Research Article
BibTex RIS Cite

Degradation of Nile Blue by Photocatalytic, Ultrasonic, Fenton, and Fenton-like Oxidation Processes

Year 2024, Volume: 7 Issue: 2, 77 - 86, 04.10.2024
https://doi.org/10.58692/jotcsb.1445396

Abstract

The aim of this study is to investigate new catalytic systems for the degradation of a dye that has been classified as first-degree toxic pollutant. Advanced oxidation process such as photocatalytic oxidation, ultrasonic oxidation, Fenton, and Fenton-like constitute a promising technology for the treatment of wastewater containing organic compounds. Waste effluents from textile industries are a major source of water pollution. These wastewaters contain dyes, which have high toxicity and low biodegradability. In this study, degradation of Nile Blue (NB), an azo dye, was studied using the photocatalytic oxidation (TiO2 and silver-loaded TiO2 (Ag-TiO2) as catalyst), ultrasonic oxidation, Fenton (Fe(II)/H2O2), and Fenton-like (Cu(II)/H2O2, V(IV)/H2O2) processes. It was found that the photocatalytic degradation of NB increased with decreasing pH, and the degradation rate also increased in the presence of TiO2/UV compared to UV irradiation alone. In addition, Ag loading on TiO2 dramatically reduced the degradation time. The ultrasonic degradation of NB was also studied using different initial dye concentrations at different pH values and amplitudes. Concentrations of Fe(II), Cu(II), V(IV) and H2O2 on degradation ratio were investigated. It is found that Fe(II) ion is more effective than Cu(II) and V(IV) ions in the degradation of NB.

References

  • Abo-Farha, S. A. (2010). Comparative study of oxidation of some azo dyes by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton and photo-Fenton-like. Journal of American Science, 6(10), 128-142.
  • Anliker, R. (1979). Ecotoxicology of dyestuffs—a joint effort by industry. Ecotoxicology and Environmental Safety, 3(1), 59-74. https://doi.org/10.1016/0147-6513(79)90060-5
  • Chacón, J. M., Leal, M. T., Sánchez, M., & Bandala, E. R. (2006). Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes and pigments, 69(3), 144-150. https://doi.org/10.1016/j.dyepig.2005.01.020
  • Dutta, K., Mukhopadhyay, S., Bhattacharjee, S., & Chaudhuri, B. (2001). Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of hazardous materials, 84(1), 57-71. https://doi.org/10.1016/S0304-3894(01)00202-3
  • Fenton, H. J. H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899-910. https://doi.org/10.1039/CT8946500899
  • Goldstein, S., Meyerstein, D., & Czapski, G. (1993). The fenton reagents. Free radical biology and medicine, 15(4), 435-445. https://doi.org/10.1016/0891-5849(93)90043-T
  • Hsueh, C. L., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10), 1409-1414. https://doi.org/10.1016/j.chemosphere.2004.09.091
  • Jiang, C., Pang, S., Ouyang, F., Ma, J., & Jiang, J. (2010). A new insight into Fenton and Fenton-like processes for water treatment. Journal of hazardous materials, 174(1-3), 813-817. https://doi.org/10.1016/j.jhazmat.2009.09.125
  • Kidak, R., & Ince, N. H. (2006). Effects of operating parameters on sonochemical decomposition of phenol. Journal of hazardous materials, 137(3), 1453-1457. https://doi.org/10.1016/j.jhazmat.2006.04.021
  • Kim, T. H., Park, C., Yang, J., & Kim, S. (2004). Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of hazardous materials, 112(1-2), 95-103. https://doi.org/10.1016/j.jhazmat.2004.04.008
  • Kumar, J. E., Mulai, T., Kharmawphlang, W., Sharan, R. N., & Sahoo, M. K. (2020). Decolourisation, mineralisation and detoxification of mixture of azo dyes using Fenton and Fenton-type advanced oxidation processes. Chemical Papers, 74(9), 3145-3159. https://doi.org/10.1007/s11696-020-01147-9
  • Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton's reagent. Water Research, 26(7), 881-886. https://doi.org/10.1016/0043-1354(92)90192-7
  • Kushwahaa, R., Garg, S., & Bajpai, S. (2019). Modeling and optimization of Nile blue sulfate mineralization by heterogeneous fenton oxidation. Toxicological & Environmental Chemistry, 101(1-2), 26-44. https://doi.org/10.1080/02772248.2019.1621314
  • Kushwahab, R., Garg, S., & Bajpai, S. (2018). Modified generalized kinetic model and degradation mechanistic pathways for catalytic oxidation of NBS dye in Fenton-like oxidation process. Research on Chemical Intermediates, 44, 5759-5786. https://doi.org/10.1007/s11164-018-3453-6
  • Liu, R., Chiu, H. M., Shiau, C. S., Yeh, R. Y. L., & Hung, Y. T. (2007). Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes. Dyes and Pigments, 73(1), 1-6. https://doi.org/10.1016/j.dyepig.2005.10.002
  • Liu, Y., Zhao, Y., & Wang, J. (2021). Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. Journal of Hazardous Materials, 404, 124191. https://doi.org/10.1016/j.jhazmat.2020.124191
  • Neamtu, M., Yediler, A., Siminiceanu, I., & Kettrup, A. (2003). Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. Journal of Photochemistry and Photobiology A: Chemistry, 161(1), 87-93. https://doi.org/10.1016/S1010-6030(03)00270-3
  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2003). Application of ‘waste’metal hydroxide sludge for adsorption of azo reactive dyes. Water Research, 37(4), 763-772. https://doi.org/10.1016/S0043-1354(02)00375-5
  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous materials, 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0
  • Nidheesh, P. V., Gandhimathi, R., & Ramesh, S. T. (2013). Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 20, 2099-2132. https://doi.org/10.1007/s11356-012-1385-z
  • Ollis, D. F., Pelizzetti, E., & Serpone, N. (1991). Photocatalyzed destruction of water contaminants. Environmental science & technology, 25(9), 1522-1529.
  • Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256. https://doi.org/10.1016/j.apcatb.2003.09.010
  • Perkins, W. S., Judkins Jr, J. F., & Perry, W. D. (1980). Renovation of Dyebath Water By Chlorination or Ozonation. Textile Chemist & Colorist, 12(8). Safarzadeh-Amiri, A., Bolton, J. R., & Cater, S. R. (1996). The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies, 1(1), 18-26. https://doi.org/10.1515/jaots-1996-0105
  • Saien, J., Ardjmand, R. R., & Iloukhani, H. (2003). Photocatalytic decomposition of sodium dodecyl benzene sulfonate under aqueous media in the presence of TiO2. Physics and Chemistry of Liquids, 41(5), 519-531. https://doi.org/10.1080/00319100310001604849
  • Saleem, M. N., Shah, A., Ullah, N., Nisar, J., & Iftikhar, F. J. (2023). Detection and Degradation Studies of Nile Blue Sulphate Using Electrochemical and UV-Vis Spectroscopic Techniques. catalysts, 13(1), 141. https://doi.org/10.3390/catal13010141
  • Singh, J., Kumar, V., Kim, K. H., & Rawat, M. (2019). Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environmental research, 177, 108569. https://doi.org/10.1016/j.envres.2019.108569
  • Solozhenko, E. G., Soboleva, N. M., & Goncharuk, V. V. (1995). Decolourization of azodye solutions by Fenton's oxidation. Water Research, 29(9), 2206-2210. https://doi.org/10.1016/0043-1354(95)00042-J
  • Sökmen, M., Allen, D. W., Akkaş, F., Kartal, N., & Acar, F. (2001). Photo-degradation of some dyes using Ag-loaded titaniumdioxide. Water, air, and soil pollution, 132, 153-163. https://doi.org/10.1023/A:1012069009633
  • Sökmen, M., Allen, D. W., Clench, M. R., & Hewson, A. T. (2002). GC-MS characterisation of products of oxidation of thiophenes using the Fenton and related reagents. Journal of Advanced Oxidation Technologies, 5(1), 11-21. https://doi.org/10.1515/jaots-2002-0102
  • Sun, H., Liu, C., & Yao, Y. (2021). Degradation of Azo Dyes Using Natural Pyrite as Fenton-Like Reaction Catalyst. Environmental Engineering Science, 38(9), 854-866. https://doi.org/10.1089/ees.2020.0359
  • Temel, N. K., & Sökmen, M. (2011). New catalyst systems for the degradation of chlorophenols. Desalination, 281, 209-214. https://doi.org/10.1016/j.desal.2011.07.066
  • Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762-787. https://doi.org/10.1016/j.jece.2015.12.016
  • Woislawski, S. (1953). The spectrophotometric determination of ionization constants of basic dyes1. Journal of the American Chemical Society, 75(21), 5201-5203.
  • Wu, T., Lin, T., Zhao, J., Hidaka, H., & Serpone, N. (1999). TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environmental science & technology, 33(9), 1379-1387. https://doi.org/10.1021/es980923i
  • Xu, X. R., Li, H. B., Wang, W. H., & Gu, J. D. (2004). Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7), 595-600. https://doi.org/10.1016/j.chemosphere.2004.07.030
  • Yaseen, M., Humayun, M., Khan, A., Idrees, M., Shah, N., & Bibi, S. (2022). Photo- assisted removal of rhodamine B and Nile blue dyes from water using CuO–SiO2 composite. Molecules, 27(16), 5343. https://doi.org/10.3390/molecules27165343
  • Yasmeen, S., Burratti, L., Duranti, L., Sgreccia, E., & Prosposito, P. (2024). Photocatalytic Degradation of Organic Pollutants—Nile Blue, Methylene Blue, and Bentazon Herbicide—Using NiO-ZnO Nanocomposite. Nanomaterials, 14(5), 470. https://doi.org/10.3390/nano14050470
Year 2024, Volume: 7 Issue: 2, 77 - 86, 04.10.2024
https://doi.org/10.58692/jotcsb.1445396

Abstract

References

  • Abo-Farha, S. A. (2010). Comparative study of oxidation of some azo dyes by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton and photo-Fenton-like. Journal of American Science, 6(10), 128-142.
  • Anliker, R. (1979). Ecotoxicology of dyestuffs—a joint effort by industry. Ecotoxicology and Environmental Safety, 3(1), 59-74. https://doi.org/10.1016/0147-6513(79)90060-5
  • Chacón, J. M., Leal, M. T., Sánchez, M., & Bandala, E. R. (2006). Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes and pigments, 69(3), 144-150. https://doi.org/10.1016/j.dyepig.2005.01.020
  • Dutta, K., Mukhopadhyay, S., Bhattacharjee, S., & Chaudhuri, B. (2001). Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of hazardous materials, 84(1), 57-71. https://doi.org/10.1016/S0304-3894(01)00202-3
  • Fenton, H. J. H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899-910. https://doi.org/10.1039/CT8946500899
  • Goldstein, S., Meyerstein, D., & Czapski, G. (1993). The fenton reagents. Free radical biology and medicine, 15(4), 435-445. https://doi.org/10.1016/0891-5849(93)90043-T
  • Hsueh, C. L., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10), 1409-1414. https://doi.org/10.1016/j.chemosphere.2004.09.091
  • Jiang, C., Pang, S., Ouyang, F., Ma, J., & Jiang, J. (2010). A new insight into Fenton and Fenton-like processes for water treatment. Journal of hazardous materials, 174(1-3), 813-817. https://doi.org/10.1016/j.jhazmat.2009.09.125
  • Kidak, R., & Ince, N. H. (2006). Effects of operating parameters on sonochemical decomposition of phenol. Journal of hazardous materials, 137(3), 1453-1457. https://doi.org/10.1016/j.jhazmat.2006.04.021
  • Kim, T. H., Park, C., Yang, J., & Kim, S. (2004). Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of hazardous materials, 112(1-2), 95-103. https://doi.org/10.1016/j.jhazmat.2004.04.008
  • Kumar, J. E., Mulai, T., Kharmawphlang, W., Sharan, R. N., & Sahoo, M. K. (2020). Decolourisation, mineralisation and detoxification of mixture of azo dyes using Fenton and Fenton-type advanced oxidation processes. Chemical Papers, 74(9), 3145-3159. https://doi.org/10.1007/s11696-020-01147-9
  • Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton's reagent. Water Research, 26(7), 881-886. https://doi.org/10.1016/0043-1354(92)90192-7
  • Kushwahaa, R., Garg, S., & Bajpai, S. (2019). Modeling and optimization of Nile blue sulfate mineralization by heterogeneous fenton oxidation. Toxicological & Environmental Chemistry, 101(1-2), 26-44. https://doi.org/10.1080/02772248.2019.1621314
  • Kushwahab, R., Garg, S., & Bajpai, S. (2018). Modified generalized kinetic model and degradation mechanistic pathways for catalytic oxidation of NBS dye in Fenton-like oxidation process. Research on Chemical Intermediates, 44, 5759-5786. https://doi.org/10.1007/s11164-018-3453-6
  • Liu, R., Chiu, H. M., Shiau, C. S., Yeh, R. Y. L., & Hung, Y. T. (2007). Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes. Dyes and Pigments, 73(1), 1-6. https://doi.org/10.1016/j.dyepig.2005.10.002
  • Liu, Y., Zhao, Y., & Wang, J. (2021). Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. Journal of Hazardous Materials, 404, 124191. https://doi.org/10.1016/j.jhazmat.2020.124191
  • Neamtu, M., Yediler, A., Siminiceanu, I., & Kettrup, A. (2003). Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. Journal of Photochemistry and Photobiology A: Chemistry, 161(1), 87-93. https://doi.org/10.1016/S1010-6030(03)00270-3
  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2003). Application of ‘waste’metal hydroxide sludge for adsorption of azo reactive dyes. Water Research, 37(4), 763-772. https://doi.org/10.1016/S0043-1354(02)00375-5
  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous materials, 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0
  • Nidheesh, P. V., Gandhimathi, R., & Ramesh, S. T. (2013). Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 20, 2099-2132. https://doi.org/10.1007/s11356-012-1385-z
  • Ollis, D. F., Pelizzetti, E., & Serpone, N. (1991). Photocatalyzed destruction of water contaminants. Environmental science & technology, 25(9), 1522-1529.
  • Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256. https://doi.org/10.1016/j.apcatb.2003.09.010
  • Perkins, W. S., Judkins Jr, J. F., & Perry, W. D. (1980). Renovation of Dyebath Water By Chlorination or Ozonation. Textile Chemist & Colorist, 12(8). Safarzadeh-Amiri, A., Bolton, J. R., & Cater, S. R. (1996). The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies, 1(1), 18-26. https://doi.org/10.1515/jaots-1996-0105
  • Saien, J., Ardjmand, R. R., & Iloukhani, H. (2003). Photocatalytic decomposition of sodium dodecyl benzene sulfonate under aqueous media in the presence of TiO2. Physics and Chemistry of Liquids, 41(5), 519-531. https://doi.org/10.1080/00319100310001604849
  • Saleem, M. N., Shah, A., Ullah, N., Nisar, J., & Iftikhar, F. J. (2023). Detection and Degradation Studies of Nile Blue Sulphate Using Electrochemical and UV-Vis Spectroscopic Techniques. catalysts, 13(1), 141. https://doi.org/10.3390/catal13010141
  • Singh, J., Kumar, V., Kim, K. H., & Rawat, M. (2019). Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environmental research, 177, 108569. https://doi.org/10.1016/j.envres.2019.108569
  • Solozhenko, E. G., Soboleva, N. M., & Goncharuk, V. V. (1995). Decolourization of azodye solutions by Fenton's oxidation. Water Research, 29(9), 2206-2210. https://doi.org/10.1016/0043-1354(95)00042-J
  • Sökmen, M., Allen, D. W., Akkaş, F., Kartal, N., & Acar, F. (2001). Photo-degradation of some dyes using Ag-loaded titaniumdioxide. Water, air, and soil pollution, 132, 153-163. https://doi.org/10.1023/A:1012069009633
  • Sökmen, M., Allen, D. W., Clench, M. R., & Hewson, A. T. (2002). GC-MS characterisation of products of oxidation of thiophenes using the Fenton and related reagents. Journal of Advanced Oxidation Technologies, 5(1), 11-21. https://doi.org/10.1515/jaots-2002-0102
  • Sun, H., Liu, C., & Yao, Y. (2021). Degradation of Azo Dyes Using Natural Pyrite as Fenton-Like Reaction Catalyst. Environmental Engineering Science, 38(9), 854-866. https://doi.org/10.1089/ees.2020.0359
  • Temel, N. K., & Sökmen, M. (2011). New catalyst systems for the degradation of chlorophenols. Desalination, 281, 209-214. https://doi.org/10.1016/j.desal.2011.07.066
  • Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762-787. https://doi.org/10.1016/j.jece.2015.12.016
  • Woislawski, S. (1953). The spectrophotometric determination of ionization constants of basic dyes1. Journal of the American Chemical Society, 75(21), 5201-5203.
  • Wu, T., Lin, T., Zhao, J., Hidaka, H., & Serpone, N. (1999). TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environmental science & technology, 33(9), 1379-1387. https://doi.org/10.1021/es980923i
  • Xu, X. R., Li, H. B., Wang, W. H., & Gu, J. D. (2004). Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7), 595-600. https://doi.org/10.1016/j.chemosphere.2004.07.030
  • Yaseen, M., Humayun, M., Khan, A., Idrees, M., Shah, N., & Bibi, S. (2022). Photo- assisted removal of rhodamine B and Nile blue dyes from water using CuO–SiO2 composite. Molecules, 27(16), 5343. https://doi.org/10.3390/molecules27165343
  • Yasmeen, S., Burratti, L., Duranti, L., Sgreccia, E., & Prosposito, P. (2024). Photocatalytic Degradation of Organic Pollutants—Nile Blue, Methylene Blue, and Bentazon Herbicide—Using NiO-ZnO Nanocomposite. Nanomaterials, 14(5), 470. https://doi.org/10.3390/nano14050470
There are 37 citations in total.

Details

Primary Language English
Subjects Wastewater Treatment Processes
Journal Section Full-length articles
Authors

Nuket Kartal Temel 0000-0002-3539-4930

Publication Date October 4, 2024
Submission Date March 1, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Kartal Temel, N. (2024). Degradation of Nile Blue by Photocatalytic, Ultrasonic, Fenton, and Fenton-like Oxidation Processes. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 7(2), 77-86. https://doi.org/10.58692/jotcsb.1445396

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)