Research Article
BibTex RIS Cite

Integrating of In Silico and In Vitro Approaches to Determine Biological Activities of Abelmoschus esculentus’s Seeds

Year 2024, Volume: 11 Issue: 4, 1515 - 1526, 03.12.2024
https://doi.org/10.18596/jotcsa.1499076

Abstract

The purpose of this study was to examine the antioxidant, anti-urease, and anticholinesterase properties of extracts from plant seeds, as well as their toxicity on normal cells. In addition, the goal of this work was to use an in silico and in vitro method to evaluate the biological activity and mechanism of action of A. esculentus. DPPH (2,2-diphenyl-1-picrylhydrazyl), CUPRAC (Cupric ion reducing antioxidant capacity), and FRAP (Ferric reducing antioxidant power) techniques were used to examine the antioxidant properties of plant extracts. The extracts' anticholinesterase, anti-urease, and cytotoxic activity were determined using the Ellman, Indophenol, and MTT techniques, respectively. Computer algorithms were used to estimate ADMET and molecular docking techniques for compounds in plant. When the antioxidant activity results were examined, it was determined that water (IC50:0.313 mg/mL) and ethanol (IC50:0.314 mg/mL) extract showed DPPH activities close to each other. It was determined that the water (7.780mM FeSO4/mg extract, 1.106 mM troloxE/mg extract) extract showed higher activity than the ethanol (3.420 mM FeSO4/mg extract, 0.343 mM troloxE/mg extract) extract in FRAP and CUPRAC experiments. Considering the enzyme inhibition results, it was determined that the water extract showed the highest anti-urease activity, while the ethanol extract showed the highest anticholinesterase activity. It was also determined that both extracts had no toxic effect on normal cell lines (L-929). Based on pkCSM values, procyanidin B1 and procyanidin B2 compounds have a low volume of distribution, whereas rutin and quercetin compounds have a high volume of distribution (VDss). Not all compounds were predicted to have mutagenic and hepatotoxicity effects. In terms of score and ligand efficiency, procyanidin B1, procyanidin B2, quercetin, and rutin compounds appear to be superior to the reference. The chemicals quercetin and procyanidin B2 are thought to be key players in the pathophysiology of oxidative stress. In this study, the fact that the seeds’ extracts have biological activity and have no toxic effects on normal cell lines suggests that the seeds can be used medicinally and nutritionally in the future.

Supporting Institution

TÜBİTAK

Project Number

1919B012000209.

Thanks

This work is financially supported by TÜBİTAK-2209A program (1919B012000209).

References

  • 1. Pisoschi AM, Negulescu GP. Methods for total antioxidant activity determination: A review. Biochem Anal Biochem [Internet]. 2012;1(1):106. Available from: <URL>.
  • 2. Jaganath IB, Jaganath IB, Mullen W, Edwards CA, Crozier A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic Res [Internet]. 2006 Jan 7;40(10):1035–46. Available from: <URL>.
  • 3. Khanal P, Patil BM. In vitro and in silico anti-oxidant, cytotoxicity and biological activities of Ficus benghalensis and Duranta repens. Chinese Herb Med [Internet]. 2020 Oct 1;12(4):406–13. Available from: <URL>.
  • 4. Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci Total Environ [Internet]. 2020 Jan 15;700:134836. Available from: <URL>.
  • 5. Gaudreault R, Mousseau N. Mitigating alzheimer’s disease with natural polyphenols: A review. Curr Alzheimer Res [Internet]. 2019 Jul 23;16(6):529–43. Available from: <URL>.
  • 6. Gauthier S, Feldman HH, Schneider LS, Wilcock GK, Frisoni GB, Hardlund JH, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet [Internet]. 2016 Dec 10;388(10062):2873–84. Available from: <URL>.
  • 7. Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S. Role of natural products for the treatment of Alzheimer’s disease. Eur J Pharmacol [Internet]. 2021 May 5;898:173974. Available from: <URL>.
  • 8. Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. Int J Food Prop [Internet]. 2021 Jan 1;24(1):41–67. Available from: <URL>.
  • 9. Elkhalifa AEO, Alshammari E, Adnan M, Alcantara JC, Awadelkareem AM, Eltoum NE, et al. Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules [Internet]. 2021 Jan 28;26(3):696. Available from: <URL>.
  • 10. Dantas TL, Alonso Buriti FC, Florentino ER. Okra (Abelmoschus esculentus L.) as a potential functional food source of mucilage and bioactive compounds with technological applications and health benefits. Plants [Internet]. 2021 Aug 16;10(8):1683. Available from: <URL>.
  • 11. Esmaeilzadeh D, Razavi BM, Hosseinzadeh H. Effect of Abelmoschus esculentus (okra) on metabolic syndrome: A review. Phyther Res [Internet]. 2020 Sep 27;34(9):2192–202. Available from: <URL>.
  • 12. Kumar DS, Tony DE, Praveen Kumar A, Kumar K, Srinivasa Rao DB, Nadendla R. A Review on: Abelmoschus esculentus (okra). Int Res J Pharm Appl Sci [Internet]. 2013;3(4):129–32. Available from: <URL>.
  • 13. Gasteiger J. Chemoinformatics: Achievements and challenges, a personal view. Molecules [Internet]. 2016 Jan 27;21(2):151. Available from: <URL>.
  • 14. Khomsug P, Thongjaroe W, Pakdeenaro N, Suttajit M, Chantirati P. Antioxidative Activities and Phenolic Content of Extracts from Okra (Abelmoschus esculentus L.). Res J Biol Sci [Internet]. 2010 Apr 1;5(4):310–3. Available from: <URL>.
  • 15. Fu W, Chen J, Cai Y, Lei Y, Chen L, Pei L, et al. Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.) Ching. J Ethnopharmacol [Internet]. 2010 Aug 9;130(3):521–8. Available from: <URL>.
  • 16. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine:  CUPRAC method. J Agric Food Chem [Internet]. 2004 Dec 1;52(26):7970–81. Available from: <URL>.
  • 17. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal Biochem [Internet]. 1996 Jul 15;239(1):70–6. Available from: <URL>.
  • 18. Taşkın T, Taşkın D, Çam ME, Bulut G. Phenolic compounds, biological activities and trace elements of Capparis ovata var. canescens. Rev Biol Trop [Internet]. 2020 Mar 19;68(2):590–600. Available from: <URL>.
  • 19. Ahmed D, Younas S, Mumtaz Anwer Mughal Q. Study of alpha-amylase and urease inhibitory activities of Melilotus indicus (Linn.) All. Pak J Pharm Sci [Internet]. 2014;27(1):57–61. Available from: <URL>.
  • 20. Lountos GT, Jiang R, Wellborn WB, Thaler TL, Bommarius AS, Orville AM. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis:  Insights into the conversion of O2 into two water molecules by the flavoenzym. Biochemistry [Internet]. 2006 Aug 1;45(32):9648–59. Available from: <URL>.
  • 21. Cao H, Pauff JM, Hille R. Substrate orientation and catalytic specificity in the action of xanthine oxidase. J Biol Chem [Internet]. 2010 Sep 3;285(36):28044–53. Available from: <URL>.
  • 22. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comput Chem [Internet]. 1984 Apr 7;5(2):129–45. Available from: <URL>.
  • 23. Dassault Systèmes B. Discovery studio visualizer. San Diego, CA, USA; 2017.
  • 24. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem [Internet]. 1639;19(14):1639–62. Available from: <URL>.
  • 25. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera—A visualization system for exploratory research and analysis. J Comput Chem [Internet]. 2004 Oct 1;25(13):1605–12. Available from: <URL>.
  • 26. Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol [Internet]. 2011 Aug 25;48(4):412–22. Available from: <URL>.
  • 27. Büyüktuncel E. Main spectrophotometric methods for the determination of total phenolic content and antioxidant capacity. Marmara Pharm J [Internet]. 2013 Jan 1;2(17):93–103. Available from: <URL>.
  • 28. Steiner T. The hydrogen bond in the solid state. Angew Chemie Int Ed [Internet]. 2002 Jan 4;41(1):48–76. Available from: <URL>.
  • 29. Pham-Huy LA, He H, Pham-Huyc C. Free radicals, antioxidants in disease and health. Int J Biomed Sci [Internet]. 2008 Jun 15;4(2):89–96. Available from: <URL>.
  • 30. Chung HY, Baek BS, Song SH, Kim MS, Huh JI, Shim KH, et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha) [Internet]. 1997 Jul;20(3):127–40. Available from: <URL>.
  • 31. Hrycay EG, Bandiera SM. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. In: Advances in Pharmacology [Internet]. Academic Press; 2015. p. 35–84. Available from: <URL>.
  • 32. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension. Diabetes Care [Internet]. 2008 Feb 1;31:S170–80. Available from: <URL>.
  • 33. Hafeez M, Mona Hassan S, Sharif Mughal S, Raza Ayub A, Yasin M, Nasir Mehmood Khan M, et al. Evaluation of biological characteristics of Abelmoschus esculentus. Int J Biochem Biophys Mol Biol [Internet]. 2020;5(2):44–51. Available from: <URL>.
  • 34. Hamiduzzaman M, Sarkar M. Evaluation of biological activities of Abelmoschus esculentus (Malvaceae). Int J Curr Microbiol Appl Sci [Internet]. 2014;10:43–9. Available from: <URL>.
  • 35. Li YX, Deng DY, Liao HB, Zhou H, Liu H liang, Yuan K. Chemical constituents of Abelmoschus esculentus fruit and biological activity. In: Medicine and Biopharmaceutical [Internet]. World Scientific; 2016. p. 1040–8. Available from: <URL>.
  • 36. Doreddula SK, Bonam SR, Gaddam DP, Desu BSR, Ramarao N, Pandy V. Phytochemical analysis, antioxidant, antistress, and nootropic activities of aqueous and methanolic seed extracts of ladies finger (Abelmoschus esculentus L.) in mice. Sci World J [Internet]. 2014 Jan 1;2014(1):519848. Available from: <URL>.
  • 37. Siddique MH, Ashraf A, Hayat S, Aslam B, Fakhar-e-Alam M, Muzammil S, et al. Antidiabetic and antioxidant potentials of Abelmoschus esculentus: In vitro combined with molecular docking approach. J Saudi Chem Soc [Internet]. 2022 Mar 1;26(2):101418. Available from: <URL>.
Year 2024, Volume: 11 Issue: 4, 1515 - 1526, 03.12.2024
https://doi.org/10.18596/jotcsa.1499076

Abstract

Project Number

1919B012000209.

References

  • 1. Pisoschi AM, Negulescu GP. Methods for total antioxidant activity determination: A review. Biochem Anal Biochem [Internet]. 2012;1(1):106. Available from: <URL>.
  • 2. Jaganath IB, Jaganath IB, Mullen W, Edwards CA, Crozier A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic Res [Internet]. 2006 Jan 7;40(10):1035–46. Available from: <URL>.
  • 3. Khanal P, Patil BM. In vitro and in silico anti-oxidant, cytotoxicity and biological activities of Ficus benghalensis and Duranta repens. Chinese Herb Med [Internet]. 2020 Oct 1;12(4):406–13. Available from: <URL>.
  • 4. Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci Total Environ [Internet]. 2020 Jan 15;700:134836. Available from: <URL>.
  • 5. Gaudreault R, Mousseau N. Mitigating alzheimer’s disease with natural polyphenols: A review. Curr Alzheimer Res [Internet]. 2019 Jul 23;16(6):529–43. Available from: <URL>.
  • 6. Gauthier S, Feldman HH, Schneider LS, Wilcock GK, Frisoni GB, Hardlund JH, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet [Internet]. 2016 Dec 10;388(10062):2873–84. Available from: <URL>.
  • 7. Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S. Role of natural products for the treatment of Alzheimer’s disease. Eur J Pharmacol [Internet]. 2021 May 5;898:173974. Available from: <URL>.
  • 8. Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. Int J Food Prop [Internet]. 2021 Jan 1;24(1):41–67. Available from: <URL>.
  • 9. Elkhalifa AEO, Alshammari E, Adnan M, Alcantara JC, Awadelkareem AM, Eltoum NE, et al. Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules [Internet]. 2021 Jan 28;26(3):696. Available from: <URL>.
  • 10. Dantas TL, Alonso Buriti FC, Florentino ER. Okra (Abelmoschus esculentus L.) as a potential functional food source of mucilage and bioactive compounds with technological applications and health benefits. Plants [Internet]. 2021 Aug 16;10(8):1683. Available from: <URL>.
  • 11. Esmaeilzadeh D, Razavi BM, Hosseinzadeh H. Effect of Abelmoschus esculentus (okra) on metabolic syndrome: A review. Phyther Res [Internet]. 2020 Sep 27;34(9):2192–202. Available from: <URL>.
  • 12. Kumar DS, Tony DE, Praveen Kumar A, Kumar K, Srinivasa Rao DB, Nadendla R. A Review on: Abelmoschus esculentus (okra). Int Res J Pharm Appl Sci [Internet]. 2013;3(4):129–32. Available from: <URL>.
  • 13. Gasteiger J. Chemoinformatics: Achievements and challenges, a personal view. Molecules [Internet]. 2016 Jan 27;21(2):151. Available from: <URL>.
  • 14. Khomsug P, Thongjaroe W, Pakdeenaro N, Suttajit M, Chantirati P. Antioxidative Activities and Phenolic Content of Extracts from Okra (Abelmoschus esculentus L.). Res J Biol Sci [Internet]. 2010 Apr 1;5(4):310–3. Available from: <URL>.
  • 15. Fu W, Chen J, Cai Y, Lei Y, Chen L, Pei L, et al. Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.) Ching. J Ethnopharmacol [Internet]. 2010 Aug 9;130(3):521–8. Available from: <URL>.
  • 16. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine:  CUPRAC method. J Agric Food Chem [Internet]. 2004 Dec 1;52(26):7970–81. Available from: <URL>.
  • 17. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal Biochem [Internet]. 1996 Jul 15;239(1):70–6. Available from: <URL>.
  • 18. Taşkın T, Taşkın D, Çam ME, Bulut G. Phenolic compounds, biological activities and trace elements of Capparis ovata var. canescens. Rev Biol Trop [Internet]. 2020 Mar 19;68(2):590–600. Available from: <URL>.
  • 19. Ahmed D, Younas S, Mumtaz Anwer Mughal Q. Study of alpha-amylase and urease inhibitory activities of Melilotus indicus (Linn.) All. Pak J Pharm Sci [Internet]. 2014;27(1):57–61. Available from: <URL>.
  • 20. Lountos GT, Jiang R, Wellborn WB, Thaler TL, Bommarius AS, Orville AM. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis:  Insights into the conversion of O2 into two water molecules by the flavoenzym. Biochemistry [Internet]. 2006 Aug 1;45(32):9648–59. Available from: <URL>.
  • 21. Cao H, Pauff JM, Hille R. Substrate orientation and catalytic specificity in the action of xanthine oxidase. J Biol Chem [Internet]. 2010 Sep 3;285(36):28044–53. Available from: <URL>.
  • 22. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comput Chem [Internet]. 1984 Apr 7;5(2):129–45. Available from: <URL>.
  • 23. Dassault Systèmes B. Discovery studio visualizer. San Diego, CA, USA; 2017.
  • 24. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem [Internet]. 1639;19(14):1639–62. Available from: <URL>.
  • 25. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera—A visualization system for exploratory research and analysis. J Comput Chem [Internet]. 2004 Oct 1;25(13):1605–12. Available from: <URL>.
  • 26. Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol [Internet]. 2011 Aug 25;48(4):412–22. Available from: <URL>.
  • 27. Büyüktuncel E. Main spectrophotometric methods for the determination of total phenolic content and antioxidant capacity. Marmara Pharm J [Internet]. 2013 Jan 1;2(17):93–103. Available from: <URL>.
  • 28. Steiner T. The hydrogen bond in the solid state. Angew Chemie Int Ed [Internet]. 2002 Jan 4;41(1):48–76. Available from: <URL>.
  • 29. Pham-Huy LA, He H, Pham-Huyc C. Free radicals, antioxidants in disease and health. Int J Biomed Sci [Internet]. 2008 Jun 15;4(2):89–96. Available from: <URL>.
  • 30. Chung HY, Baek BS, Song SH, Kim MS, Huh JI, Shim KH, et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha) [Internet]. 1997 Jul;20(3):127–40. Available from: <URL>.
  • 31. Hrycay EG, Bandiera SM. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. In: Advances in Pharmacology [Internet]. Academic Press; 2015. p. 35–84. Available from: <URL>.
  • 32. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension. Diabetes Care [Internet]. 2008 Feb 1;31:S170–80. Available from: <URL>.
  • 33. Hafeez M, Mona Hassan S, Sharif Mughal S, Raza Ayub A, Yasin M, Nasir Mehmood Khan M, et al. Evaluation of biological characteristics of Abelmoschus esculentus. Int J Biochem Biophys Mol Biol [Internet]. 2020;5(2):44–51. Available from: <URL>.
  • 34. Hamiduzzaman M, Sarkar M. Evaluation of biological activities of Abelmoschus esculentus (Malvaceae). Int J Curr Microbiol Appl Sci [Internet]. 2014;10:43–9. Available from: <URL>.
  • 35. Li YX, Deng DY, Liao HB, Zhou H, Liu H liang, Yuan K. Chemical constituents of Abelmoschus esculentus fruit and biological activity. In: Medicine and Biopharmaceutical [Internet]. World Scientific; 2016. p. 1040–8. Available from: <URL>.
  • 36. Doreddula SK, Bonam SR, Gaddam DP, Desu BSR, Ramarao N, Pandy V. Phytochemical analysis, antioxidant, antistress, and nootropic activities of aqueous and methanolic seed extracts of ladies finger (Abelmoschus esculentus L.) in mice. Sci World J [Internet]. 2014 Jan 1;2014(1):519848. Available from: <URL>.
  • 37. Siddique MH, Ashraf A, Hayat S, Aslam B, Fakhar-e-Alam M, Muzammil S, et al. Antidiabetic and antioxidant potentials of Abelmoschus esculentus: In vitro combined with molecular docking approach. J Saudi Chem Soc [Internet]. 2022 Mar 1;26(2):101418. Available from: <URL>.
There are 37 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section RESEARCH ARTICLES
Authors

Turgut Taşkın 0000-0001-8475-6478

Sultan Mente 0000-0002-0818-3855

Ceyda Ekentok Atıcı 0000-0001-7721-8778

Mizgin Ermanoğlu 0000-0003-3146-1988

Mücahit Özdemir 0000-0002-0840-4953

Bahattin Yalcin 0000-0003-4448-1101

Gülden Z. Omurtağ 0000-0002-2018-9619

Project Number 1919B012000209.
Publication Date December 3, 2024
Submission Date June 11, 2024
Acceptance Date September 2, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Taşkın T, Mente S, Atıcı CE, Ermanoğlu M, Özdemir M, Yalcin B, Omurtağ GZ. Integrating of In Silico and In Vitro Approaches to Determine Biological Activities of Abelmoschus esculentus’s Seeds. JOTCSA. 2024;11(4):1515-26.