Research Article
BibTex RIS Cite

Heterogeneous Catalysts for Biodiesel Production: Development of Bimetallic Catalysts Supported by Activated Carbon

Year 2025, Volume: 8 Issue: 1, 83 - 96
https://doi.org/10.58692/jotcsb.1524816

Abstract

This research, which explores the potential of activated carbon-supported co-impregnated metal catalysts, has the potential to significantly contribute to the field of energy systems engineering and the future of biodiesel production. In this study, spruce sawdust was used to produce activated carbon. A single-step method was applied for carbonization and activation. Spruce:KOH was adjusted as 1:2 and carbonized at 800 °C for 1 hour under nitrogen gas flow. The metal pairs were prepared with a 1:1 mass ratio for each metal. Then, 10% (w/w) metal pairs such as Cu-Fe, Fe-Zn, and Cu-Zn are impregnated on activated carbon. The catalysts were calcinated at 550 °C for 3 hours under a nitrogen atmosphere. Various characterization techniques, such as BET, SEM-EDS, and XRD analysis, were used to analyze the activity of these heterogeneous catalysts. The catalyst loading was 5% of the oil weight, the molar ratio of alcohol to oil was 19:1, the reaction temperature was 65 °C, and the reaction time was 3 hours in the esterification reaction of sunflower. According to the results, all metal pairs obtain similar FT-IR results. The biodiesel yields for Fe-Zn/AC, Cu-Zn/AC, and Cu-Fe/AC were calculated as 74.67%, 89.02%, and 68.16%, respectively.

Ethical Statement

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Institution

This study was financially supported by the Research Fund of Yalova University. Project Number: 2019/AP/0015.

Project Number

2019/AP/0015

References

  • Abbas, G. (2023). Metal organic framework supported surface modification of synthesized nickel/nickel oxide nanoparticles via controlled PEGylation for cytotoxicity profile against MCF-7 breast cancer cell lines via docking analysis. Journal of Molecular Structure, 1287, 135445. https://doi.org/https://doi.org/10.1016/j.molstruc.2023.135445
  • Ahmed, M., Ahmad, K. A., Vo, D.-V. N., Yusuf, M., Haq, A., Abdullah, A., Aslam, M., Patle, D. S., Ahmad, Z., Ahmad, E., & Athar, M. (2023). Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: Function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies. Energy Conversion and Management, 280, 116821. https://doi.org/https://doi.org/10.1016/j.enconman.2023.116821
  • Alotaibi, M. A. (2023). Liquid phase methanol synthesis by CO2 hydrogenation over Cu-Zn/Z catalysts: Influence of Cd promotion. Journal of the Taiwan Institute of Chemical Engineers, 153, 105210. https://doi.org/https://doi.org/10.1016/j.jtice.2023.105210
  • Angulo, B., Fraile, J. M., Gil, L., & Herrerías, C. I. (2020). Comparison of Chemical and Enzymatic Methods for the Transesterification of Waste Fish Oil Fatty Ethyl Esters with Different Alcohols. ACS Omega, 5(3), 1479–1487. https://doi.org/10.1021/acsomega.9b03147
  • Asghari, M., Hosseinzadeh Samani, B., & Ebrahimi, R. (2022). Review on non-thermal plasma technology for biodiesel production: Mechanisms, reactors configuration, hybrid reactors. Energy Conversion and Management, 258, 115514. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115514
  • Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26. https://doi.org/https://doi.org/10.1016/j.jiec.2012.07.009
  • Bakather, O. Y. (2024). Eco-friendly biosorbent for lead removal: Activated carbon produced from grape wood. Desalination and Water Treatment, 317, 100210. https://doi.org/https://doi.org/10.1016/j.dwt.2024.100210
  • Bedir, Ö., & Doğan, T. H. (2021). Use of sugar industry waste catalyst for biodiesel production. Fuel, 286, 119476. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119476
  • Bel Hadj Tahar, N., Bel Hadj Tahar, R., Ben Salah, A., & Savall, A. (2008). Effects of Individual Layer Thickness on the Microstructure and Optoelectronic Properties of Sol–Gel-Derived Zinc Oxide Thin Films. Journal of the American Ceramic Society, 91(3), 846–851. https://doi.org/https://doi.org/10.1111/j.1551-2916.2007.02221.x
  • Bienholz, A., Schwab, F., & Claus, P. (2010). Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method: influence of solvent and reaction temperature on catalyst deactivation. Green Chemistry, 12(2), 290–295. https://doi.org/10.1039/B914523K
  • Charate, S., Shinde, S., Kondawar, S., Desai, U., Wadgaonkar, P., & Rode, C. (2021). Role of preparation parameters of Cu–Zn mixed oxide catalyst in solvent free glycerol carbonylation with urea. Journal of the Indian Chemical Society, 98(7), 100090. https://doi.org/https://doi.org/10.1016/j.jics.2021.100090
  • Chong, C. T., Loe, T. Y., Wong, K. Y., Ashokkumar, V., Lam, S. S., Chong, W. T., Borrion, A., Tian, B., & Ng, J.-H. (2021). Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus. Environmental Technology & Innovation, 22, 101408. https://doi.org/https://doi.org/10.1016/j.eti.2021.101408
  • Dahdah, E., Estephane, J., Haydar, R., Youssef, Y., El Khoury, B., Gennequin, C., Aboukaïs, A., Abi-Aad, E., & Aouad, S. (2020). Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment. Renewable Energy, 146, 1242–1248. https://doi.org/https://doi.org/10.1016/j.renene.2019.06.171
  • Demirci, S., Bektaş, H., Onat, E., Şahin, Ö., Baytar, O., & İzgi, M. S. (2023). Aktif karbon destekli ucuz ve kullanışlı katalizörün amonyak bor hidrolizinde incelenmesi. Journal of Boron, 8(2), 59–65. https://doi.org/10.30728/boron.1179156
  • Du, E., Cai, L., Huang, K., Tang, H., Xu, X., & Tao, R. (2018). Reducing viscosity to promote biodiesel for energy security and improve combustion efficiency. Fuel, 211, 194–196. https://doi.org/https://doi.org/10.1016/j.fuel.2017.09.055
  • Duan, X., Yan, S., Tie, X., Lei, X., Liu, Z., Ma, Z., Wang, T., & Feng, W. (2024). Bimetallic Ce-Cr doped metal-organic frameworks as a heterogeneous catalyst for highly efficient biodiesel production from insect lipids. Renewable Energy, 224, 120128. https://doi.org/https://doi.org/10.1016/j.renene.2024.120128
  • Ekinci, S., & Onat, E. (2024). Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 455–471. https://doi.org/10.25092/baunfbed.1297146
  • Farokhi, G., & Saidi, M. (2022). Catalytic activity of bimetallic spinel magnetic catalysts (NiZnFe2O4, CoZnFe2O4 and CuZnFe2O4) in biodiesel production process from neem oil: Process evaluation and optimization. Chemical Engineering and Processing - Process Intensification, 181, 109170. https://doi.org/https://doi.org/10.1016/j.cep.2022.109170
  • Farooq, M., Ramli, A., & Naeem, A. (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy, 76, 362–368. https://doi.org/https://doi.org/10.1016/j.renene.2014.11.042
  • Feyzi, M., Hosseini, N., Yaghobi, N., & Ezzati, R. (2017). Preparation, characterization, kinetic and thermodynamic studies of MgO-La2O3 nanocatalysts for biodiesel production from sunflower oil. Chemical Physics Letters, 677, 19–29. https://doi.org/https://doi.org/10.1016/j.cplett.2017.03.014
  • Fonseca, J. M., Teleken, J. G., de Cinque Almeida, V., & da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Conversion and Management, 184, 205–218. https://doi.org/https://doi.org/10.1016/j.enconman.2019.01.061
  • Foroutan, R., Peighambardoust, S. J., Mohammadi, R., Peighambardoust, S. H., & Ramavandi, B. (2022). Application of waste chalk/CoFe2O4/K2CO3 composite as a reclaimable catalyst for biodiesel generation from sunflower oil. Chemosphere, 289, 133226. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133226
  • Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaría, J., & Fierro, J. L. G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3), 317–326. https://doi.org/https://doi.org/10.1016/j.apcatb.2006.12.017
  • Gupta, A. R., & Rathod, V. K. (2019). Solar radiation as a renewable energy source for the biodiesel production by esterification of palm fatty acid distillate. Energy, 182, 795–801. https://doi.org/https://doi.org/10.1016/j.energy.2019.05.189
  • Hagen, J. (2005). Industrial Catalysis. Wiley. https://doi.org/10.1002/3527607684
  • Hoang, V. C., Dinh, K. N., & Gomes, V. G. (2020). Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: A sustainable bifunctional electrocatalyst for efficient water splitting. Carbon, 157, 515–524. https://doi.org/https://doi.org/10.1016/j.carbon.2019.09.080
  • Im, Y., Muroyama, H., Matsui, T., Eguchi, K., Kim, Y., & Chae, H. (2024). Multifunctional effect of copper in bimetallic Cu-M/Al2O3 catalysts (M = Fe, Co, and Ni) for NH3 decomposition. Applied Surface Science, 669, 160396. https://doi.org/https://doi.org/10.1016/j.apsusc.2024.160396
  • Iza, A. M., Primadi, T. R., Ciptawati, E., Sumari, Aliyatulmuna, A., Nazriati, Suryadharma, I. B., & Fajaroh, F. (2020). Synthesis of zinc ferrite (ZnFe2O4) using microwave assisted coprecipitation method and its effectivity toward photodegradation of malachite green. AIP Conference Proceedings, 2251(1), 040025. https://doi.org/10.1063/5.0015871
  • Jayakumar, M., Karmegam, N., Gundupalli, M. P., Bizuneh Gebeyehu, K., Tessema Asfaw, B., Chang, S. W., Ravindran, B., & Kumar Awasthi, M. (2021). Heterogeneous base catalysts: Synthesis and application for biodiesel production – A review. Bioresource Technology, 331, 125054. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125054
  • Karabulut, A., İzgi, M. S., Demir, H., Şahin, Ö., & Horoz, S. (2023). Optimizing hydrogen production from alkali hydrides using supported metal catalysts. Ionics, 29(5), 1975–1982. https://doi.org/10.1007/s11581-023-04962-8
  • Kazıcı, H. Ç., İzgi, M. S., & Şahin, Ö. (2021). A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chemical Papers, 75(6), 2713–2725. https://doi.org/10.1007/s11696-021-01514-0
  • Kwong, T.-L., & Yung, K.-F. (2015). Heterogeneous alkaline earth metal–transition metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined feedstock. RSC Advances, 5(102), 83748–83756. https://doi.org/10.1039/C5RA13819A
  • Li, J., & Liang, X. (2017). Magnetic solid acid catalyst for biodiesel synthesis from waste oil. Energy Conversion and Management, 141, 126–132. https://doi.org/https://doi.org/10.1016/j.enconman.2016.06.072
  • Lima, A. C., Hachemane, K., Ribeiro, A. E., Queiroz, A., Gomes, M. C. S., & Brito, P. (2022). Evaluation and kinetic study of alkaline ionic liquid for biodiesel production through transesterification of sunflower oil. Fuel, 324, 124586. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124586
  • Lukić, I., Krstić, J., Jovanović, D., & Skala, D. (2009). Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresource Technology, 100(20), 4690–4696. https://doi.org/https://doi.org/10.1016/j.biortech.2009.04.057
  • Maleki, A., Hajizadeh, Z., & Salehi, P. (2019). Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Scientific Reports, 9(1), 5552. https://doi.org/10.1038/s41598-019-42126-9
  • Mallick, A., Mukhopadhyay, M., & Ash, S. (2020). Synthesis, Characterization and Performance Evaluation of a Solid Acid Catalyst Prepared from Coconut Shell for Hydrolyzing Pretreated Acacia nilotica Heartwood. Journal of The Institution of Engineers (India): Series E, 101(1), 69–76. https://doi.org/10.1007/s40034-019-00153-1
  • Mandari, V., & Devarai, S. K. (2022). Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. BioEnergy Research, 15(2), 935–961. https://doi.org/10.1007/s12155-021-10333-w
  • Mbaraka, I. K., & Shanks, B. H. (2006). Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. JAOCS, Journal of the American Oil Chemists’ Society, 83(2), 79–91. https://doi.org/10.1007/s11746-006-1179-x
  • Meşe, E., Kantürk Figen, A., Coşkuner Filiz, B., & Pişkin, S. (2018). Cobalt-boron loaded thermal activated Turkish sepiolite composites (Co-B@tSe) as a catalyst for hydrogen delivery. Applied Clay Science, 153, 95–106. https://doi.org/https://doi.org/10.1016/j.clay.2017.12.008
  • Monika, Banga, S., & Pathak, V. V. (2023). Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus, 10, 100209. https://doi.org/https://doi.org/10.1016/j.nexus.2023.100209
  • Mopoung, S., & Dejang, N. (2021). Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Scientific Reports, 11(1), 13948. https://doi.org/10.1038/s41598-021-93249-x
  • Munyentwali, A., Li, H., & Yang, Q. (2022). Review of advances in bifunctional solid acid/base catalysts for sustainable biodiesel production. Applied Catalysis A: General, 633, 118525. https://doi.org/https://doi.org/10.1016/j.apcata.2022.118525
  • Naeem, M. M., Al-Sakkari, E. G., Boffito, D. C., Gadalla, M. A., & Ashour, F. H. (2021). One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst. Fuel, 283, 118914. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118914
  • Onat, E., Ahmet Celik, F., Şahin, Ö., Karabulut, E., & İZGİ, M. S. (2024). H2 production from ammonia borane hydrolysis with catalyst effect of Titriplex® III carbon quantum dots supported by ruthenium under different reactant Conditions: Experimental study and predictions with molecular modelling. Chemical Engineering Journal, 497, 154593. https://doi.org/https://doi.org/10.1016/j.cej.2024.154593
  • Onat, E., & Ekinci, S. (2024). A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal. Diamond and Related Materials, 143, 110848. https://doi.org/https://doi.org/10.1016/j.diamond.2024.110848
  • Onat, E., İzgi, M. S., Şahin, Ö., & Saka, C. (2024). Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism. Diamond and Related Materials, 141, 110704. https://doi.org/https://doi.org/10.1016/j.diamond.2023.110704
  • Osman, A. I., Elgarahy, A. M., Eltaweil, A. S., Abd El-Monaem, E. M., El-Aqapa, H. G., Park, Y., Hwang, Y., Ayati, A., Farghali, M., Ihara, I., Al-Muhtaseb, A. H., Rooney, D. W., Yap, P.-S., & Sillanpää, M. (2023). Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environmental Chemistry Letters, 21(3), 1315–1379. https://doi.org/10.1007/s10311-023-01581-7
  • Oyekunle, D. T., Barasa, M., Gendy, E. A., & Tiong, S. K. (2023a). Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters. Process Safety and Environmental Protection, 177, 844–867. https://doi.org/https://doi.org/10.1016/j.psep.2023.07.064
  • Oyekunle, D. T., Barasa, M., Gendy, E. A., & Tiong, S. K. (2023b). Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters. Process Safety and Environmental Protection, 177, 844–867. https://doi.org/https://doi.org/10.1016/j.psep.2023.07.064
  • Pacheco, J. R., Villardi, H. G. D., Cavalcante, R. M., & Young, A. F. (2022). Biodiesel production through non-conventional supercritical routes: Process simulation and technical evaluation. Energy Conversion and Management, 251, 114998. https://doi.org/https://doi.org/10.1016/j.enconman.2021.114998
  • Pandya, H. N., Parikh, S. P., & Shah, M. (2022). Comprehensive review on application of various nanoparticles for the production of biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 1945–1958. https://doi.org/10.1080/15567036.2019.1648599
  • Patle, D. S., Sharma, S., Ahmad, Z., & Rangaiah, G. P. (2014). Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil. Energy Conversion and Management, 85, 361–372. https://doi.org/https://doi.org/10.1016/j.enconman.2014.05.034
  • Phiri, J., Ahadian, H., Sandberg, M., Granström, K., & Maloney, T. (2023). The Influence of Physical Mixing and Impregnation on the Physicochemical Properties of Pine Wood Activated Carbon Produced by One-Step ZnCl2 Activation. Micromachines, 14(3), 572. https://doi.org/10.3390/mi14030572
  • Şahin, Ö., Bozkurt, A., Yayla, M., Kazıcı, H. Ç., & İzgi, M. S. (2020). As a highly efficient reduced graphene oxide-supported ternary catalysts for the fast hydrogen release from NaBH4. Graphene Technology, 5(3), 103–111. https://doi.org/10.1007/s41127-020-00036-y
  • Santiago-Torres, N., Romero-Ibarra, I. C., & Pfeiffer, H. (2014). Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production. Fuel Processing Technology, 120, 34–39. https://doi.org/https://doi.org/10.1016/j.fuproc.2013.11.018
  • Semwal, S., Arora, A. K., Badoni, R. P., & Tuli, D. K. (2011). Biodiesel production using heterogeneous catalysts. Bioresource Technology, 102(3), 2151–2161. https://doi.org/https://doi.org/10.1016/j.biortech.2010.10.080
  • Skuhrovcová, L., Kolena, J., Tišler, Z., & Kocík, J. (2019). Cu–Zn–Al mixed oxides as catalysts for the hydrogenolysis of glycerol to 1,2-propanediol. Reaction Kinetics, Mechanisms and Catalysis, 127(1), 241–257. https://doi.org/10.1007/s11144-019-01560-6
  • Szkudlarek, Ł., Chałupka-Śpiewak, K., Maniukiewicz, W., Albińska, J., Szynkowska-Jóźwik, M. I., & Mierczyński, P. (2024). Biodiesel Production via Transesterification Reaction over Mono- and Bimetallic Copper-Noble Metal (Pt, Ru) Catalysts Supported on BEA Zeolite. Catalysts, 14(4), 260. https://doi.org/10.3390/catal14040260
  • Thapa, S., Indrawan, N., & Bhoi, P. R. (2018). An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines. Environmental Technology & Innovation, 9, 210–219. https://doi.org/https://doi.org/10.1016/j.eti.2017.12.003
  • Tshizanga, N., Aransiola, E. F., & Oyekola, O. (2017). Optimisation of biodiesel production from waste vegetable oil and eggshell ash. South African Journal of Chemical Engineering, 23, 145–156. https://doi.org/https://doi.org/10.1016/j.sajce.2017.05.003
  • Üçer, A., Uyanik, A., & Aygün, Ş. F. (2006). Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 47(3), 113–118. https://doi.org/https://doi.org/10.1016/j.seppur.2005.06.012
  • van Deelen, T. W., Hernández Mejía, C., & de Jong, K. P. (2019). Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis, 2(11), 955–970. https://doi.org/10.1038/s41929-019-0364-x
  • Wahyono, Y., Hadiyanto, H., Gheewala, S. H., Budihardjo, M. A., & Adiansyah, J. S. (2022). Evaluating the environmental impacts of the multi-feedstock biodiesel production process in Indonesia using life cycle assessment (LCA). Energy Conversion and Management, 266, 115832. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115832
  • Wang, Q., Wang, C., Du, X., & Zhang, X. (2023). Controlled synthesis of M (M = Cr, Cu, Zn and Fe)-NiCoP hybrid materials as environmentally friendly catalyst for seawater splitting. Journal of Alloys and Compounds, 966, 171516. https://doi.org/https://doi.org/10.1016/j.jallcom.2023.171516
  • Wang, S., Yang, J., Wang, S., Zhao, N., & Xiao, F. (2023). Effect of Cu and Zn on the performance of Cu-Mn-Zn/ZrO2 catalysts for CO2 hydrogenation to methanol. Fuel Processing Technology, 247, 107789. https://doi.org/https://doi.org/10.1016/j.fuproc.2023.107789
  • Xie, W., & Li, J. (2023). Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 171, 113017. https://doi.org/https://doi.org/10.1016/j.rser.2022.113017
Year 2025, Volume: 8 Issue: 1, 83 - 96
https://doi.org/10.58692/jotcsb.1524816

Abstract

Project Number

2019/AP/0015

References

  • Abbas, G. (2023). Metal organic framework supported surface modification of synthesized nickel/nickel oxide nanoparticles via controlled PEGylation for cytotoxicity profile against MCF-7 breast cancer cell lines via docking analysis. Journal of Molecular Structure, 1287, 135445. https://doi.org/https://doi.org/10.1016/j.molstruc.2023.135445
  • Ahmed, M., Ahmad, K. A., Vo, D.-V. N., Yusuf, M., Haq, A., Abdullah, A., Aslam, M., Patle, D. S., Ahmad, Z., Ahmad, E., & Athar, M. (2023). Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: Function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies. Energy Conversion and Management, 280, 116821. https://doi.org/https://doi.org/10.1016/j.enconman.2023.116821
  • Alotaibi, M. A. (2023). Liquid phase methanol synthesis by CO2 hydrogenation over Cu-Zn/Z catalysts: Influence of Cd promotion. Journal of the Taiwan Institute of Chemical Engineers, 153, 105210. https://doi.org/https://doi.org/10.1016/j.jtice.2023.105210
  • Angulo, B., Fraile, J. M., Gil, L., & Herrerías, C. I. (2020). Comparison of Chemical and Enzymatic Methods for the Transesterification of Waste Fish Oil Fatty Ethyl Esters with Different Alcohols. ACS Omega, 5(3), 1479–1487. https://doi.org/10.1021/acsomega.9b03147
  • Asghari, M., Hosseinzadeh Samani, B., & Ebrahimi, R. (2022). Review on non-thermal plasma technology for biodiesel production: Mechanisms, reactors configuration, hybrid reactors. Energy Conversion and Management, 258, 115514. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115514
  • Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26. https://doi.org/https://doi.org/10.1016/j.jiec.2012.07.009
  • Bakather, O. Y. (2024). Eco-friendly biosorbent for lead removal: Activated carbon produced from grape wood. Desalination and Water Treatment, 317, 100210. https://doi.org/https://doi.org/10.1016/j.dwt.2024.100210
  • Bedir, Ö., & Doğan, T. H. (2021). Use of sugar industry waste catalyst for biodiesel production. Fuel, 286, 119476. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119476
  • Bel Hadj Tahar, N., Bel Hadj Tahar, R., Ben Salah, A., & Savall, A. (2008). Effects of Individual Layer Thickness on the Microstructure and Optoelectronic Properties of Sol–Gel-Derived Zinc Oxide Thin Films. Journal of the American Ceramic Society, 91(3), 846–851. https://doi.org/https://doi.org/10.1111/j.1551-2916.2007.02221.x
  • Bienholz, A., Schwab, F., & Claus, P. (2010). Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method: influence of solvent and reaction temperature on catalyst deactivation. Green Chemistry, 12(2), 290–295. https://doi.org/10.1039/B914523K
  • Charate, S., Shinde, S., Kondawar, S., Desai, U., Wadgaonkar, P., & Rode, C. (2021). Role of preparation parameters of Cu–Zn mixed oxide catalyst in solvent free glycerol carbonylation with urea. Journal of the Indian Chemical Society, 98(7), 100090. https://doi.org/https://doi.org/10.1016/j.jics.2021.100090
  • Chong, C. T., Loe, T. Y., Wong, K. Y., Ashokkumar, V., Lam, S. S., Chong, W. T., Borrion, A., Tian, B., & Ng, J.-H. (2021). Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus. Environmental Technology & Innovation, 22, 101408. https://doi.org/https://doi.org/10.1016/j.eti.2021.101408
  • Dahdah, E., Estephane, J., Haydar, R., Youssef, Y., El Khoury, B., Gennequin, C., Aboukaïs, A., Abi-Aad, E., & Aouad, S. (2020). Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment. Renewable Energy, 146, 1242–1248. https://doi.org/https://doi.org/10.1016/j.renene.2019.06.171
  • Demirci, S., Bektaş, H., Onat, E., Şahin, Ö., Baytar, O., & İzgi, M. S. (2023). Aktif karbon destekli ucuz ve kullanışlı katalizörün amonyak bor hidrolizinde incelenmesi. Journal of Boron, 8(2), 59–65. https://doi.org/10.30728/boron.1179156
  • Du, E., Cai, L., Huang, K., Tang, H., Xu, X., & Tao, R. (2018). Reducing viscosity to promote biodiesel for energy security and improve combustion efficiency. Fuel, 211, 194–196. https://doi.org/https://doi.org/10.1016/j.fuel.2017.09.055
  • Duan, X., Yan, S., Tie, X., Lei, X., Liu, Z., Ma, Z., Wang, T., & Feng, W. (2024). Bimetallic Ce-Cr doped metal-organic frameworks as a heterogeneous catalyst for highly efficient biodiesel production from insect lipids. Renewable Energy, 224, 120128. https://doi.org/https://doi.org/10.1016/j.renene.2024.120128
  • Ekinci, S., & Onat, E. (2024). Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 455–471. https://doi.org/10.25092/baunfbed.1297146
  • Farokhi, G., & Saidi, M. (2022). Catalytic activity of bimetallic spinel magnetic catalysts (NiZnFe2O4, CoZnFe2O4 and CuZnFe2O4) in biodiesel production process from neem oil: Process evaluation and optimization. Chemical Engineering and Processing - Process Intensification, 181, 109170. https://doi.org/https://doi.org/10.1016/j.cep.2022.109170
  • Farooq, M., Ramli, A., & Naeem, A. (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy, 76, 362–368. https://doi.org/https://doi.org/10.1016/j.renene.2014.11.042
  • Feyzi, M., Hosseini, N., Yaghobi, N., & Ezzati, R. (2017). Preparation, characterization, kinetic and thermodynamic studies of MgO-La2O3 nanocatalysts for biodiesel production from sunflower oil. Chemical Physics Letters, 677, 19–29. https://doi.org/https://doi.org/10.1016/j.cplett.2017.03.014
  • Fonseca, J. M., Teleken, J. G., de Cinque Almeida, V., & da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Conversion and Management, 184, 205–218. https://doi.org/https://doi.org/10.1016/j.enconman.2019.01.061
  • Foroutan, R., Peighambardoust, S. J., Mohammadi, R., Peighambardoust, S. H., & Ramavandi, B. (2022). Application of waste chalk/CoFe2O4/K2CO3 composite as a reclaimable catalyst for biodiesel generation from sunflower oil. Chemosphere, 289, 133226. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133226
  • Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaría, J., & Fierro, J. L. G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3), 317–326. https://doi.org/https://doi.org/10.1016/j.apcatb.2006.12.017
  • Gupta, A. R., & Rathod, V. K. (2019). Solar radiation as a renewable energy source for the biodiesel production by esterification of palm fatty acid distillate. Energy, 182, 795–801. https://doi.org/https://doi.org/10.1016/j.energy.2019.05.189
  • Hagen, J. (2005). Industrial Catalysis. Wiley. https://doi.org/10.1002/3527607684
  • Hoang, V. C., Dinh, K. N., & Gomes, V. G. (2020). Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: A sustainable bifunctional electrocatalyst for efficient water splitting. Carbon, 157, 515–524. https://doi.org/https://doi.org/10.1016/j.carbon.2019.09.080
  • Im, Y., Muroyama, H., Matsui, T., Eguchi, K., Kim, Y., & Chae, H. (2024). Multifunctional effect of copper in bimetallic Cu-M/Al2O3 catalysts (M = Fe, Co, and Ni) for NH3 decomposition. Applied Surface Science, 669, 160396. https://doi.org/https://doi.org/10.1016/j.apsusc.2024.160396
  • Iza, A. M., Primadi, T. R., Ciptawati, E., Sumari, Aliyatulmuna, A., Nazriati, Suryadharma, I. B., & Fajaroh, F. (2020). Synthesis of zinc ferrite (ZnFe2O4) using microwave assisted coprecipitation method and its effectivity toward photodegradation of malachite green. AIP Conference Proceedings, 2251(1), 040025. https://doi.org/10.1063/5.0015871
  • Jayakumar, M., Karmegam, N., Gundupalli, M. P., Bizuneh Gebeyehu, K., Tessema Asfaw, B., Chang, S. W., Ravindran, B., & Kumar Awasthi, M. (2021). Heterogeneous base catalysts: Synthesis and application for biodiesel production – A review. Bioresource Technology, 331, 125054. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125054
  • Karabulut, A., İzgi, M. S., Demir, H., Şahin, Ö., & Horoz, S. (2023). Optimizing hydrogen production from alkali hydrides using supported metal catalysts. Ionics, 29(5), 1975–1982. https://doi.org/10.1007/s11581-023-04962-8
  • Kazıcı, H. Ç., İzgi, M. S., & Şahin, Ö. (2021). A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chemical Papers, 75(6), 2713–2725. https://doi.org/10.1007/s11696-021-01514-0
  • Kwong, T.-L., & Yung, K.-F. (2015). Heterogeneous alkaline earth metal–transition metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined feedstock. RSC Advances, 5(102), 83748–83756. https://doi.org/10.1039/C5RA13819A
  • Li, J., & Liang, X. (2017). Magnetic solid acid catalyst for biodiesel synthesis from waste oil. Energy Conversion and Management, 141, 126–132. https://doi.org/https://doi.org/10.1016/j.enconman.2016.06.072
  • Lima, A. C., Hachemane, K., Ribeiro, A. E., Queiroz, A., Gomes, M. C. S., & Brito, P. (2022). Evaluation and kinetic study of alkaline ionic liquid for biodiesel production through transesterification of sunflower oil. Fuel, 324, 124586. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124586
  • Lukić, I., Krstić, J., Jovanović, D., & Skala, D. (2009). Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresource Technology, 100(20), 4690–4696. https://doi.org/https://doi.org/10.1016/j.biortech.2009.04.057
  • Maleki, A., Hajizadeh, Z., & Salehi, P. (2019). Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Scientific Reports, 9(1), 5552. https://doi.org/10.1038/s41598-019-42126-9
  • Mallick, A., Mukhopadhyay, M., & Ash, S. (2020). Synthesis, Characterization and Performance Evaluation of a Solid Acid Catalyst Prepared from Coconut Shell for Hydrolyzing Pretreated Acacia nilotica Heartwood. Journal of The Institution of Engineers (India): Series E, 101(1), 69–76. https://doi.org/10.1007/s40034-019-00153-1
  • Mandari, V., & Devarai, S. K. (2022). Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. BioEnergy Research, 15(2), 935–961. https://doi.org/10.1007/s12155-021-10333-w
  • Mbaraka, I. K., & Shanks, B. H. (2006). Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. JAOCS, Journal of the American Oil Chemists’ Society, 83(2), 79–91. https://doi.org/10.1007/s11746-006-1179-x
  • Meşe, E., Kantürk Figen, A., Coşkuner Filiz, B., & Pişkin, S. (2018). Cobalt-boron loaded thermal activated Turkish sepiolite composites (Co-B@tSe) as a catalyst for hydrogen delivery. Applied Clay Science, 153, 95–106. https://doi.org/https://doi.org/10.1016/j.clay.2017.12.008
  • Monika, Banga, S., & Pathak, V. V. (2023). Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus, 10, 100209. https://doi.org/https://doi.org/10.1016/j.nexus.2023.100209
  • Mopoung, S., & Dejang, N. (2021). Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Scientific Reports, 11(1), 13948. https://doi.org/10.1038/s41598-021-93249-x
  • Munyentwali, A., Li, H., & Yang, Q. (2022). Review of advances in bifunctional solid acid/base catalysts for sustainable biodiesel production. Applied Catalysis A: General, 633, 118525. https://doi.org/https://doi.org/10.1016/j.apcata.2022.118525
  • Naeem, M. M., Al-Sakkari, E. G., Boffito, D. C., Gadalla, M. A., & Ashour, F. H. (2021). One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst. Fuel, 283, 118914. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118914
  • Onat, E., Ahmet Celik, F., Şahin, Ö., Karabulut, E., & İZGİ, M. S. (2024). H2 production from ammonia borane hydrolysis with catalyst effect of Titriplex® III carbon quantum dots supported by ruthenium under different reactant Conditions: Experimental study and predictions with molecular modelling. Chemical Engineering Journal, 497, 154593. https://doi.org/https://doi.org/10.1016/j.cej.2024.154593
  • Onat, E., & Ekinci, S. (2024). A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal. Diamond and Related Materials, 143, 110848. https://doi.org/https://doi.org/10.1016/j.diamond.2024.110848
  • Onat, E., İzgi, M. S., Şahin, Ö., & Saka, C. (2024). Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism. Diamond and Related Materials, 141, 110704. https://doi.org/https://doi.org/10.1016/j.diamond.2023.110704
  • Osman, A. I., Elgarahy, A. M., Eltaweil, A. S., Abd El-Monaem, E. M., El-Aqapa, H. G., Park, Y., Hwang, Y., Ayati, A., Farghali, M., Ihara, I., Al-Muhtaseb, A. H., Rooney, D. W., Yap, P.-S., & Sillanpää, M. (2023). Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environmental Chemistry Letters, 21(3), 1315–1379. https://doi.org/10.1007/s10311-023-01581-7
  • Oyekunle, D. T., Barasa, M., Gendy, E. A., & Tiong, S. K. (2023a). Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters. Process Safety and Environmental Protection, 177, 844–867. https://doi.org/https://doi.org/10.1016/j.psep.2023.07.064
  • Oyekunle, D. T., Barasa, M., Gendy, E. A., & Tiong, S. K. (2023b). Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters. Process Safety and Environmental Protection, 177, 844–867. https://doi.org/https://doi.org/10.1016/j.psep.2023.07.064
  • Pacheco, J. R., Villardi, H. G. D., Cavalcante, R. M., & Young, A. F. (2022). Biodiesel production through non-conventional supercritical routes: Process simulation and technical evaluation. Energy Conversion and Management, 251, 114998. https://doi.org/https://doi.org/10.1016/j.enconman.2021.114998
  • Pandya, H. N., Parikh, S. P., & Shah, M. (2022). Comprehensive review on application of various nanoparticles for the production of biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 1945–1958. https://doi.org/10.1080/15567036.2019.1648599
  • Patle, D. S., Sharma, S., Ahmad, Z., & Rangaiah, G. P. (2014). Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil. Energy Conversion and Management, 85, 361–372. https://doi.org/https://doi.org/10.1016/j.enconman.2014.05.034
  • Phiri, J., Ahadian, H., Sandberg, M., Granström, K., & Maloney, T. (2023). The Influence of Physical Mixing and Impregnation on the Physicochemical Properties of Pine Wood Activated Carbon Produced by One-Step ZnCl2 Activation. Micromachines, 14(3), 572. https://doi.org/10.3390/mi14030572
  • Şahin, Ö., Bozkurt, A., Yayla, M., Kazıcı, H. Ç., & İzgi, M. S. (2020). As a highly efficient reduced graphene oxide-supported ternary catalysts for the fast hydrogen release from NaBH4. Graphene Technology, 5(3), 103–111. https://doi.org/10.1007/s41127-020-00036-y
  • Santiago-Torres, N., Romero-Ibarra, I. C., & Pfeiffer, H. (2014). Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production. Fuel Processing Technology, 120, 34–39. https://doi.org/https://doi.org/10.1016/j.fuproc.2013.11.018
  • Semwal, S., Arora, A. K., Badoni, R. P., & Tuli, D. K. (2011). Biodiesel production using heterogeneous catalysts. Bioresource Technology, 102(3), 2151–2161. https://doi.org/https://doi.org/10.1016/j.biortech.2010.10.080
  • Skuhrovcová, L., Kolena, J., Tišler, Z., & Kocík, J. (2019). Cu–Zn–Al mixed oxides as catalysts for the hydrogenolysis of glycerol to 1,2-propanediol. Reaction Kinetics, Mechanisms and Catalysis, 127(1), 241–257. https://doi.org/10.1007/s11144-019-01560-6
  • Szkudlarek, Ł., Chałupka-Śpiewak, K., Maniukiewicz, W., Albińska, J., Szynkowska-Jóźwik, M. I., & Mierczyński, P. (2024). Biodiesel Production via Transesterification Reaction over Mono- and Bimetallic Copper-Noble Metal (Pt, Ru) Catalysts Supported on BEA Zeolite. Catalysts, 14(4), 260. https://doi.org/10.3390/catal14040260
  • Thapa, S., Indrawan, N., & Bhoi, P. R. (2018). An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines. Environmental Technology & Innovation, 9, 210–219. https://doi.org/https://doi.org/10.1016/j.eti.2017.12.003
  • Tshizanga, N., Aransiola, E. F., & Oyekola, O. (2017). Optimisation of biodiesel production from waste vegetable oil and eggshell ash. South African Journal of Chemical Engineering, 23, 145–156. https://doi.org/https://doi.org/10.1016/j.sajce.2017.05.003
  • Üçer, A., Uyanik, A., & Aygün, Ş. F. (2006). Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 47(3), 113–118. https://doi.org/https://doi.org/10.1016/j.seppur.2005.06.012
  • van Deelen, T. W., Hernández Mejía, C., & de Jong, K. P. (2019). Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis, 2(11), 955–970. https://doi.org/10.1038/s41929-019-0364-x
  • Wahyono, Y., Hadiyanto, H., Gheewala, S. H., Budihardjo, M. A., & Adiansyah, J. S. (2022). Evaluating the environmental impacts of the multi-feedstock biodiesel production process in Indonesia using life cycle assessment (LCA). Energy Conversion and Management, 266, 115832. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115832
  • Wang, Q., Wang, C., Du, X., & Zhang, X. (2023). Controlled synthesis of M (M = Cr, Cu, Zn and Fe)-NiCoP hybrid materials as environmentally friendly catalyst for seawater splitting. Journal of Alloys and Compounds, 966, 171516. https://doi.org/https://doi.org/10.1016/j.jallcom.2023.171516
  • Wang, S., Yang, J., Wang, S., Zhao, N., & Xiao, F. (2023). Effect of Cu and Zn on the performance of Cu-Mn-Zn/ZrO2 catalysts for CO2 hydrogenation to methanol. Fuel Processing Technology, 247, 107789. https://doi.org/https://doi.org/10.1016/j.fuproc.2023.107789
  • Xie, W., & Li, J. (2023). Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 171, 113017. https://doi.org/https://doi.org/10.1016/j.rser.2022.113017
There are 67 citations in total.

Details

Primary Language English
Subjects Chemical and Thermal Processes in Energy and Combustion, Catalytic Activity
Journal Section Full-length articles
Authors

Merve Nazlı Borand 0000-0001-9068-065X

Başak Çevik 0000-0001-7238-6545

Ezgi Bayrakdar Ateş 0000-0001-7306-8733

Project Number 2019/AP/0015
Publication Date
Submission Date July 30, 2024
Acceptance Date November 26, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Borand, M. N., Çevik, B., & Bayrakdar Ateş, E. (n.d.). Heterogeneous Catalysts for Biodiesel Production: Development of Bimetallic Catalysts Supported by Activated Carbon. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 8(1), 83-96. https://doi.org/10.58692/jotcsb.1524816

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)