Research Article
BibTex RIS Cite

General Synthesis Method of Hantzsch dihydropyridine Using Scrap Automobile Catalyst (SAC)

Year 2025, Volume: 8 Issue: 2, 223 - 236, 15.09.2025
https://doi.org/10.58692/jotcsb.1731818

Abstract

1,4-Dihydropyridine (DHP) derivatives are an important class of organic compounds known for their broad biological and pharmacological activities, particularly as calcium channel blockers, which make them valuable in medicinal chemistry. Given their significance, developing efficient and sustainable synthetic methods for these derivatives is crucial. In this study, we present a green, one-pot Hantzsch synthesis of 1,4-dihydropyridines using a Scrap Automobile Catalyst (SAC) as a sustainable and reusable heterogeneous catalyst. The multicomponent reaction was carried out under mild conditions using ammonium acetate in ethanol (EtOH) with various aldehydes and 1,3-diketones. The results demonstrate that the SAC-catalysed reaction proceeds efficiently, with electron-withdrawing substituents accelerating the reaction, achieving completion in just 1.5–2 hours. In contrast, reactions involving benzaldehyde required longer reaction times (up to 4 hours) but still afforded a high yield of 88%. This approach not only offers a rapid, high-yielding, and environmentally benign synthetic route but also provides an innovative solution for the valorisation of difficult-to-recycle automotive waste, aligning with the principles of green chemistry. The SAC catalyst proved to be reusable, further enhancing the sustainability of the process. This study highlights the potential of waste-derived catalysts in organic synthesis, offering a cost-effective and eco-friendly alternative to conventional method.

Ethical Statement

The author declares that they have no conflicts of interest.

Project Number

Düzce University Scientific Research Projects (No. 2020.01.01.1101) in this study.

Thanks

I would like to acknowledge the financial support of Düzce University Scientific Research Projects (No. 2020.01.01.1101) in this study.

References

  • Arslan, M., Faydali, C., Zengin, M., Küçükislamoǧlu, M., & Demirhan, H. (2009). An efficient one pot synthesis of 1,4-dihydropyridines using alumina sulfuric acid (ASA) catalyst. Turkish Journal of Chemistry, 33(6), 769–774. https://doi.org/10.3906/kim-0812-5
  • Besoluk, S., Kucukislamoglu, M., Nebioglu, M., Zengin, M., & Arslan, M. (2008). Solvent-free synthesis of dihydropyrimidinones catalyzed by alumina sulfuric acid at room temperature. Journal of the Iranian Chemical Society, 5(1), 62–66. https://doi.org/10.1007/BF03245816
  • Brown, N. J., & Vaughan, D. E. (1998). Angiotensin-Converting Enzyme Inhibitors. Circulation, 97(14), 1411–1420. https://doi.org/10.1161/01.CIR.97.14.1411
  • Cahyana, A. H., Ardiansah, B., & Aisyah, N. S. (2020). Three-component reaction in 1,4-dihydropyridine synthesis catalyzed by Copper(I) Iodide nanoparticles. IOP Conference Series: Materials Science and Engineering, 763(1), 12035. https://doi.org/10.1088/1757-899X/763/1/012035
  • Chand, R., Palakkal, A. S., Neem, M., & Neogi, S. (2025). Custom‐Designed Robust MOF‐Catalyst for Scalable 1,4‐DHP Drugs With H–Bonding‐Mediated Tandem Hantzsch Condensation and Shape‐Reliant Friedel‐Crafts Alkylation. Small, 21(21). https://doi.org/10.1002/smll.202501767
  • Conrad, M., & Guthzeit, M. (1882). Ueber Barbitursäurederivate. Berichte Der Deutschen Chemischen Gesellschaft, 15(2), 2844–2850. https://doi.org/10.1002/cber.188201502269
  • Cova, C. M., Zuliani, A., Muñoz-Batista, M. J., & Luque, R. (2019). Efficient Ru-based scrap waste automotive converter catalysts for the continuous-flow selective hydrogenation of cinnamaldehyde. Green Chemistry, 21(17), 4712–4722. https://doi.org/10.1039/C9GC01596E
  • Demirci, T. (2011). Synthesis Of 1,3,4-Oxadiazole And Tetrazole Substıituted 1,4 Dihydropyridine And Pyridine Compound. Sakarya University.
  • Demirci, T., Çelik, B., Yildiz, Y., Eriş, S., Arslan, M., Sen, F., & Kilbas, B. (2016). One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Advances, 6(80), 76948–76956. https://doi.org/10.1039/c6ra13142e
  • Deng, L., Su, Q., Ye, Q., Wan, H., He, Y., & Cui, X. (2022). Slag-based geopolymer microsphere-supported Cu: a low-cost and sustainable catalyst for CO 2 hydrogenation. Sustainable Energy & Fuels, 6(5), 1436–1447. https://doi.org/10.1039/D2SE00050D
  • El‐Remaily, M. A. E. A. A. A., Hamad, H. A., Soliman, A. M. M., & Elhady, O. M. (2021). Boosting the catalytic performance of manganese (III)‐porphyrin complex MnTSPP for facile one‐pot green synthesis of 1,4‐dihydropyridine derivatives under mild conditions. Applied Organometallic Chemistry, 35(7). https://doi.org/10.1002/aoc.6238
  • Genc, H. (2015). Efficient reductions of various nitroarenes with scrap automobile catalyst and NaBH4. Catalysis Communications, 67, 64–67. https://doi.org/10.1016/j.catcom.2015.04.008
  • Hamasaka, G., Tsuji, H., Ehara, M., & Uozumi, Y. (2019). Mechanistic insight into the catalytic hydrogenation of nonactivated aldehydes with a Hantzsch ester in the presence of a series of organoboranes: NMR and DFT studies. RSC Advances, 9(18), 10201–10210. https://doi.org/10.1039/C9RA01468C
  • Isgoren, M., Gengec, E., Veli, S., Hassandoost, R., & Khataee, A. (2023). The used automobile catalytic converter as an efficient catalyst for removal of malathion through wet air oxidation process. International Journal of Hydrogen Energy, 48(17), 6499–6509. https://doi.org/10.1016/j.ijhydene.2021.08.020
  • Kaya, M. O., Demirci, T., Çalışır, Ü., Özdemir, O., Kaya, Y., & Arslan, M. (2023). Synthesis, activatory effects, molecular docking and ADME studies as rabbit muscle pyruvate kinase activators of ureido phenyl substituted 1,4-dihydropyridine derivatives. Research on Chemical Intermediates. https://doi.org/10.1007/s11164-023-05149-6
  • Kaya, M. O., Demirci, T., Çalışır, Ü., Özdemir, O., Kaya, Y., & Arslan, M. (2024). Synthesis, activatory effects, molecular docking and ADME studies as rabbit muscle pyruvate kinase activators of ureido phenyl substituted 1,4-dihydropyridine derivatives. Research on Chemical Intermediates, 50(1), 437–463. https://doi.org/10.1007/s11164-023-05149-6
  • Kaya, M. O., Demirci, T., Karipçin, S., Özdemir, O., Kaya, Y., & Arslan, M. (2024). Novel tetrazole and 1,3,4-oxadiazole derivatives synthesis, molecular docking, ADME, potential activator for rabbit muscle pyruvate kinase. Studia Universitatis Babeș-Bolyai Chemia, 69(1), 85–105. https://doi.org/10.24193/subbchem.2024.1.06
  • Khan, H. M., Iqbal, T., Yasin, S., Ali, C. H., Abbas, M. M., Jamil, M. A., Hussain, A., M. Soudagar, M. E., & Rahman, M. M. (2021). Application of Agricultural Waste as Heterogeneous Catalysts for Biodiesel Production. Catalysts, 11(10), 1215. https://doi.org/10.3390/catal11101215
  • Krishna, B., Payra, S., & Roy, S. (2022). Synthesis of dihydropyrimidinones via multicomponent reaction route over acid functionalized Metal-Organic framework catalysts. Journal of Colloid and Interface Science, 607, 729–741. https://doi.org/10.1016/j.jcis.2021.09.031
  • M., K., M., N., N., S., H., Y., & T., Y. (2000). Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: Prediction of in vivo drug-drug interactions. European Journal of Clinical Pharmacology, 55(11–12), 843–852. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L30201767%5Cnhttp://sfx.ub.rug.nl:9003/sfx_local?sid=EMBASE&issn=00316970&id=doi:&atitle=Inhibition+of+human+cytochrome+P450+enzymes+by+1,4-dihydropyridine+calcium+antagonists:+Predi
  • Madhavi, C., Robert, A. R., Gangu, K. K., Kerru, N., & Maddila, S. (2022). An efficient and sustainable synthesis of morpholino-1,4-dihydropyridine-2,3-dicarboxylates using recyclable SeO2/HAp catalyst. Inorganic Chemistry Communications, 143, 109750. https://doi.org/10.1016/j.inoche.2022.109750
  • Maleki, B., Atharifar, H., Reiser, O., & Sabbaghzadeh, R. (2021). Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives. Polycyclic Aromatic Compounds, 41(4), 721–734. https://doi.org/10.1080/10406638.2019.1614639
  • Neto, B. A. D., Rocha, R. O., & Rodrigues, M. O. (2021). Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules, 27(1), 132. https://doi.org/10.3390/molecules27010132
  • Ong, S. T., Nam, Y.-W., Nasburg, J. A., Ramanishka, A., Ng, X. R., Zhuang, Z., Goay, S. S. M., Nguyen, H. M., Singh, L., Singh, V., Rivera, A., Eyster, M. E., Xu, Y., Alper, S. L., Wulff, H., Zhang, M., & Chandy, K. G. (2025). Design and structural basis of selective 1,4-dihydropyridine inhibitors of the calcium-activated potassium channel K Ca 3.1. Proceedings of the National Academy of Sciences, 122(18). https://doi.org/10.1073/pnas.2425494122
  • Patel, N. B., Purohit, A. C., Rajani, D. P., Moo-Puc, R., & Rivera, G. (2013). New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles: Their synthesis and biological evaluation. European Journal of Medicinal Chemistry, 62, 677–687. https://doi.org/10.1016/j.ejmech.2012.12.055
  • Raj, R., Parjapati, C., Garg, M., & Kaur, A. (2025). Discovery of New Symmetrical and Asymmetrical 1,4-dihydropyridine Derivatives as Potential Antihypertensive Agents: An In silico Evaluation. Current Hypertension Reviews, 21(1), 45–61. https://doi.org/10.2174/0115734021328359241206073629
  • Rajabi, F., de, S., & Luque, R. (2015). An Efficient and Green Synthesis of Benzimidazole Derivatives Using SBA-15 Supported Cobalt Nanocatalysts. Catalysis Letters, 145(8), 1566–1570. https://doi.org/10.1007/s10562-015-1546-z
  • Rostamnia, S., & Xin, H. (2014). Basic isoreticular metal–organic framework (IRMOF‐3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzsch coupling reaction. Applied Organometallic Chemistry, 28(5), 359–363. https://doi.org/10.1002/aoc.3136
  • Sakamuru, S., Travers, J., Klumpp-Thomas, C., Huang, R., Witt, K. L., Ferguson, S. S., Simmons, S. O., Reif, D. M., Simeonov, A., & Xia, M. (2025). Profiling the Tox21 Compound Library for Their Inhibitory Effects on Cytochrome P450 Enzymes. International Journal of Molecular Sciences, 26(11), 4976. https://doi.org/10.3390/ijms26114976
  • Searles, R. A. (2002). Contribution of Automotive Catalytic Converters. In Materials Aspects in Automotive Catalytic Converters (pp. 1–16). Wiley. https://doi.org/10.1002/3527600531.ch1
  • Soni, A., Sharma, M., & Singh, R. K. (2025). A Decade of Catalytic Progress in 1,4-Dihydropyridines (1,4-DHPs) Synthesis (2016-2024). Current Organic Synthesis, 22(6), 703–720. https://doi.org/10.2174/0115701794374153250307065611
  • Sonmez, F., Ercan, H., Genc, H., Arslan, M., Zengin, M., & Kucukislamoglu, M. (2013). Hydrogenation of Some Vegetable Oils by Scrap Automobile Catalyst. Journal of Chemistry, 2013(1). https://doi.org/10.1155/2013/169109
  • Tickner, J. A., Geiser, K., & Baima, S. (2022). Transitioning the Chemical Industry: Elements of a Roadmap Toward Sustainable Chemicals and Materials. Environment: Science and Policy for Sustainable Development, 64(2), 22–36. https://doi.org/10.1080/00139157.2022.2021793
  • Ulloora, S., Shabaraya, R., Ranganathan, R., & Adhikari, A. V. (2013). Synthesis, anticonvulsant and anti-inflammatory studies of new 1,4-dihydropyridin-4-yl-phenoxyacetohydrazones. European Journal of Medicinal Chemistry, 70, 341–349. https://doi.org/10.1016/j.ejmech.2013.10.010
  • Valadi, K., Gharibi, S., Taheri-Ledari, R., & Maleki, A. (2020). Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sciences, 101, 106141. https://doi.org/10.1016/j.solidstatesciences.2020.106141
  • Wilmer, W. A., Rovin, B. H., Hebert, C. J., Rao, S. V, Kumor, K., & Hebert, L. A. (2003). Management of Glomerular Proteinuria: A Commentary. Journal of the American Society of Nephrology, 14(12), 3217–3232. https://doi.org/10.1097/01.ASN.0000100145.27188.33
  • Wilson, K., & Clark, J. H. (2000). Solid acids and their use as environmentally friendly catalysts in organic synthesis. Pure and Applied Chemistry, 72(7), 1313–1319. https://doi.org/10.1351/pac200072071313
  • Xu, B., Chen, Y., Zhou, Y., Zhang, B., Liu, G., Li, Q., Yang, Y., & Jiang, T. (2022). A Review of Recovery of Palladium from the Spent Automobile Catalysts. Metals, 12(4), 533. https://doi.org/10.3390/met12040533
  • Yuan, N., Zhao, A., Hu, Z., Tan, K., & Zhang, J. (2022). Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review. Chemosphere, 287, 132227. https://doi.org/10.1016/j.chemosphere.2021.132227
  • Zengin, M., Genc, H., Demirci, T., Arslan, M., & Kucukislamoglu, M. (2011). An efficient hydrogenation of various alkenes using scrap automobile catalyst. Tetrahedron Letters, 52(18), 2333–2335. https://doi.org/10.1016/j.tetlet.2011.02.083
  • Zheng, G., & Crooks, P. A. (2015). Synthesis of Lobeline, Lobelane and their Analogues. A Review. Organic Preparations and Procedures International, 47(5), 317–337. https://doi.org/10.1080/00304948.2015.1066642
  • Zuliani, A., Cova, C. M., Manno, R., Sebastian, V., Romero, A. A., & Luque, R. (2020). Continuous flow synthesis of menthol via tandem cyclisation–hydrogenation of citronellal catalysed by scrap catalytic converters. Green Chemistry, 22(2), 379–387. https://doi.org/10.1039/C9GC03299A
There are 42 citations in total.

Details

Primary Language English
Subjects Chemical Reaction
Journal Section Full-length articles
Authors

Tuna Demirci 0000-0001-8933-4944

Project Number Düzce University Scientific Research Projects (No. 2020.01.01.1101) in this study.
Publication Date September 15, 2025
Submission Date July 1, 2025
Acceptance Date August 1, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Demirci, T. (2025). General Synthesis Method of Hantzsch dihydropyridine Using Scrap Automobile Catalyst (SAC). Journal of the Turkish Chemical Society Section B: Chemical Engineering, 8(2), 223-236. https://doi.org/10.58692/jotcsb.1731818

Creative Commons Lisansı
This piece of scholarly information is licensed under Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı.

J. Turk. Chem. Soc., Sect. B: Chem. Eng. (JOTCSB)