Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 3, 1037 - 1054, 30.08.2024

Abstract

Project Number

TUBİTAK BİDEB 2232 program (Project no: 118C268).

References

  • 1. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr [Internet]. 1969 Jun 2;2(2):65–71. Available from: <URL>.
  • 2. Cullity BD. Elements of X-ray Diffraction. Addison-Wesley Publishing Company; 1978.
  • 3. Ingham B. X-ray scattering characterisation of nanoparticles. Crystallogr Rev [Internet]. 2015 Oct 2;21(4):229–303. Available from: <URL>.
  • 4. Öztürk H, Yan H, Hill JP, Noyan IC. Sampling statistics of diffraction from nanoparticle powder aggregates. J Appl Crystallogr [Internet]. 2014 Jun 1;47(3):1016–25. Available from: <URL>.
  • 5. Öztürk H, Yan H, Hill JP, Noyan IC. Correlating sampling and intensity statistics in nanoparticle diffraction experiments. J Appl Crystallogr [Internet]. 2015 Aug 1;48(4):1212–27. Available from: <URL>.
  • 6. Fewster PF. A new theory for X-ray diffraction. Acta Crystallogr Sect A Found Adv [Internet]. 2014 May 1;70(3):257–82. Available from: <URL>.
  • 7. Xiong S, Öztürk H, Lee SY, Mooney PM, Noyan IC. The nanodiffraction problem. J Appl Crystallogr [Internet]. 2018 Aug 1;51(4):1102–15. Available from: <URL>.
  • 8. Warren BE. X-ray Diffraction. New York: Dover Publications; 1990.
  • 9. Larson AC, Von Dreele RB. GSAS General Structure Analysis System [Internet]. Available from: <URL>.
  • 10. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P. Rietveld refinement guidelines. J Appl Crystallogr [Internet]. 1999 Feb 1;32(1):36–50. Available from: https://scripts.iucr.org/cgi-bin/paper?S0021889898009856
  • 11. Young RA. The Rietveld Method. Powder Diffr [Internet]. 1993 Dec 10;8(4):252–4. Available from: <URL>.
  • 12. Xiong S, Lee SY, Noyan IC. Average and local strain fields in nanocrystals. J Appl Crystallogr [Internet]. 2019 Apr 1;52(2):262–73. Available from: <URL>.
  • 13. Baloochiyan A, Batyrow M, Öztürk H. Accuracy Limits of Pair Distribution Function Analysis in Structural Characterization of Nanocrystalline Powders by X-ray Diffraction. J Turkish Chem Soc Sect A Chem [Internet]. 2022 May 31;9(2):527–44. Available from: <URL>.
  • 14. Batyrow M, Eruçar İ, Öztürk H. Size dependent change of mean square displacement in gold nanocrystals: A molecular dynamics simulation. Concurr Comput Pract Exp [Internet]. 2023 Nov 12;35(24):e7566. Available from: <URL>.
  • 15. Debye P. Zerstreuung von Röntgenstrahlen. Ann Phys [Internet]. 1915 Jan 14;351(6):809–23. Available from: <URL>.
  • 16. Warren BE. X-Ray Diffraction. Dover Publications; 2012.
  • 17. Alexander L, Klug HP, Kummer E. Statistical Factors Affecting the Intensity of X-Rays Diffracted by Crystalline Powders. J Appl Phys [Internet]. 1948 Aug 1;19(8):742–53. Available from: <URL>.
  • 18. Debyer. Debyer documentation [Internet]. [cited 2024 Jun 10]. Available from: <URL>.
  • 19. Toby BH, Von Dreele RB. GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr [Internet]. 2013 Apr 1;46(2):544–9. Available from: <URL>.
  • 20. Williamson G., Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall [Internet]. 1953 Jan;1(1):22–31. Available from: <URL>.
  • 21. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1912. p. 387–409. Available from: <URL>.
  • 22. Stephens PW. Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Crystallogr [Internet]. 1999 Apr 1;32(2):281–9. Available from: <URL>.
  • 23. Uvarov V. The influence of X-ray diffraction pattern angular range on Rietveld refinement results used for quantitative analysis, crystallite size calculation and unit-cell parameter refinement. J Appl Crystallogr [Internet]. 2019 Apr 1;52(2):252–61. Available from: <URL>.
  • 24. Ungár T. Microstructural parameters from X-ray diffraction peak broadening. Scr Mater [Internet]. 2004 Oct;51(8):777–81. Available from: <URL>.
  • 25. Rebuffi L, Sánchez del Río M, Busetto E, Scardi P. Understanding the instrumental profile of synchrotron radiation X-ray powder diffraction beamlines. J Synchrotron Radiat [Internet]. 2017 May 1;24(3):622–35. Available from: <URL>.
  • 26. Yager KG, Majewski PW. Metrics of graininess: robust quantification of grain count from the non-uniformity of scattering rings. J Appl Crystallogr [Internet]. 2014 Dec 1;47(6):1855–65. Available from: <URL>.
  • 27. Herklotz M, Scheiba F, Hinterstein M, Nikolowski K, Knapp M, Dippel AC, et al. Advances in in situ powder diffraction of battery materials: a case study of the new beamline P02.1 at DESY, Hamburg. J Appl Crystallogr [Internet]. 2013 Aug 1;46(4):1117–27. Available from: <URL>.
  • 28. Smilgies DM. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J Appl Crystallogr [Internet]. 2009 Dec 1;42(6):1030–4. Available from: <URL>.
  • 29. Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Phys Rev [Internet]. 1939 Nov 15;56(10):978–82. Available from: <URL>.
  • 30. Noyan İC, Öztürk H. Lower uncertainty bounds of diffraction-based nanoparticle sizes. J Appl Crystallogr [Internet]. 2022 Jun 1;55(3):455–70. Available from: <URL>.

Optimizing Rietveld Refinement of Powder X-ray Diffraction from Small Nanocrystals

Year 2024, Volume: 11 Issue: 3, 1037 - 1054, 30.08.2024

Abstract

Lattice parameters, average crystal sizes and root-mean-square atom displacements obtained from Rietveld refinement of powder diffraction data from gold nanopowders of 5-30 nm size are systematically investigated. A computational workflow is introduced where atomistic models of gold nanocrystals are created, and corresponding analytical diffraction data are computed and refined. The effect of nanocrystal size, nanocrystal shape, step size of the diffraction data and refinement range on the refined parameters are separately discussed for developing an optimized Rietveld refinement strategy for accurate sample characterization. Results show that a step size no greater than 0.2° ensures stable refined lattice parameters, crystal sizes and microstrains for gold nanocrystals smaller than 30 nm. For larger nanocrystals, smaller step sizes are necessary. Accuracy of refined lattice parameters are dependent on the refinement much more strongly for smaller nanocrystals than larger ones. Depending on the shape of the nanocrystal, limited refinement range may result in over or underestimations of the lattice parameter, hence extended refinement ranges are suggested for highest accuracy. Finally, microstrains refined from ideal crystalline gold nanospheres are significantly overestimated for smaller nanocrystals than larger ones for limited refinement range. However, if the refinement range includes four to five high-intensity Bragg peaks, then the refined microstrains stabilize irrespective of the nanocrystal size.

Ethical Statement

We thank Mr. Merdan Batyrow for performing Molecular Dynamics simulations to generate energy-minimized models of gold nanospheres and reviewing our manuscript. This research was funded by the Turkish Scientific and Technological Research Council (TUBİTAK) under the BİDEB 2232 program (Project no: 118C268).

Supporting Institution

Özyegin University

Project Number

TUBİTAK BİDEB 2232 program (Project no: 118C268).

Thanks

We thank Mr. Merdan Batyrow for performing Molecular Dynamics simulations to generate energy-minimized models of gold nanospheres and reviewing our manuscript.

References

  • 1. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr [Internet]. 1969 Jun 2;2(2):65–71. Available from: <URL>.
  • 2. Cullity BD. Elements of X-ray Diffraction. Addison-Wesley Publishing Company; 1978.
  • 3. Ingham B. X-ray scattering characterisation of nanoparticles. Crystallogr Rev [Internet]. 2015 Oct 2;21(4):229–303. Available from: <URL>.
  • 4. Öztürk H, Yan H, Hill JP, Noyan IC. Sampling statistics of diffraction from nanoparticle powder aggregates. J Appl Crystallogr [Internet]. 2014 Jun 1;47(3):1016–25. Available from: <URL>.
  • 5. Öztürk H, Yan H, Hill JP, Noyan IC. Correlating sampling and intensity statistics in nanoparticle diffraction experiments. J Appl Crystallogr [Internet]. 2015 Aug 1;48(4):1212–27. Available from: <URL>.
  • 6. Fewster PF. A new theory for X-ray diffraction. Acta Crystallogr Sect A Found Adv [Internet]. 2014 May 1;70(3):257–82. Available from: <URL>.
  • 7. Xiong S, Öztürk H, Lee SY, Mooney PM, Noyan IC. The nanodiffraction problem. J Appl Crystallogr [Internet]. 2018 Aug 1;51(4):1102–15. Available from: <URL>.
  • 8. Warren BE. X-ray Diffraction. New York: Dover Publications; 1990.
  • 9. Larson AC, Von Dreele RB. GSAS General Structure Analysis System [Internet]. Available from: <URL>.
  • 10. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P. Rietveld refinement guidelines. J Appl Crystallogr [Internet]. 1999 Feb 1;32(1):36–50. Available from: https://scripts.iucr.org/cgi-bin/paper?S0021889898009856
  • 11. Young RA. The Rietveld Method. Powder Diffr [Internet]. 1993 Dec 10;8(4):252–4. Available from: <URL>.
  • 12. Xiong S, Lee SY, Noyan IC. Average and local strain fields in nanocrystals. J Appl Crystallogr [Internet]. 2019 Apr 1;52(2):262–73. Available from: <URL>.
  • 13. Baloochiyan A, Batyrow M, Öztürk H. Accuracy Limits of Pair Distribution Function Analysis in Structural Characterization of Nanocrystalline Powders by X-ray Diffraction. J Turkish Chem Soc Sect A Chem [Internet]. 2022 May 31;9(2):527–44. Available from: <URL>.
  • 14. Batyrow M, Eruçar İ, Öztürk H. Size dependent change of mean square displacement in gold nanocrystals: A molecular dynamics simulation. Concurr Comput Pract Exp [Internet]. 2023 Nov 12;35(24):e7566. Available from: <URL>.
  • 15. Debye P. Zerstreuung von Röntgenstrahlen. Ann Phys [Internet]. 1915 Jan 14;351(6):809–23. Available from: <URL>.
  • 16. Warren BE. X-Ray Diffraction. Dover Publications; 2012.
  • 17. Alexander L, Klug HP, Kummer E. Statistical Factors Affecting the Intensity of X-Rays Diffracted by Crystalline Powders. J Appl Phys [Internet]. 1948 Aug 1;19(8):742–53. Available from: <URL>.
  • 18. Debyer. Debyer documentation [Internet]. [cited 2024 Jun 10]. Available from: <URL>.
  • 19. Toby BH, Von Dreele RB. GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr [Internet]. 2013 Apr 1;46(2):544–9. Available from: <URL>.
  • 20. Williamson G., Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall [Internet]. 1953 Jan;1(1):22–31. Available from: <URL>.
  • 21. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1912. p. 387–409. Available from: <URL>.
  • 22. Stephens PW. Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Crystallogr [Internet]. 1999 Apr 1;32(2):281–9. Available from: <URL>.
  • 23. Uvarov V. The influence of X-ray diffraction pattern angular range on Rietveld refinement results used for quantitative analysis, crystallite size calculation and unit-cell parameter refinement. J Appl Crystallogr [Internet]. 2019 Apr 1;52(2):252–61. Available from: <URL>.
  • 24. Ungár T. Microstructural parameters from X-ray diffraction peak broadening. Scr Mater [Internet]. 2004 Oct;51(8):777–81. Available from: <URL>.
  • 25. Rebuffi L, Sánchez del Río M, Busetto E, Scardi P. Understanding the instrumental profile of synchrotron radiation X-ray powder diffraction beamlines. J Synchrotron Radiat [Internet]. 2017 May 1;24(3):622–35. Available from: <URL>.
  • 26. Yager KG, Majewski PW. Metrics of graininess: robust quantification of grain count from the non-uniformity of scattering rings. J Appl Crystallogr [Internet]. 2014 Dec 1;47(6):1855–65. Available from: <URL>.
  • 27. Herklotz M, Scheiba F, Hinterstein M, Nikolowski K, Knapp M, Dippel AC, et al. Advances in in situ powder diffraction of battery materials: a case study of the new beamline P02.1 at DESY, Hamburg. J Appl Crystallogr [Internet]. 2013 Aug 1;46(4):1117–27. Available from: <URL>.
  • 28. Smilgies DM. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J Appl Crystallogr [Internet]. 2009 Dec 1;42(6):1030–4. Available from: <URL>.
  • 29. Patterson AL. The Scherrer Formula for X-Ray Particle Size Determination. Phys Rev [Internet]. 1939 Nov 15;56(10):978–82. Available from: <URL>.
  • 30. Noyan İC, Öztürk H. Lower uncertainty bounds of diffraction-based nanoparticle sizes. J Appl Crystallogr [Internet]. 2022 Jun 1;55(3):455–70. Available from: <URL>.
There are 30 citations in total.

Details

Primary Language English
Subjects Crystallography
Journal Section RESEARCH ARTICLES
Authors

Hamidreza Hekmatjou

Hande Ozturk 0000-0002-1010-4001

Project Number TUBİTAK BİDEB 2232 program (Project no: 118C268).
Early Pub Date June 12, 2024
Publication Date August 30, 2024
Submission Date September 14, 2023
Acceptance Date May 3, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Hekmatjou H, Ozturk H. Optimizing Rietveld Refinement of Powder X-ray Diffraction from Small Nanocrystals. JOTCSA. 2024;11(3):1037-54.