Araştırma Makalesi
BibTex RIS Kaynak Göster

C/N/CeO2/Alpha-Fe2O3 Doped Mesoporous Carbon as A Photocatalyst Material for Hydrogen Gas Production by Water Splitting Method

Yıl 2024, Cilt: 11 Sayı: 3, 995 - 1004, 30.08.2024
https://doi.org/10.18596/jotcsa.1395875

Öz

This study focuses on hydrogen production through a water-splitting photocatalytic reaction using solar energy and an additional semiconductor material C/N/CeO2/α-Fe2O3 as a photocatalyst. The semiconductor material C/N/CeO2/α-Fe2O3 underwent thorough characterization via FTIR, FESEM-EDX, XRD, N2 adsorption-desorption, and UV-Vis-DRS analysis. Subsequently, photocatalytic activity tests were conducted to measure hydrogen production levels for varying weight percentages of C/N/CeO2/α-Fe2O3, including 0%, 10%, and 15 mass% of the C/N component. Results showed that the material with 0% variation produced 2.21 μmol/gram of hydrogen gas (1 hour) and 17.58 μmol/gram (after 3 hours), while the 10% variation yielded 4.52 μmol/gram (1 hour) and 19.08 μmol/gram (after 3 hours). These findings suggest that the C/N/CeO2/α-Fe2O3 material containing 10% C/N may offer the most optimal performance as a photocatalyst for hydrogen production.

Teşekkür

The authors gratefully acknowledge financial support from the Directorate General of Higher Education, Research and Technology, Ministry of Education, Research and Technology, Republic of Indonesia through the Student Creativity Program (PKM 2023). Dr. Hasliza Bahruzi from the Centre of Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Brunei Darussalam is acknowledged for providing apparatus for photocatalytic activity.

Kaynakça

  • 1. Holechek JL, Geli HME, Sawalhah MN, Valdez R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability [Internet]. 2022 Apr 16;14(8):4792. Available from: <URL>.
  • 2. Welsby D, Price J, Pye S, Ekins P. Unextractable fossil fuels in a 1.5 °C world. Nature [Internet]. 2021 Sep 9;597(7875):230–4. Available from: <URL>.
  • 3. Garzón Baquero JE, Bellon Monsalve D. From fossil fuel energy to hydrogen energy: Transformation of fossil fuel energy economies into hydrogen economies through social entrepreneurship. Int J Hydrogen Energy [Internet]. 2024 Feb 7;54:574–85. Available from: <URL>.
  • 4. Marouani I, Guesmi T, Alshammari BM, Alqunun K, Alzamil A, Alturki M, et al. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes [Internet]. 2023 Sep 7;11(9):2685. Available from: <URL>.
  • 5. Bilgic G, Bendes E, Ozturk B, Atasever S. Recent advances in artificial neural network research for modeling hydrogen production processes. Int J Hydr En. 2023; 48:18947–18977. Available from: <URL>.
  • 6. Atilhan, S., Park, S., El-Halwagi, M. M., Atilhan, M., Moore, M., & Nielsen, R. B. (2021). Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering, 31, 100668. https://doi.org/10.1016/J.COCHE.2020.100668.
  • 7. Marouani I, Guesmi T, Alshammari BM, Alqunun K, Alzamil A, Alturki M, et al. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes. 2023 Sep 7;11(9):2685.
  • 8. Kaplan H, Şahin M, Bilgiç G. The Influence of Magnetic Field on Newly Designed Oxyhydrogen and Hydrogen Production by Water Electrolysis. Energy Technol [Internet]. 2021 Dec 10;9(12):2100617. Available from: <URL>.
  • 9. Bilgiç G, Öztürk B. Modeling of Artificial Neural Networks for Hydrogen Production via Water Electrolysis. El-Cezeri J Sci Eng [Internet]. 2023 Jan 11;10(1):137–46. Available from: <URL>.
  • 10. Hota P, Das A, Maiti DK. A short review on generation of green fuel hydrogen through water splitting. Int J Hydrogen Energy [Internet]. 2023 Jan 5;48(2):523–41. Available from: <URL>.
  • 11. Ravi P, Noh J. Photocatalytic Water Splitting: How Far Away Are We from Being Able to Industrially Produce Solar Hydrogen? Molecules [Internet]. 2022 Oct 23;27(21):7176. Available from: <URL>.
  • 12. Arsad AZ, Hannan MA, Al-Shetwi AQ, Begum RA, Hossain MJ, Ker PJ, et al. Hydrogen electrolyser technologies and their modelling for sustainable energy production: A comprehensive review and suggestions. Int J Hydrogen Energy [Internet]. 2023 Aug 22;48(72):27841–71. Available from: <URL>.
  • 13. Hakki A, AlSalka Y, Mendive CB, Ubogui J, dos Santos Claro PC, Bahnemann D. Hydrogen Production by Heterogeneous Photocatalysis. In: Wandelt K, editor. Encyclopedia of Interfacial Chemistry [Internet]. Elsevier; 2018. p. 413–9. Available from: <URL>.
  • 14. Dharma HNC, Jaafar J, Widiastuti N, Matsuyama H, Rajabsadeh S, Othman MHD, et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes (Basel) [Internet]. 2022 Mar 19;12(3):345. Available from: <URL>.
  • 15. Sharma PK, Cortes MALRM, Hamilton JWJ, Han Y, Byrne JA, Nolan M. Surface modification of TiO2 with copper clusters for band gap narrowing. Catal Today [Internet]. 2019 Feb 1;321–322:9–17. Available from: <URL>.
  • 16. Wei Y, Wu Q, Meng H, Zhang Y, Cao C. Recent advances in photocatalytic self-cleaning performances of TiO2 -based building materials. RSC Adv [Internet]. 2023 Jul 11;13(30):20584–97. Available from: <URL>.
  • 17. Mimouni I, Bouziani A, Naciri Y, Boujnah M, El Belghiti MA, El Azzouzi M. Effect of heat treatment on the photocatalytic activity of α-Fe2O3 nanoparticles: towards diclofenac elimination. Environ Sci Pollut Res [Internet]. 2022 Jan 5;29(5):7984–96. Available from: <URL>.
  • 18. Zhang H, Liu J, Xu T, Ji W, Zong X. Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 eV) for Solar Water Splitting. Catalysts [Internet]. 2023 Apr 12;13(4):728. Available from: <URL>.
  • 19. Parthasarathy P, Vivekanandan S. Biocompatible TiO2-CeO2 Nano-composite synthesis, characte-rization and analysis on electrochemical performance for uric acid determination. Ain Shams Eng J [Internet]. 2020 Sep 1;11(3):777–85. Available from: <URL>.
  • 20. Cheng R, Xia J, Wen J, Xu P, Zheng X. Nano Metal-Containing Photocatalysts for the Removal of Volatile Organic Compounds: Doping, Performance, and Mechanisms. Nanomaterials [Internet]. 2022 Apr 13;12(8):1335. Available from: <URL>.
  • 21. Kusmierek E. A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts [Internet]. 2020 Dec 8;10(12):1435. Available from: <URL>.
  • 22. Wang X, Wang J, Sun Y, Li K, Shang T, Wan Y. Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Front Chem [Internet]. 2022 Dec 8;10:1089708. Available from: <URL>.
  • 23. Tran DPH, Pham MT, Bui XT, Wang YF, You SJ. CeO2 as a photocatalytic material for CO2 conversion: A review. Sol Energy [Internet]. 2022 Jul 1;240:443–66. Available from: <URL>.
  • 24. Yang M, Shen G, Wang Q, Deng K, Liu M, Chen Y, et al. Roles of Oxygen Vacancies of CeO2 and Mn-Doped CeO2 with the Same Morphology in Benzene Catalytic Oxidation. Molecules [Internet]. 2021 Oct 21;26(21):6363. Available from: <URL>.
  • 25. Suman, Singh S, Ankita, Kumar A, Kataria N, Kumar S, et al. Photocatalytic activity of α-Fe2O3@CeO2 and CeO2@α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye. J Environ Chem Eng [Internet]. 2021 Oct 1;9(5):106266. Available from: <URL>.
  • 26. Ranjbari A, Demeestere K, Kim KH, Heynderickx PM. Oxygen vacancy modification of commercial ZnO by hydrogen reduction for the removal of thiabendazole: Characterization and kinetic study. Appl Catal B Environ [Internet]. 2023 May 5;324:122265. Available from: <URL>.
  • 27. Paick J, Hong S, Bae JY, Jyoung JY, Lee ES, Lee D. Effective Atomic N Doping on CeO2 Nanoparticles by Environmentally Benign Urea Thermolysis and Its Significant Effects on the Scavenging of Reactive Oxygen Radicals. ACS Omega [Internet]. 2023 Jun 27;8(25):22646–55. Available from: <URL>.
  • 28. Ishak N, Jeyalakshmi V, Setka M, Grandcolas M, Devadas B, Šoóš M. Upgrading of g-C3N4 semiconductor by a Nitrogen-doped carbon material: A photocatalytic degradation application. J Environ Chem Eng [Internet]. 2023 Apr 1;11(2):109381. Available from: <URL>.
  • 29. Yao C, Wang M, Jiang W, Chen Y. Study on a novel N-doped mesoporous carbon for the efficient removal of methylene blue from aqueous solution. Environ Eng Res [Internet]. 2020 Oct 27 [cited 2024 Jun 5];26(5):200339. Available from: <URL>.
  • 30. Jayakumar G, Irudayaraj A, Raj AD, Irudayaraj AA. Particle Size Effect on the Properties of Cerium Oxide (CeO2) Nanoparticles Synthesized by Hydrothermal Method. Mech Mater Sci Eng J [Internet]. 2017;9(1). Available from: <URL>.
  • 31. Landi S, Segundo IR, Freitas E, Vasilevskiy M, Carneiro J, Tavares CJ. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun [Internet]. 2022 Jan 1;341:114573. Available from: <URL>.
  • 32. Yuan D, Liu Q. Photon energy and photon behavior discussions. Energy Reports [Internet]. 2022 May 1;8:22–42. Available from: <URL>.
  • 33. Ayyub MM, Rao CNR. Design of efficient photocatalysts through band gap engineering. In: Boukherroub R, Ogale SB, Robertson N, editors. Nanostructured Photocatalysts [Internet]. Elsevier; 2020. p. 1–18. Available from: <URL>.
  • 34. Wu B, Meng H, Morales DM, Zeng F, Zhu J, Wang B, et al. Nitrogen‐Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Adv Funct Mater [Internet]. 2022 Aug 31;32(31):2204137. Available from: <URL>.
  • 35. Dao V, Cipriano LA, Ki SW, Yadav S, Wang W, Di Liberto G, et al. 2D/2D Z-scheme-based α-Fe2O3 @NGr heterojunction implanted with Pt single-atoms for remarkable photocatalytic hydrogen evolution. Appl Catal B Environ [Internet]. 2023 Aug 5;330:122586. Available from: <URL>.
  • 36. Khani H, Khandan N, Eikani MH, Eliassi A. Investigation of synthesized Fe2O3 and CuO–Fe2O3 for pure hydrogen production by chemical-loop reforming of methanol in a micro-channel reactor. Int J Hydrogen Energy [Internet]. 2023 Feb 22;48(16):6436–50. Available from: <URL>.
Yıl 2024, Cilt: 11 Sayı: 3, 995 - 1004, 30.08.2024
https://doi.org/10.18596/jotcsa.1395875

Öz

Kaynakça

  • 1. Holechek JL, Geli HME, Sawalhah MN, Valdez R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability [Internet]. 2022 Apr 16;14(8):4792. Available from: <URL>.
  • 2. Welsby D, Price J, Pye S, Ekins P. Unextractable fossil fuels in a 1.5 °C world. Nature [Internet]. 2021 Sep 9;597(7875):230–4. Available from: <URL>.
  • 3. Garzón Baquero JE, Bellon Monsalve D. From fossil fuel energy to hydrogen energy: Transformation of fossil fuel energy economies into hydrogen economies through social entrepreneurship. Int J Hydrogen Energy [Internet]. 2024 Feb 7;54:574–85. Available from: <URL>.
  • 4. Marouani I, Guesmi T, Alshammari BM, Alqunun K, Alzamil A, Alturki M, et al. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes [Internet]. 2023 Sep 7;11(9):2685. Available from: <URL>.
  • 5. Bilgic G, Bendes E, Ozturk B, Atasever S. Recent advances in artificial neural network research for modeling hydrogen production processes. Int J Hydr En. 2023; 48:18947–18977. Available from: <URL>.
  • 6. Atilhan, S., Park, S., El-Halwagi, M. M., Atilhan, M., Moore, M., & Nielsen, R. B. (2021). Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering, 31, 100668. https://doi.org/10.1016/J.COCHE.2020.100668.
  • 7. Marouani I, Guesmi T, Alshammari BM, Alqunun K, Alzamil A, Alturki M, et al. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes. 2023 Sep 7;11(9):2685.
  • 8. Kaplan H, Şahin M, Bilgiç G. The Influence of Magnetic Field on Newly Designed Oxyhydrogen and Hydrogen Production by Water Electrolysis. Energy Technol [Internet]. 2021 Dec 10;9(12):2100617. Available from: <URL>.
  • 9. Bilgiç G, Öztürk B. Modeling of Artificial Neural Networks for Hydrogen Production via Water Electrolysis. El-Cezeri J Sci Eng [Internet]. 2023 Jan 11;10(1):137–46. Available from: <URL>.
  • 10. Hota P, Das A, Maiti DK. A short review on generation of green fuel hydrogen through water splitting. Int J Hydrogen Energy [Internet]. 2023 Jan 5;48(2):523–41. Available from: <URL>.
  • 11. Ravi P, Noh J. Photocatalytic Water Splitting: How Far Away Are We from Being Able to Industrially Produce Solar Hydrogen? Molecules [Internet]. 2022 Oct 23;27(21):7176. Available from: <URL>.
  • 12. Arsad AZ, Hannan MA, Al-Shetwi AQ, Begum RA, Hossain MJ, Ker PJ, et al. Hydrogen electrolyser technologies and their modelling for sustainable energy production: A comprehensive review and suggestions. Int J Hydrogen Energy [Internet]. 2023 Aug 22;48(72):27841–71. Available from: <URL>.
  • 13. Hakki A, AlSalka Y, Mendive CB, Ubogui J, dos Santos Claro PC, Bahnemann D. Hydrogen Production by Heterogeneous Photocatalysis. In: Wandelt K, editor. Encyclopedia of Interfacial Chemistry [Internet]. Elsevier; 2018. p. 413–9. Available from: <URL>.
  • 14. Dharma HNC, Jaafar J, Widiastuti N, Matsuyama H, Rajabsadeh S, Othman MHD, et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes (Basel) [Internet]. 2022 Mar 19;12(3):345. Available from: <URL>.
  • 15. Sharma PK, Cortes MALRM, Hamilton JWJ, Han Y, Byrne JA, Nolan M. Surface modification of TiO2 with copper clusters for band gap narrowing. Catal Today [Internet]. 2019 Feb 1;321–322:9–17. Available from: <URL>.
  • 16. Wei Y, Wu Q, Meng H, Zhang Y, Cao C. Recent advances in photocatalytic self-cleaning performances of TiO2 -based building materials. RSC Adv [Internet]. 2023 Jul 11;13(30):20584–97. Available from: <URL>.
  • 17. Mimouni I, Bouziani A, Naciri Y, Boujnah M, El Belghiti MA, El Azzouzi M. Effect of heat treatment on the photocatalytic activity of α-Fe2O3 nanoparticles: towards diclofenac elimination. Environ Sci Pollut Res [Internet]. 2022 Jan 5;29(5):7984–96. Available from: <URL>.
  • 18. Zhang H, Liu J, Xu T, Ji W, Zong X. Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 eV) for Solar Water Splitting. Catalysts [Internet]. 2023 Apr 12;13(4):728. Available from: <URL>.
  • 19. Parthasarathy P, Vivekanandan S. Biocompatible TiO2-CeO2 Nano-composite synthesis, characte-rization and analysis on electrochemical performance for uric acid determination. Ain Shams Eng J [Internet]. 2020 Sep 1;11(3):777–85. Available from: <URL>.
  • 20. Cheng R, Xia J, Wen J, Xu P, Zheng X. Nano Metal-Containing Photocatalysts for the Removal of Volatile Organic Compounds: Doping, Performance, and Mechanisms. Nanomaterials [Internet]. 2022 Apr 13;12(8):1335. Available from: <URL>.
  • 21. Kusmierek E. A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts [Internet]. 2020 Dec 8;10(12):1435. Available from: <URL>.
  • 22. Wang X, Wang J, Sun Y, Li K, Shang T, Wan Y. Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Front Chem [Internet]. 2022 Dec 8;10:1089708. Available from: <URL>.
  • 23. Tran DPH, Pham MT, Bui XT, Wang YF, You SJ. CeO2 as a photocatalytic material for CO2 conversion: A review. Sol Energy [Internet]. 2022 Jul 1;240:443–66. Available from: <URL>.
  • 24. Yang M, Shen G, Wang Q, Deng K, Liu M, Chen Y, et al. Roles of Oxygen Vacancies of CeO2 and Mn-Doped CeO2 with the Same Morphology in Benzene Catalytic Oxidation. Molecules [Internet]. 2021 Oct 21;26(21):6363. Available from: <URL>.
  • 25. Suman, Singh S, Ankita, Kumar A, Kataria N, Kumar S, et al. Photocatalytic activity of α-Fe2O3@CeO2 and CeO2@α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye. J Environ Chem Eng [Internet]. 2021 Oct 1;9(5):106266. Available from: <URL>.
  • 26. Ranjbari A, Demeestere K, Kim KH, Heynderickx PM. Oxygen vacancy modification of commercial ZnO by hydrogen reduction for the removal of thiabendazole: Characterization and kinetic study. Appl Catal B Environ [Internet]. 2023 May 5;324:122265. Available from: <URL>.
  • 27. Paick J, Hong S, Bae JY, Jyoung JY, Lee ES, Lee D. Effective Atomic N Doping on CeO2 Nanoparticles by Environmentally Benign Urea Thermolysis and Its Significant Effects on the Scavenging of Reactive Oxygen Radicals. ACS Omega [Internet]. 2023 Jun 27;8(25):22646–55. Available from: <URL>.
  • 28. Ishak N, Jeyalakshmi V, Setka M, Grandcolas M, Devadas B, Šoóš M. Upgrading of g-C3N4 semiconductor by a Nitrogen-doped carbon material: A photocatalytic degradation application. J Environ Chem Eng [Internet]. 2023 Apr 1;11(2):109381. Available from: <URL>.
  • 29. Yao C, Wang M, Jiang W, Chen Y. Study on a novel N-doped mesoporous carbon for the efficient removal of methylene blue from aqueous solution. Environ Eng Res [Internet]. 2020 Oct 27 [cited 2024 Jun 5];26(5):200339. Available from: <URL>.
  • 30. Jayakumar G, Irudayaraj A, Raj AD, Irudayaraj AA. Particle Size Effect on the Properties of Cerium Oxide (CeO2) Nanoparticles Synthesized by Hydrothermal Method. Mech Mater Sci Eng J [Internet]. 2017;9(1). Available from: <URL>.
  • 31. Landi S, Segundo IR, Freitas E, Vasilevskiy M, Carneiro J, Tavares CJ. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun [Internet]. 2022 Jan 1;341:114573. Available from: <URL>.
  • 32. Yuan D, Liu Q. Photon energy and photon behavior discussions. Energy Reports [Internet]. 2022 May 1;8:22–42. Available from: <URL>.
  • 33. Ayyub MM, Rao CNR. Design of efficient photocatalysts through band gap engineering. In: Boukherroub R, Ogale SB, Robertson N, editors. Nanostructured Photocatalysts [Internet]. Elsevier; 2020. p. 1–18. Available from: <URL>.
  • 34. Wu B, Meng H, Morales DM, Zeng F, Zhu J, Wang B, et al. Nitrogen‐Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Adv Funct Mater [Internet]. 2022 Aug 31;32(31):2204137. Available from: <URL>.
  • 35. Dao V, Cipriano LA, Ki SW, Yadav S, Wang W, Di Liberto G, et al. 2D/2D Z-scheme-based α-Fe2O3 @NGr heterojunction implanted with Pt single-atoms for remarkable photocatalytic hydrogen evolution. Appl Catal B Environ [Internet]. 2023 Aug 5;330:122586. Available from: <URL>.
  • 36. Khani H, Khandan N, Eikani MH, Eliassi A. Investigation of synthesized Fe2O3 and CuO–Fe2O3 for pure hydrogen production by chemical-loop reforming of methanol in a micro-channel reactor. Int J Hydrogen Energy [Internet]. 2023 Feb 22;48(16):6436–50. Available from: <URL>.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotokimya
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Nabilah Dita Anaqah 0009-0002-6852-5308

Reca Ardiyanti Rahman 0009-0001-0831-275X

Mintang Mulyanto 0009-0001-8393-0179

Lioz Alexander 0009-0002-5524-8532

Andi Fitri Ayu Lestari 0009-0000-4622-3988

Riki Subagyo 0000-0002-7622-9114

Yuly Kusumawati 0000-0002-2079-3584

Erken Görünüm Tarihi 29 Haziran 2024
Yayımlanma Tarihi 30 Ağustos 2024
Gönderilme Tarihi 25 Kasım 2023
Kabul Tarihi 30 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 3

Kaynak Göster

Vancouver Anaqah ND, Rahman RA, Mulyanto M, Alexander L, Ayu Lestari AF, Subagyo R, Kusumawati Y. C/N/CeO2/Alpha-Fe2O3 Doped Mesoporous Carbon as A Photocatalyst Material for Hydrogen Gas Production by Water Splitting Method. JOTCSA. 2024;11(3):995-1004.