Research Article
BibTex RIS Cite

Investigation of Rapid Chemical Recycling of Waste Polyethylene Terephthalate Under Microwave Effect Using Calcined Dolomite as Catalyst

Year 2024, Volume: 11 Issue: 3, 1025 - 1036, 30.08.2024
https://doi.org/10.18596/jotcsa.1462797

Abstract

According to the United Nations, our planet produces an average of 430 million tons of plastic annually. A significant portion of the environmental pollution caused by the use of plastics is due to polyethylene terephthalate (PET) used in short-lived packaging products. Various studies have been conducted with the aim of recycling or converting PET waste into useful products. In addressing the dual environmental challenges posed by waste PET and dolomite, this study innovates in the realm of sustainable recycling practices. We explore the efficiency of a solid catalyst derived from waste dolomite in catalyzing the hydrolysis of waste PET. This research not only showcases the catalytic prowess of waste-derived dolomite in breaking down PET into its constituent monomers but also highlights the process’s optimization for maximum efficiency. Through careful analysis and optimization of various parameters, including Temperature, reaction time, and catalyst concentration, we achieve an unprecedented conversion rate, illustrating the potential of this method in contributing to the circular economy. Our findings offer a groundbreaking approach to PET waste management, emphasizing the importance of sustainability and innovation in tackling environmental pollution. Dolomite is a widely available ore with a composition of CaCO3.MgCO3. After calcination, the obtained CaO-MgO mixture can be used to recycle PET via hydrolysis. In this study, Temperature (140 °C, 150 °C, 160 °C), ethanol concentration (0%, 5%, 10%), potassium hydroxide concentration (0%, 5%, and 10%), and the amount of calcined dolomite (0 g/100 mL, 0.03 g/100 mL, and 0.06 g/100 mL) parameters were selected for the PET hydrolysis process conducted in a short time using a microwave digestion system. The Taguchi L9 experimental design was applied, and all experiments were repeated four times.

Thanks

The authors would like to thank the Department of Chemical Engineering, Çankırı Karatekin University, for the use of laboratories and equipment in their studies.

References

  • 1. Mashaly AO, El-Kaliouby BA, Shalaby BN, El-Gohary AM, Rashwan MA. Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. J Clean Prod [Internet]. 2016 Jan;112:731–41. Available from: <URL>.
  • 2. Singh M, Saini B, Chalak HD. Influence of stone processing waste on mechanical, durability, and ecological performance of hybrid fiber-reinforced engineered cementitious composite. Transp Res Rec J Transp Res Board [Internet]. 2023 May 9;2677(5):260–78. Available from: <URL>.
  • 3. Khan K, Ahmad W, Amin MN, Ahmad A, Nazar S, Alabdullah AA, et al. Exploring the use of waste marble powder in concrete and predicting its strength with different advanced algorithms. Materials (Basel) [Internet]. 2022 Jun 9;15(12):4108. Available from: <URL>.
  • 4. Richetti F, Grings KJO, Ribeiro FRC, de Lima CJF, Kulakowski MP. Production of granilite concrete plates with recycled aggregates and ornamental rock processing sludge. Matéria (Rio Janeiro) [Internet]. 2022;27(3). Available from: <URL>.
  • 5. Al-Zboon K, Masoud T. Recycling of stone cutting waste in the construction sector: A review. J Solid Waste Technol Manag [Internet]. 2021 Feb 1;47(1):56–60. Available from: <URL>.
  • 6. Turuallo G, Mallisa H, Rupang N. Sustainable development: Using stone dust to replace a part of sand in concrete mixture. Woods R, Yoshida M, Miyajima M, Alauddin K, Arifin S, Fadjar A, et al., editors. MATEC Web Conf [Internet]. 2020 Dec 9;331:05001. Available from: <URL>.
  • 7. Benjeddou O, Mashaan N. Experimental study of the usability of recycling marble waste as aggregate for road construction. Sustainability [Internet]. 2022 Mar 9;14(6):3195. Available from: <URL>.
  • 8. Ural N, Kahveci AN. Use of marble waste as a road base material in different size ranges. Balt J Road Bridg Eng [Internet]. 2023 Mar 30;18(1):18–46. Available from: <URL>.
  • 9. Aliabdo AA, Abd Elmoaty AEM, Auda EM. Re-use of waste marble dust in the production of cement and concrete. Constr Build Mater [Internet]. 2014 Jan;50:28–41. Available from: <URL>.
  • 10. Elaissi A, Alibi H, Ghith A. Effect of pumice stone and pearlite abrasives characteristics on denim abrasion. J Compos Mater [Internet]. 2022 Jun 22;56(13):2107–16. Available from: <URL>.
  • 11. Pilecka E, Morman J. Utilization of fine-grained mining waste strengthened cement for the modernization of flood embankments. Bull Miner Energy Econ Res Inst Polish Acad Sci [Internet]. 2017;101:347–60. Available from: <URL>.
  • 12. Abdelkader HAM, Hussein MMA, Ye H. Influence of waste marble dust on the improvement of expansive clay soils. Colangelo F, editor. Adv Civ Eng [Internet]. 2021 Sep 21;2021:1–13. Available from: <URL>.
  • 13. Bakshi P, Pappu A, Patidar R, Gupta MK, Thakur VK. Transforming marble waste into high-performance, water-resistant, and thermally insulative hybrid polymer composites for environmental sustainability. Polymers (Basel) [Internet]. 2020 Aug 9;12(8):1781. Available from: <URL>.
  • 14. Valentini L, Mascarin L, Ez-zaki H, Bediako M, Marangu JM, Bellotto M. Use of waste calcium carbonate in sustainable cement. In 2021. p. 11–9. Available from: <URL>.
  • 15. Bonfim DPF, Cruz FGS, Bretas RES, Guerra VG, Aguiar ML. A sustainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers (Basel) [Internet]. 2021 Apr 5;13(7):1166. Available from: <URL>.
  • 16. Bartolome L, Imran M, Gyoo B, A. W, Hyun D. Recent developments in the chemical recycling of PET. In: Material Recycling - Trends and Perspectives [Internet]. InTech; 2012. Available from: <URL>.
  • 17. Stanica-Ezeanu D, Matei D. Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Sci Rep [Internet]. 2021 Feb 24;11(1):4431. Available from: <URL>.
  • 18. Zhang L. Kinetics of hydrolysis of poly(ethylene terephthalate) wastes catalyzed by dual functional phase transfer catalyst: A mechanism of chain-end scission. Eur Polym J [Internet]. 2014 Nov;60:1–5. Available from: <URL>.
  • 19. Ghasemi MH, Neekzad N, Ajdari FB, Kowsari E, Ramakrishna S. Mechanistic aspects of poly(ethylene terephthalate) recycling–toward enabling high quality sustainability decisions in waste management. Environ Sci Pollut Res [Internet]. 2021 Aug 19;28(32):43074–101. Available from: <URL>.
  • 20. Pina CM, Pimentel C, Crespo Á. The dolomite problem: A matter of time. ACS Earth Sp Chem [Internet]. 2022 Jun 16;6(6):1468–71. Available from: <URL>.
  • 21. Yan X, Qian X, Lu R, Miyakoshi T. Synergistic effect of addition of fillers on properties of interior waterborne UV-curing wood coatings. Coatings [Internet]. 2017 Dec 23;8(1):9. Available from: <URL>.
  • 22. Gao W, Ding L, Zhu Y. Effect of surface modification on the dispersion, thermal stability and crystallization properties of PET/CaCO3 nanocomposites. Tenside Surfactants Deterg [Internet]. 2017 May 15;54(3):230–7. Available from: <URL>.
  • 23. Rosmaninho MG, Jardim E, Moura FCC, Ferreira GL, Thom V, Yoshida MI, et al. Surface hydrolysis of postconsumer polyethylene terephthalate to produce adsorbents for cationic contaminants. J Appl Polym Sci [Internet]. 2006 Dec 15;102(6):5284–91. Available from: <URL>.
  • 24. Li Y, Chen J, Han W, Yi H, Wang J, Xing P, et al. Toward Making Poly(ethylene terephthalate) Degradable in Aqueous Environment. Macromol Mater Eng [Internet]. 2022 Apr 2;307(4):2100832. Available from: <URL>.
  • 25. Yoshioka T, Okayama N, Okuwaki A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind Eng Chem Res [Internet]. 1998 Feb 1;37(2):336–40. Available from: <URL>.
  • 26. Mahadevan Subramanya S, Mu Y, Savage PE. Effect of cellulose and polypropylene on hydrolysis of polyethylene terephthalate for chemical recycling. ACS Eng Au [Internet]. 2022 Dec 21;2(6):507–14. Available from: <URL>.
  • 27. Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol [Internet]. 2019 Jun 8;103(11):4253–68. Available from: <URL>.
  • 28. Liu F, Cui X, Yu S, Li Z, Ge X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J Appl Polym Sci [Internet]. 2009 Dec 15;114(6):3561–5. Available from: <URL>.
  • 29. Onwucha CN, Ehi-Eromosele CO, Ajayi SO, Schaefer M, Indris S, Ehrenberg H. Uncatalyzed neutral hydrolysis of waste PET bottles into pure terephthalic acid. Ind Eng Chem Res [Internet]. 2023 Apr 26;62(16):6378–85. Available from: <URL>.
  • 30. Goje AS, Thakur SA, Diware VR, Patil SA, Dalwale PS, Mishra S. Hydrolytic depolymerization of poly(ethylene terephthalate) waste at high temperature under autogenous pressure. Polym Plast Technol Eng [Internet]. 2004 Jan 10;43(4):1093–113. Available from: <URL>.
  • 31. Kao CY, Cheng WH, Wan BZ. Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci [Internet]. 1998 Dec 5;70(10):1939–45. Available from: <URL>.
  • 32. Pereira P, Savage PE, Pester CW. Neutral hydrolysis of post-consumer polyethylene terephthalate waste in different phases. ACS Sustain Chem Eng [Internet]. 2023 May 8;11(18):7203–9. Available from: <URL>.
  • 33. Dubelley F, Planes E, Bas C, Pons E, Yrieix B, Flandin L. Predictive durability of polyethylene terephthalate toward hydrolysis over large temperature and relative humidity ranges. Polymer (Guildf) [Internet]. 2018 Apr;142:285–92. Available from: <URL>.
  • 34. Geyer B, Lorenz G, Kandelbauer A. Recycling of poly(ethylene terephthalate) – A review focusing on chemical methods. Express Polym Lett [Internet]. 2016;10(7):559–86. Available from: <URL>.
  • 35. Conroy S, Zhang X. Theoretical insights into chemical recycling of polyethylene terephthalate (PET). Polym Degrad Stab [Internet]. 2024 May;223:110729. Available from: <URL>.
  • 36. Karayannidis GP, Chatziavgoustis AP, Achilias DS. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv Polym Technol [Internet]. 2002 Dec 2;21(4):250–9. Available from: <URL>.
  • 37. Adibfar M, Kaghazchi T, Asasian N, Soleimani M. Conversion of poly(ethylene terephthalate) waste into activated carbon: Chemical activation and characterization. Chem Eng Technol [Internet]. 2014 Jun 8;37(6):979–86. Available from: <URL>.
  • 38. Yoshioka T, Ota M, Okuwaki A. Conversion of a used poly(ethylene terephthalate) bottle into oxalic acid and terephthalic acid by oxygen oxidation in alkaline solutions at elevated temperatures. Ind Eng Chem Res [Internet]. 2003 Feb 1;42(4):675–9. Available from: <URL>.
  • 39. Rubio Arias JJ, Barnard E, Thielemans W. Ultrafast simultaneous and selective depolymerization of heterogeneous streams of polyethylene terephthalate and polycarbonate: Towards industrially feasible chemical recycling. ChemSusChem [Internet]. 2022 Aug 5;15(15):e202200625. Available from: <URL>.
Year 2024, Volume: 11 Issue: 3, 1025 - 1036, 30.08.2024
https://doi.org/10.18596/jotcsa.1462797

Abstract

References

  • 1. Mashaly AO, El-Kaliouby BA, Shalaby BN, El-Gohary AM, Rashwan MA. Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. J Clean Prod [Internet]. 2016 Jan;112:731–41. Available from: <URL>.
  • 2. Singh M, Saini B, Chalak HD. Influence of stone processing waste on mechanical, durability, and ecological performance of hybrid fiber-reinforced engineered cementitious composite. Transp Res Rec J Transp Res Board [Internet]. 2023 May 9;2677(5):260–78. Available from: <URL>.
  • 3. Khan K, Ahmad W, Amin MN, Ahmad A, Nazar S, Alabdullah AA, et al. Exploring the use of waste marble powder in concrete and predicting its strength with different advanced algorithms. Materials (Basel) [Internet]. 2022 Jun 9;15(12):4108. Available from: <URL>.
  • 4. Richetti F, Grings KJO, Ribeiro FRC, de Lima CJF, Kulakowski MP. Production of granilite concrete plates with recycled aggregates and ornamental rock processing sludge. Matéria (Rio Janeiro) [Internet]. 2022;27(3). Available from: <URL>.
  • 5. Al-Zboon K, Masoud T. Recycling of stone cutting waste in the construction sector: A review. J Solid Waste Technol Manag [Internet]. 2021 Feb 1;47(1):56–60. Available from: <URL>.
  • 6. Turuallo G, Mallisa H, Rupang N. Sustainable development: Using stone dust to replace a part of sand in concrete mixture. Woods R, Yoshida M, Miyajima M, Alauddin K, Arifin S, Fadjar A, et al., editors. MATEC Web Conf [Internet]. 2020 Dec 9;331:05001. Available from: <URL>.
  • 7. Benjeddou O, Mashaan N. Experimental study of the usability of recycling marble waste as aggregate for road construction. Sustainability [Internet]. 2022 Mar 9;14(6):3195. Available from: <URL>.
  • 8. Ural N, Kahveci AN. Use of marble waste as a road base material in different size ranges. Balt J Road Bridg Eng [Internet]. 2023 Mar 30;18(1):18–46. Available from: <URL>.
  • 9. Aliabdo AA, Abd Elmoaty AEM, Auda EM. Re-use of waste marble dust in the production of cement and concrete. Constr Build Mater [Internet]. 2014 Jan;50:28–41. Available from: <URL>.
  • 10. Elaissi A, Alibi H, Ghith A. Effect of pumice stone and pearlite abrasives characteristics on denim abrasion. J Compos Mater [Internet]. 2022 Jun 22;56(13):2107–16. Available from: <URL>.
  • 11. Pilecka E, Morman J. Utilization of fine-grained mining waste strengthened cement for the modernization of flood embankments. Bull Miner Energy Econ Res Inst Polish Acad Sci [Internet]. 2017;101:347–60. Available from: <URL>.
  • 12. Abdelkader HAM, Hussein MMA, Ye H. Influence of waste marble dust on the improvement of expansive clay soils. Colangelo F, editor. Adv Civ Eng [Internet]. 2021 Sep 21;2021:1–13. Available from: <URL>.
  • 13. Bakshi P, Pappu A, Patidar R, Gupta MK, Thakur VK. Transforming marble waste into high-performance, water-resistant, and thermally insulative hybrid polymer composites for environmental sustainability. Polymers (Basel) [Internet]. 2020 Aug 9;12(8):1781. Available from: <URL>.
  • 14. Valentini L, Mascarin L, Ez-zaki H, Bediako M, Marangu JM, Bellotto M. Use of waste calcium carbonate in sustainable cement. In 2021. p. 11–9. Available from: <URL>.
  • 15. Bonfim DPF, Cruz FGS, Bretas RES, Guerra VG, Aguiar ML. A sustainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers (Basel) [Internet]. 2021 Apr 5;13(7):1166. Available from: <URL>.
  • 16. Bartolome L, Imran M, Gyoo B, A. W, Hyun D. Recent developments in the chemical recycling of PET. In: Material Recycling - Trends and Perspectives [Internet]. InTech; 2012. Available from: <URL>.
  • 17. Stanica-Ezeanu D, Matei D. Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Sci Rep [Internet]. 2021 Feb 24;11(1):4431. Available from: <URL>.
  • 18. Zhang L. Kinetics of hydrolysis of poly(ethylene terephthalate) wastes catalyzed by dual functional phase transfer catalyst: A mechanism of chain-end scission. Eur Polym J [Internet]. 2014 Nov;60:1–5. Available from: <URL>.
  • 19. Ghasemi MH, Neekzad N, Ajdari FB, Kowsari E, Ramakrishna S. Mechanistic aspects of poly(ethylene terephthalate) recycling–toward enabling high quality sustainability decisions in waste management. Environ Sci Pollut Res [Internet]. 2021 Aug 19;28(32):43074–101. Available from: <URL>.
  • 20. Pina CM, Pimentel C, Crespo Á. The dolomite problem: A matter of time. ACS Earth Sp Chem [Internet]. 2022 Jun 16;6(6):1468–71. Available from: <URL>.
  • 21. Yan X, Qian X, Lu R, Miyakoshi T. Synergistic effect of addition of fillers on properties of interior waterborne UV-curing wood coatings. Coatings [Internet]. 2017 Dec 23;8(1):9. Available from: <URL>.
  • 22. Gao W, Ding L, Zhu Y. Effect of surface modification on the dispersion, thermal stability and crystallization properties of PET/CaCO3 nanocomposites. Tenside Surfactants Deterg [Internet]. 2017 May 15;54(3):230–7. Available from: <URL>.
  • 23. Rosmaninho MG, Jardim E, Moura FCC, Ferreira GL, Thom V, Yoshida MI, et al. Surface hydrolysis of postconsumer polyethylene terephthalate to produce adsorbents for cationic contaminants. J Appl Polym Sci [Internet]. 2006 Dec 15;102(6):5284–91. Available from: <URL>.
  • 24. Li Y, Chen J, Han W, Yi H, Wang J, Xing P, et al. Toward Making Poly(ethylene terephthalate) Degradable in Aqueous Environment. Macromol Mater Eng [Internet]. 2022 Apr 2;307(4):2100832. Available from: <URL>.
  • 25. Yoshioka T, Okayama N, Okuwaki A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind Eng Chem Res [Internet]. 1998 Feb 1;37(2):336–40. Available from: <URL>.
  • 26. Mahadevan Subramanya S, Mu Y, Savage PE. Effect of cellulose and polypropylene on hydrolysis of polyethylene terephthalate for chemical recycling. ACS Eng Au [Internet]. 2022 Dec 21;2(6):507–14. Available from: <URL>.
  • 27. Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol [Internet]. 2019 Jun 8;103(11):4253–68. Available from: <URL>.
  • 28. Liu F, Cui X, Yu S, Li Z, Ge X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J Appl Polym Sci [Internet]. 2009 Dec 15;114(6):3561–5. Available from: <URL>.
  • 29. Onwucha CN, Ehi-Eromosele CO, Ajayi SO, Schaefer M, Indris S, Ehrenberg H. Uncatalyzed neutral hydrolysis of waste PET bottles into pure terephthalic acid. Ind Eng Chem Res [Internet]. 2023 Apr 26;62(16):6378–85. Available from: <URL>.
  • 30. Goje AS, Thakur SA, Diware VR, Patil SA, Dalwale PS, Mishra S. Hydrolytic depolymerization of poly(ethylene terephthalate) waste at high temperature under autogenous pressure. Polym Plast Technol Eng [Internet]. 2004 Jan 10;43(4):1093–113. Available from: <URL>.
  • 31. Kao CY, Cheng WH, Wan BZ. Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci [Internet]. 1998 Dec 5;70(10):1939–45. Available from: <URL>.
  • 32. Pereira P, Savage PE, Pester CW. Neutral hydrolysis of post-consumer polyethylene terephthalate waste in different phases. ACS Sustain Chem Eng [Internet]. 2023 May 8;11(18):7203–9. Available from: <URL>.
  • 33. Dubelley F, Planes E, Bas C, Pons E, Yrieix B, Flandin L. Predictive durability of polyethylene terephthalate toward hydrolysis over large temperature and relative humidity ranges. Polymer (Guildf) [Internet]. 2018 Apr;142:285–92. Available from: <URL>.
  • 34. Geyer B, Lorenz G, Kandelbauer A. Recycling of poly(ethylene terephthalate) – A review focusing on chemical methods. Express Polym Lett [Internet]. 2016;10(7):559–86. Available from: <URL>.
  • 35. Conroy S, Zhang X. Theoretical insights into chemical recycling of polyethylene terephthalate (PET). Polym Degrad Stab [Internet]. 2024 May;223:110729. Available from: <URL>.
  • 36. Karayannidis GP, Chatziavgoustis AP, Achilias DS. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv Polym Technol [Internet]. 2002 Dec 2;21(4):250–9. Available from: <URL>.
  • 37. Adibfar M, Kaghazchi T, Asasian N, Soleimani M. Conversion of poly(ethylene terephthalate) waste into activated carbon: Chemical activation and characterization. Chem Eng Technol [Internet]. 2014 Jun 8;37(6):979–86. Available from: <URL>.
  • 38. Yoshioka T, Ota M, Okuwaki A. Conversion of a used poly(ethylene terephthalate) bottle into oxalic acid and terephthalic acid by oxygen oxidation in alkaline solutions at elevated temperatures. Ind Eng Chem Res [Internet]. 2003 Feb 1;42(4):675–9. Available from: <URL>.
  • 39. Rubio Arias JJ, Barnard E, Thielemans W. Ultrafast simultaneous and selective depolymerization of heterogeneous streams of polyethylene terephthalate and polycarbonate: Towards industrially feasible chemical recycling. ChemSusChem [Internet]. 2022 Aug 5;15(15):e202200625. Available from: <URL>.
There are 39 citations in total.

Details

Primary Language English
Subjects Catalysis and Mechanisms of Reactions, Polymer Science and Technologies
Journal Section RESEARCH ARTICLES
Authors

Mehmet Ali Boz 0000-0003-3488-0547

Vedat Arda Küçük 0000-0002-8620-9694

Muhammed Bora Akın 0000-0003-3841-1633

Early Pub Date June 24, 2024
Publication Date August 30, 2024
Submission Date April 1, 2024
Acceptance Date May 18, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Boz MA, Küçük VA, Akın MB. Investigation of Rapid Chemical Recycling of Waste Polyethylene Terephthalate Under Microwave Effect Using Calcined Dolomite as Catalyst. JOTCSA. 2024;11(3):1025-36.