URL>
- 11. Chen L, Liu X, Wang C, Lv S, Chen C. Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Microchimica Acta, 2017;184:2073-2079. Available from: <URL>
- 12. Dinesh B, Vilian AE, Kwak CH, Huh YS, Saraswathi R et al. The Facile and simple synthesis of poly(3,4-ethylenedioxythiophene) anchored reduced graphene oxide nanocomposite for biochemical analysis. Analytica Chimica Acta. 2019;1077:150-159. Available from: <URL>
- 13. Liu S, Jiang X, Waterhouse GIN, Zhang ZM, Yu LMA. Cu2O/PEDOT/graphene-modified electrode for the enzyme-free detection and quantification of glucose. Journal of Electroanalytical Chemistry. 2021;897:115558. Available from: <URL>
- 14. Butina K, Löffler S, Rhen M, Richter-Dahlfors A. Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers. Sensors and Actuators B: Chemical. 2019;297:126703. Available from: <URL>
- 15. Mariani F, Gualandi I, Tessarolo M, Fraboni B, Scavetta E. PEDOT: Dye-Based, flexible organic electrochemical transistor for highly sensitive pH monitoring. ACS Applied Materials & Interfaces. 2018;10:22474-22484. Available from: <URL>
- 16. Qian Y, Ma C, Zhang S, Gao J, Liu M et al. High performance electrochemical electrode based on polymeric composite film for sensing of dopamine and catechol. Sensors and Actuators B: Chemical. 2018;255:1655-1662. Available from: <URL>
- 17. Özcan A, İlkbaş S. Preparation of poly (3, 4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Analytica Chimica Acta. 2015;891:312-320. Available from: <URL>
- 18. Rajaram R, Kanagavalli P, Senthilkumar S, Mathiyarasu L. Au nanoparticle-decorated nanoporous PEDOT modified glassy carbon electrode: A new electrochemical sensing platform for the detection of glutathione. Biotechnology and Bioprocess Engineering. 2020;25(5):715-723. Available from: <URL>
- 19. Shvedene NV, Nazarova IA, Formanovsky AA, Otkidach DS, Pletnev IV. 3-(4-tolylazo) phenylboronic acid as the active component of polyhydroxy compounds-selective electrodes. Electrochemistry Communications. 2002;4:978-984. Available from: <URL>
- 20. Chernyshov DV, Shvedene NV, Antipova ER, Pletnev IV. Ionic Liquid-Based miniature electrochemical sensors for the voltammetric determination of catecholamines. Analytica Chimica Acta. 2008;621:178-184. Available from: <URL>
- 21. Rastogi PK, Ganesan V, Krishnamoorthi S. Ion exchange voltammetry at permselective copolymer modified electrode and its application for the determination of catecholamines. Journal of Electroanalytical Chemistry. 2012;676:13-19. Available from: <URL>
- 22. Ling YY, Huang QA,. Feng DX, Lii XZ, Wei Y. Electrochemical oxidation of dobutamine on a magnesium oxide microflowers–nafion composite film modified glassy carbon electrode. Analytical Methods. 2013;5:4580-4584. Available from: <URL>
- 23. Asadian E, Shahrokhian S, Jokar E. In-Situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sensors and Actuators B: Chemical. 2014;196:582-588. Available from: <URL>
- 24. Negahban S, Fouladgar M, Amiri G. Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid. Journal of the Taiwan Institute of Chemical Engineers. 2017;78:51-55. Available from: <URL>
- 25. Atta NF, Galal A, Ahmed YM, Ekram H. Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine. Sensors and Actuators B: Chemical. 2019;297:126648. Available from: <URL>
- 26. Ibrahim H, Temerk Y. Synergistic electrocatalytic activity of In2O3@ FMWCNTs nanocomposite for electrochemical quantification of dobutamine in clinical patient blood and in injection dosage form. Talanta 2020;208:120362. Available from: <URL>
- 27. Karakaya S, Kartal B, Dilgin Y. Development and application of a sensitive, disposable and low-cost electrochemical sensing platform for an antimalarial drug: amodiaquine based on poly(calcein)-modified pencil graphite electrode. International Journal of Environmental Analytical Chemistry. 2020;1-14. Available from: <URL>
- 28. Gorduk O. Poly(glutamic acid) Modified pencil graphite electrode for the voltammetric determination of
bisphenol A. Journal of the Turkish Chemical Society Section A: Chemistry. 2021;8(1):173-186. Available from: <URL>
- 29. Özcan A, İlkbaş S, Özcan AA. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta 2017;165:489-495. Available from: <URL>
- 30. Özcan L. Electrochemical dopamine determination by Cu(II), Ni(II), Co(II) and Fe(II) metallophthalocyaninetetrasulfonate modified pencil graphite electrodes. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2019;19(2):291-300. Available from: <URL>
- 31. Šafranko S, Stanković A, Asserghine A, Jakovljević M, Hajra S et al. Electroactivated disposable pencil graphite electrode-new, cost-effective, and sensitive electrochemical detection of bioflavonoid hesperidin. Electroanalysis. 2021;33(4):1063-1071. Available from: <URL>
- 32. Navratil R, Kotzianova A, Halouzka V, Opletal T, Triskova I et al. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and raman study. Journal of Electroanalytical Chemistry. 2016;783:152-160. Available from: <URL>
- 33. Gao W, Song J, Wu N. Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode. Journal of Electroanalytical Chemistry. 2005;576:1-7. Available from: <URL>
- 34. David IG, Popa DE, Buleandra M. Pencil graphite electrodes: A versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry. 2017;1905968. Available from: <URL>
- 35. Kolahi-Ahari S, Deiminiat B, Rounaghi GH. Modification of a pencil graphite electrode with multiwalled carbon nanotubes capped gold nanoparticles for electrochemical determination of tramadol. Journal of Electroanalytical Chemistry. 2020;862:113996. Available from: <URL>
- 36. Tavares PHCP, Barbeira PJS. Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes. Journal of Applied Electrochemistry. 2008;38:827-832. Available from: <URL>
- 37. Özcan L, Şahin Y and Türk H. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate. Biosensors and Bioelectronics. 2008;24(4):512-517. Available from: <URL>
- 38. Özcan L. Electrochemical epinephrine determination by nanofiber structured overoxidized polypyrrole modified pencil graphite electrodes. Avrupa Bilim ve Teknoloji Dergisi 2019;16:355-362. Available from: <URL>
- 39. Ghalkhani M, Salehi M. Electrochemical sensor based on multi-walled carbon nanotubes-boehmite nanoparticle composite modified electrode. Journal of Materials Science. 2017;52:12390-12400. Available from: <URL>
- 40. Fouladgar M. Direct voltammetric determination of dobutamine in pharmaceutical samples using multiwall carbon nanotubes paste electrode. ECS Solid State Letters. 2015;4:M15
- 41. Özcan L and Şahin Y. Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sensors and Actuators B: Chemical. 2007; 127: 362–369. Available from: <URL>
- 42. Menon S, Jesny S, Kumar KG. A Voltammetric sensor for acetaminophen based on electropolymerized-molecularly imprinted poly(o-aminophenol) modified gold Electrode. Talanta 2018;179:668-675. Available from: <URL>
- 43. Crapnell RD, Hudson A, Foster CW, Eersels K, van Grinsven B et al. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors 2019;19:1204. Available from: <URL>