Review Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 2, 114 - 137, 23.12.2025
https://doi.org/10.54565/jphcfum.1623212

Abstract

References

  • [1] S. S. Salem, E. N. Hammad, A. A. Mohamed and W. El-Dougdoug. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022;13(1):41.
  • [2] H. S. Mansur. Quantum dots and nanocomposites. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2(2):113-129.
  • [3] F. Schellauf. Regulation of Nanomaterials in Cosmetic Products on the EU Market. Nanocosmetics: From Ideas to Products. 2019:337-346.
  • [4] D. V. Talapin and E. V. Shevchenko. Introduction: nanoparticle chemistry. Chemical Reviews. 2016;116(18):10343-10345.
  • [5] S. Lai, J. Guo, V. Petrova, G. Ramanath and L. Allen. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Physical review letters. 1996;77(1):99.
  • [6] M. Stratakis and H. Garcia. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chemical Reviews. 2012;112(8):4469-4506.
  • [7] W. J. Stark, P. R. Stoessel, W. Wohlleben and A. Hafner. Industrial applications of nanoparticles. Chemical Society Reviews. 2015;44(16):5793-5805.
  • [8] L. K. Adams, D. Y. Lyon, A. McIntosh and P. J. Alvarez. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol. 2006;54(11-12):327-34. doi:10.2166/wst.2006.891.
  • [9] C. Jin and J. Wei. The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel: A review. Fuel. 2023;343:127940.
  • [10] K. A. Abd-Elsalam, R. Periakaruppan and S. Rajeshkumar. Agri-waste and microbes for production of sustainable nanomaterials. Elsevier; 2021.
  • [11] M. Aslam, F. Fozia, A. Gul, I. Ahmad, R. Ullah, A. Bari, R. A. Mothana and H. Hussain. Phyto-extract-mediated synthesis of silver nanoparticles using aqueous extract of Sanvitalia procumbens, and characterization, optimization and photocatalytic degradation of azo dyes Orange G and Direct Blue-15. Molecules. 2021;26(20):6144.
  • [12] A. F. Burlec, M. Hăncianu, I. Macovei, C. Mircea, A. Fifere, I.-A. Turin-Moleavin, C. Tuchiluș, S. Robu and A. Corciovă. Eco-friendly synthesis and comparative in vitro biological evaluation of silver nanoparticles using Tagetes erecta flower extracts. Applied Sciences. 2022;12(2):887.
  • [13] S. Ibrahim, Z. Ahmad, M. Z. Manzoor, M. Mujahid, Z. Faheem and A. Adnan. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Scientific Reports. 2021;11(1):770.
  • [14] H. J. Hsu, J. Bugno, S. r. Lee and S. Hong. Dendrimer‐based nanocarriers: a versatile platform for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2017;9(1):e1409. [15] L. Palmerston Mendes, J. Pan and V. P. Torchilin. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9):1401.
  • [16] Y. Qin. Silver‐containing alginate fibres and dressings. International wound journal. 2005;2(2):172-176.
  • [17] T. Wolfe, D. Chatterjee, J. Lee, J. D. Grant, S. Bhattarai, R. Tailor, G. Goodrich, P. Nicolucci and S. Krishnan. Corrigendum to" Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo"[Nanomedicine: Nanotechnology, Biology, and Medicine 11 (2015) 1277-1283]. Nanomedicine: Nanotechnology, Biology, and Medicine. 2016;12(3):851-852.
  • [18] A. N. Geraldes, A. A. da Silva, J. Leal, G. M. Estrada-Villegas, N. Lincopan, K. V. Katti and A. B. Lugão. Green nanotechnology from plant extracts: synthesis and characterization of gold nanoparticles. Advances in Nanoparticles. 2016;5(03):176-185.
  • [19] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel and C. A. Mirkin. Gold nanoparticles for biology and medicine. Spherical Nucleic Acids. 2020:55-90.
  • [20] D. Philip. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010;77(4):807-810.
  • [21] A. CORCIOVĂ, C. Mircea, A.-F. Burlec, O. CIOANCĂ, C. TUCHILUŞ, A. Fifere, A.-L. LUNGOCI, N. Marangoci and M. HĂNCIANU. ANTIOXIDANT, ANTIMICROBIAL AND PHOTOCATALYTIC ACTIVITIES OF SILVER NANOPARTICLES OBTAINED BY BEE PROPOLIS EXTRACT ASSISTED BIOSYNTHESIS. Farmacia. 2019;67(3).
  • [22] N. Lewinski, V. Colvin and R. Drezek. Cytotoxicity of nanoparticles. small. 2008;4(1):26-49.
  • [23] L. Tang, L. Zhu, F. Tang, C. Yao, J. Wang and L. Li. Mild synthesis of copper nanoparticles with enhanced oxidative stability and their application in antibacterial films. Langmuir. 2018;34(48):14570-14576.
  • [24] W. Zhang, Q. Chang, L. Xu, G. Li, G. Yang, X. Ding, X. Wang, D. Cui and X. Jiang. Graphene oxide‐copper Nanocomposite‐coated porous CaP scaffold for vascularized bone regeneration via activation of Hif‐1α. Advanced healthcare materials. 2016;5(11):1299-1309.
  • [25] Y. Lu, L. Li, Y. Zhu, X. Wang, M. Li, Z. Lin, X. Hu, Y. Zhang, Q. Yin and H. Xia. Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS applied materials & interfaces. 2018;10(1):127-138.
  • [26] J. Blaškovičová, V. Vyskočil, M. Augustín and A. Purdešová. Ethanol and NaCl-induced gold nanoparticle aggregation toxicity toward DNA investigated with a DNA/GCE biosensor. Sensors. 2023;23(7):3425.
  • [27] A. G. Cuenca, H. Jiang, S. N. Hochwald, M. Delano, W. G. Cance and S. R. Grobmyer. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006;107(3):459-466.
  • [28] F. Kiessling, M. E. Mertens, J. Grimm and T. Lammers. Nanoparticles for imaging: top or flop? Radiology. 2014;273(1):10-28.
  • [29] J. Ferrucci and D. Stark. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR. American journal of roentgenology. 1990;155(5):943-950.
  • [30] X. Huang, Z. Zhao, J. Fan, Y. Tan and N. Zheng. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. Journal of the American chemical Society. 2011;133(13):4718-4721.
  • [31] N. R. Jabir, S. Tabrez, G. M. Ashraf, S. Shakil, G. A. Damanhouri and M. A. Kamal. Nanotechnology-based approaches in anticancer research. International journal of nanomedicine. 2012:4391-4408.
  • [32] B. N. A. da Silva Pimentel, C. C. de Foggi, P. A. Barbugli, R. C. de Oliveira, E. D. de Avila, E. Longo and C. E. Vergani. Antifungal activity and biocompatibility of α-AgVO3 microcrystals: A promising material against oral Candida disease. Materials Science and Engineering: C. 2020;108:110405.
  • [33] R. Armstrong, G. Briggs and E. Charles. Some effects of the addition of cobalt to the nickel hydroxide electrode. Journal of Applied Electrochemistry. 1988;18:215-219.
  • [34] S. S. Mohammed, A. H. Ahmed and A. Hassan. IMPACT OF HEAVY METALS ON THE ENVIRONMENT AND HUMAN BODY. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi. 2025;13(2):356-377. doi:10.33715/inonusaglik.1592059.
  • [35] X.-h. Han, J.-b. Sun, T.-y. Liu, H.-w. Wang, Y. Zhang and C.-x. Cui. Effects of magnetic field and annealing on the structure and magnetic properties of Alnico ribbons. Journal of Alloys and Compounds. 2019;785:715-724.
  • [36] J. Mohapatra, M. Xing, J. Elkins and J. P. Liu. Hard and semi-hard magnetic materials based on cobalt and cobalt alloys. Journal of Alloys and Compounds. 2020;824:153874.
  • [37] C. C. Berry and A. S. Curtis. Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of physics D: Applied physics. 2003;36(13):R198.
  • [38] M. F. Sanad, A. E. Shalan, S. M. Bazid, E. S. A. Serea, E. M. Hashem, S. Nabih and M. A. Ahsan. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC advances. 2019;9(53):31021-31029.
  • [39] R. A. Hamouda, M. H. Hussein, R. A. Abo-Elmagd and S. S. Bawazir. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports. 2019;9(1):13071.
  • [40] K. A. Saharudin, S. Sreekantan, R. B. S. M. N. Mydin, S. N. Q. A. A. Aziz and G. A. Govindasamy. Nano TiO2 for Biomedical Applications. In: S. Siddiquee, G. J. H. Melvin and M. M. Rahman, editors. Nanotechnology: Applications in Energy, Drug and Food. Cham: Springer International Publishing; 2019. p. 267-281.
  • [41] J. Bai Aswathanarayan, R. Rai Vittal and U. Muddegowda. Anticancer activity of metal nanoparticles and their peptide conjugates against human colon adenorectal carcinoma cells. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(7):1444-1451.
  • [42] S. A. Loutfy, N. A. Al-Ansary, N. T. Abdel-Ghani, A. R. Hamed, M. B. Mohamed, J. D. Craik, T. A. S. Eldin, A. M. Abdellah, Y. Hussein and M. Hasanin. Anti-proliferative activities of metallic nanoparticles in an in vitro breast cancer model. Asian Pacific Journal of Cancer Prevention. 2015;16(14):6039-6046.
  • [43] E. S. Al-Sheddi, N. N. Farshori, M. M. Al-Oqail, S. M. Al-Massarani, Q. Saquib, R. Wahab, J. Musarrat, A. A. Al-Khedhairy and M. A. Siddiqui. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications. 2018;2018(1):9390784.
  • [44] B. Thiesen and A. Jordan. Clinical applications of magnetic nanoparticles for hyperthermia. International journal of hyperthermia. 2008;24(6):467-474.
  • [45] M. Ozdal and S. Gurkok. Recent advances in nanoparticles as antibacterial agent. ADMET and DMPK. 2022;10(2):115-129.
  • [46] C. Lei, N. Sun, H. Wu, Y. Zhao, C. Yu, B. J. Janani and A. Fakhri. Bio-photoelectrochemical degradation, and photocatalysis process by the fabrication of copper oxide/zinc cadmium sulfide heterojunction nanocomposites: Mechanism, microbial community and antifungal analysis. Chemosphere. 2022;308:136375.
  • [47] Y. N. Slavin, J. Asnis, U. O. Hńfeli and H. Bach. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of nanobiotechnology. 2017;15:1-20.
  • [48] B. E. Al-Dhubiab, A. B. Nair, R. Kumria, M. Attimarad and S. Harsha. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids and Surfaces B: Biointerfaces. 2015;136:878-884.
  • [49] Y.-y. Ren, H. Yang, T. Wang and C. Wang. Bio-synthesis of silver nanoparticles with antibacterial activity. Materials Chemistry and Physics. 2019;235:121746.
  • [50] Y. Huang, S. He, W. Cao, K. Cai and X.-J. Liang. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale. 2012;4(20):6135-6149.
  • [51] N. Lee and T. Hyeon. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews. 2012;41(7):2575-2589.
  • [52] Y. Patel, S. Saha, C. DiMarzio, D. O'Malley, D. Nagesha and S. Sridhar, editors. Metallic nanoparticles for biomedical imaging. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2009: IEEE.
  • [53] N. Siddharthan, G. Kalaivani, E. Poongothai, M. Arul and N. Hemalatha. Characterization of silver nanoparticles synthesized from catheranthus roseus (vinca rosea) plant leaf extract and their antibacterial activity. Int. J. Res. Anal. Rev. 2019;6:680-685.
  • [54] I. Sondi and B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 2004;275(1):177-182.
  • [55] R. W.-Y. Sun, R. Chen, N. P.-Y. Chung, C.-M. Ho, C.-L. S. Lin and C.-M. Che. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical communications. 2005(40):5059-5061.
  • [56] H. H. Lara, L. Ixtepan-Turrent, E. N. Garza-Treviño and C. Rodriguez-Padilla. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. Journal of nanobiotechnology. 2010;8:1-11.
  • [57] C. Lekutis, U. Olshevsky, C. Furman, M. Thali and J. Sodroski. Contribution of disulfide bonds in the carboxyl terminus of the human immunodeficiency virus type I gp120 glycoprotein to CD4 binding. JAIDS Journal of Acquired Immune Deficiency Syndromes. 1992;5(1):78-81.
  • [58] J. Haldar, A. K. Weight and A. M. Klibanov. Preparation, application and testing of permanent antibacterial and antiviral coatings. Nature Protocols. 2007;2(10):2412-2417.
  • [59] N. Van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg and S. I. Gerber. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England journal of medicine. 2020;382(16):1564-1567.
  • [60] Y. Khan, H. Sadia, S. Z. Ali Shah, M. N. Khan, A. A. Shah, N. Ullah, M. F. Ullah, H. Bibi, O. T. Bafakeeh and N. B. Khedher. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts. 2022;12(11):1386.
  • [61] N. M. Kulshreshtha, I. Jadhav, M. Dixit, N. Sinha, D. Shrivastava and P. S. Bisen. Nanostructures as antimicrobial therapeutics. Antimicrobial Nanoarchitectonics. Elsevier; 2017. p. 29-59.
  • [62] Y. Huang, P. Li, R. Zhao, L. Zhao, J. Liu, S. Peng, X. Fu, X. Wang, R. Luo and R. Wang. Silica nanoparticles: Biomedical applications and toxicity. Biomedicine & Pharmacotherapy. 2022;151:113053.
  • [63] H. A. Aljaerani, M. Samykano, R. Saidur, A. Pandey and K. Kadirgama. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: A critical review. Journal of Energy Storage. 2021;44:103280.
  • [64] A. Garzon-Roman, C. Zúñiga-Islas and D. H. Cuate-Gomez. Morphological, Structural, Optical and Electrical Characterization of TiO2 and Porous Silicon Structures Working as a Promising Breathing Detector. Silicon. 2024;16(1):61-71.
  • [65] M. Landmann, E. Rauls and W. Schmidt. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of physics: condensed matter. 2012;24(19):195503.
  • [66] Z. F. Yin, L. Wu, H. G. Yang and Y. H. Su. Recent progress in biomedical applications of titanium dioxide. Physical chemistry chemical physics. 2013;15(14):4844-4858.
  • [67] X. Chen and S. S. Mao. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews. 2007;107(7):2891-2959.
  • [68] J. Bonse, H. Sturm, D. Schmidt and W. Kautek. Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Applied Physics A. 2000;71(6):657-665. doi:10.1007/s003390000585.
  • [69] X. Liu and J. Fu. Electronic and elastic properties of the tetragonal anatase TiO2 structure from first principle calculation. Optik. 2020;206:164342. doi:https://doi.org/10.1016/j.ijleo.2020.164342.
  • [70] M. J. Gázquez, S. M. P. Moreno and J. P. Bolívar. 9 - TiO2 as white pigment and valorization of the waste coming from its production. In: F. Parrino and L. Palmisano, editors. Titanium Dioxide (Tio₂) and Its Applications. Elsevier; 2021. p. 311-335.
  • [71] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain and S. Tanemura. Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Applied Surface Science. 2003;212-213:255-263. doi:https://doi.org/10.1016/S0169-4332(03)00106-5.
  • [72] M. Mhadhbi, B. Avar and H. Abderazzak. Synthesis and Properties of Titanium Dioxide Nanoparticles. In: B. Bejaoui, editor. Updates on Titanium Dioxide. Rijeka: IntechOpen; 2023.
  • [73] N. A. Kadhim, M. B. Harouni and D. M. Hachim. Improving Solar Cell Performance with TiO₂/PVA Nanocoating and Natural Dyes from Acacia and Spirulina. 2025.
  • [74] X. Feng, X. Huang and X. Wang. Thermal conductivity and secondary porosity of single anatase TiO2 nanowire. Nanotechnology. 2012;23(18):185701. doi:10.1088/0957-4484/23/18/185701.
  • [75] A. Hunger, G. Carl, A. Gebhardt and C. Rüssel. Ultra-high thermal expansion glass–ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite. Journal of Non-Crystalline Solids. 2008;354(52):5402-5407. doi:https://doi.org/10.1016/j.jnoncrysol.2008.09.001.
  • [76] K. Möls, L. Aarik, H. Mändar, A. Kasikov, A. Niilisk, R. Rammula and J. Aarik. Influence of phase composition on optical properties of TiO2: Dependence of refractive index and band gap on formation of TiO2-II phase in thin films. Optical Materials. 2019;96:109335. doi:https://doi.org/10.1016/j.optmat.2019.109335.
  • [77] G. Neumark, Y. Gong and I. Kuskovsky. Doping aspects of Zn-based wide-band-gap semiconductors. Springer handbook of electronic and photonic materials. 2007:843.
  • [78] Z. Fan and J. G. Lu. Zinc oxide nanostructures: synthesis and properties. Journal of nanoscience and nanotechnology. 2005;5(10):1561-1573.
  • [79] M. Soosen Samuel, L. Bose and K. George. Optical properties of ZnO nanoparticles. Academic Review. 2009;16:57-65.
  • [80] Z. Lu, J. Gao, Q. He, J. Wu, D. Liang, H. Yang and R. Chen. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate polymers. 2017;156:460-469.
  • [81] R. Y. Pelgrift and A. J. Friedman. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced drug delivery reviews. 2013;65(13-14):1803-1815.
  • [82] K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai and W. Jiang. Synthesis of ultrafine γ-Al2O3 powders by pulsed laser ablation. Journal of Nanoparticle Research. 2000;2:75-83.
  • [83] G. Boisier, M. Raciulete, D. Samélor, N. Pébère, A. Gleizes and C. Vahlas. Electrochemical behavior of chemical vapor deposited protective aluminum oxide coatings on Ti6242 titanium alloy. Electrochemical and Solid-State Letters. 2008;11(10):C55.
  • [84] R. M. Cornell and U. Schwertmann. The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-vch Weinheim; 2003.
  • [85] C. Sun, J. Lee and M. Zhang. Nanoparticles in biomedical applications. Adv. Drug Deliv. Rev. 2008;60:1252-1265.
  • [86] Z. Chen, Y. Zhang, S. Zhang, J. Xia, J. Liu, K. Xu and N. Gu. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;316(1-3):210-216.
  • [87] A. S. Teja and P.-Y. Koh. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials. 2009;55(1-2):22-45.
  • [88] S. Hasany, I. Ahmed, J. Rajan and A. Rehman. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2012;2(6):148-158.
  • [89] M. Hrubý, S. K. Filippov and P. Štěpánek. Smart polymers in drug delivery systems on crossroads: Which way deserves following? European Polymer Journal. 2015;65:82-97.
  • [90] A. Senyei, K. Widder and G. Czerlinski. Magnetic guidance of drug‐carrying microspheres. Journal of Applied Physics. 1978;49(6):3578-3583.
  • [91] M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra and J. Santamaría. Magnetic nanoparticles for drug delivery. Nano today. 2007;2(3):22-32.
  • [92] M. Vallet-Regi, A. Rámila, R. Del Real and J. Pérez-Pariente. A new property of MCM-41: drug delivery system. Chemistry of materials. 2001;13(2):308-311.
  • [93] K. McNamara and S. A. Tofail. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Physical chemistry chemical physics. 2015;17(42):27981-27995.
  • [94] P. Khadka, J. Ro, H. Kim, I. Kim, J. T. Kim, H. Kim, J. M. Cho, G. Yun and J. Lee. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian journal of pharmaceutical sciences. 2014;9(6):304-316.
  • [95] M. Silindir Gunay, A. Yekta Ozer and S. Chalon. Drug delivery systems for imaging and therapy of Parkinson’s disease. Current neuropharmacology. 2016;14(4):376-391.
  • [96] H. Lu, J. Wang, T. Wang, J. Zhong, Y. Bao and H. Hao. Recent progress on nanostructures for drug delivery applications. Journal of Nanomaterials. 2016;2016(1):5762431.
  • [97] C. Kurzmann, J. Verheyen, M. Coto, R. V. Kumar, G. Divitini, H. A. Shokoohi-Tabrizi, P. Verheyen, R. J. Gentil De Moor, A. Moritz and H. Agis. In vitro evaluation of experimental light activated gels for tooth bleaching. Photochemical & Photobiological Sciences. 2019;18:1009-1019.
  • [98] G. Chen, Y. Wang, R. Xie and S. Gong. A review on core–shell structured unimolecular nanoparticles for biomedical applications. Advanced drug delivery reviews. 2018;130:58-72.
  • [99] N.-T. Chen, J. S. Souris, S.-H. Cheng, C.-H. Chu, Y.-C. Wang, V. Konda, U. Dougherty, M. Bissonnette, C.-Y. Mou and C.-T. Chen. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;13(6):1941-1952.
  • [100] R. Prieto-Montero, A. Katsumiti, M. P. Cajaraville, I. López-Arbeloa and V. Martínez-Martínez. Functionalized fluorescent silica nanoparticles for bioimaging of cancer cells. Sensors. 2020;20(19):5590.
  • [101] H. M. Xiong. ZnO nanoparticles applied to bioimaging and drug delivery. Advanced Materials. 2013;25(37):5329-5335.
  • [102] J. S. Weinstein, C. G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W. D. Rooney, L. L. Muldoon and E. A. Neuwelt. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. Journal of Cerebral Blood Flow & Metabolism. 2010;30(1):15-35.
  • [103] M. Javidi, M. Zarei, N. Naghavi, M. Mortazavi and A. H. Nejat. Zinc oxide nano-particles as sealer in endodontics and its sealing ability. Contemporary clinical dentistry. 2014;5(1):20-24.
  • [104] M. A. Karimi, R. S. HAGHDAR, R. ASADINIA, M. A. A. HATEFI, M. H. Mashhadizadeh, A. R. BEHJATMANESH, A. M. MAZLOUM, H. Kargar and S. M. Zebarjad. Synthesis and characterization of nanoparticles and nanocomposite of ZnO and MgO by sonochemical method and their application for zinc polycarboxylate dental cement preparation. 2011.
  • [105] S. Bonetta, S. Bonetta, F. Motta, A. Strini and E. Carraro. Photocatalytic bacterial inactivation by TiO 2-coated surfaces. Amb Express. 2013;3:1-8.
  • [106] S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani and L. Tayebi. Biomedical applications of TiO2 nanostructures: recent advances. International journal of nanomedicine. 2020:3447-3470.
  • [107] M. Fang, J.-H. Chen, X.-L. Xu, P.-H. Yang and H. F. Hildebrand. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. International journal of antimicrobial agents. 2006;27(6):513-517.
  • [108] I. M. Garcia, A. A. Balhaddad, M. S. Ibrahim, M. D. Weir, H. H. Xu, F. M. Collares and M. A. S. Melo. Antibacterial response of oral microcosm biofilm to nano-zinc oxide in adhesive resin. Dental Materials. 2021;37(3):e182-e193.
  • [109] L. Adams, D. Lyon, A. McIntosh and P. Alvarez. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Science and Technology. 2006;54(11-12):327-334.
  • [110] I. M. Garcia, V. C. B. Leitune, F. Visioli, S. M. W. Samuel and F. M. Collares. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. Journal of Dentistry. 2018;73:57-60.
  • [111] Y. Li, X. Hu, Y. Xia, Y. Ji, J. Ruan, M. D. Weir, X. Lin, Z. Nie, N. Gu and R. Masri. Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dental Materials. 2018;34(9):1310-1322.
  • [112] I. M. Garcia, A. A. Balhaddad, Y. Lan, A. Simionato, M. S. Ibrahim, M. D. Weir, R. Masri, H. H. Xu, F. M. Collares and M. A. S. Melo. Magnetic motion of superparamagnetic iron oxide nanoparticles-loaded dental adhesives: physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomaterialia. 2021;134:337-347.
  • [113] R. Singh, R. K. Shukla, A. Kumar, A. Dhawan and S. Singh. PEGylated nanoceria protect human epidermal cells from reactive oxygen species. Molecular Cytogenetics. 2014;7(Suppl 1):P78.
  • [114] J. Estelrich, M. J. Sánchez-Martín and M. A. Busquets. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International journal of nanomedicine. 2015:1727-1741.
  • [115] D. Yoo, J.-H. Lee, T.-H. Shin and J. Cheon. Theranostic magnetic nanoparticles. Accounts of chemical research. 2011;44(10):863-874.
  • [116] J. Gao and B. Xu. Applications of nanomaterials inside cells. Nano Today. 2009;4(1):37-51.
  • [117] X. T. Zheng, A. Ananthanarayanan, K. Q. Luo and P. Chen. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. small. 2015;11(14):1620-1636.
  • [118] W.-T. Liu. Nanoparticles and their biological and environmental applications. Journal of bioscience and bioengineering. 2006;102(1):1-7.
  • [119] A. P. Alivisatos, W. Gu and C. Larabell. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005;7(1):55-76.
  • [120] F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer and E. H. Sargent. Semiconductor quantum dots: Technological progress and future challenges. Science. 2021;373(6555):eaaz8541.
  • [121] R. D. Tilley and K. Yamamoto. The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Advanced Materials. 2006;18(15):2053-2056.
  • [122] M. Bacon, S. J. Bradley and T. Nann. Graphene quantum dots. Particle & Particle Systems Characterization. 2014;31(4):415-428.
  • [123] M. Tinkham. Metallic quantum dots. Philosophical Magazine B. 1999;79(9):1267-1280.
  • [124] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani and A. M. Seifalian. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717-4732.
  • [125] D. Morgan, K. Gong, A. M. Kelley and D. F. Kelley. Biexciton dynamics in alloy quantum dots. The Journal of Physical Chemistry C. 2017;121(33):18307-18316.
  • [126] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and T. Nann. Quantum dots versus organic dyes as fluorescent labels. Nature methods. 2008;5(9):763-775.
  • [127] E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • [128] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • [129] E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • [130] I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45(1):343-349. doi:10.1007/s40995-020-01008-w.
  • [131] S. Mohammed, R. Qadır, M. Kök and I. Qader. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56. doi:10.54565/jphcfum.1018817.
  • [132] S. S. Mohammed, M. Kök, Z. D. Çirak, I. N. Qader, F. Dağdelen and H. S. A. Zardawi. The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys. Physics of Metals and Metallography. 2020;121(14):1411-1417. doi:10.1134/S0031918X2013013X.
  • [133] S. Mohammed, M. Kök, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130. doi:10.46460/ijiea.957722.
  • [134] S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61. doi:10.54565/jphcfum.1087881.
  • [135] S. S. Mohammed, B. Mohammed Ibrahım and E. Balci. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2023;6(2):40-50. doi:10.54565/jphcfum.1357636.
  • [136] S. S. Mohammed, A. S. Karim, R. A. Qadir, M. Kök, F. Dağdelen, A. F. Wsw and A. M. Othman. The effect of heat treatment on crystal structure and thermodynamic properties of Cu–Al–Ni shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2025;150(5):3297-3304. doi:10.1007/s10973-025-14037-7.
  • [137] S. S. Mohammed and A. Hassan. The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review. Journal of Physical Chemistry and Functional Materials. 2024;7(2):101-111. doi:10.54565/jphcfum.1534504.
  • [138] F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. Jom. 2020;72:1664-1672.
  • [139] M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • [140] M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • [141] S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • [142] S. S. Mohammed, M. Kök, İ. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • [143] S. S. Mohammed, R. A. Qadir, A. Hassan, A. Mohammedamin and A. H. Ahmed. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6(2):27-39. doi:10.54565/jphcfum.1371619.
  • [144] S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713. doi:10.1007/s10973-022-11440-2.
  • [145] I. N. Qader, S. Mohammed and F. Dağdelen. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy. Gazi University Journal of Science. 2022;35(3):1129-1138. doi:10.35378/gujs.947678.
  • [146] S. S. Mohammed, R. A. Qadir, A. S. Karim and M. Kök. A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material. Journal of Physical Chemistry and Functional Materials. 2024;7(2):112-123. doi:10.54565/jphcfum.1537050.
  • [147] J. Jellinek and E. B. Krissinel. Alloy clusters: structural classes, mixing, and phase changes. Theory of Atomic and Molecular Clusters: With a Glimpse at Experiments. Springer; 1999. p. 277-308.
  • [148] D. Wang and Y. Li. Bimetallic nanocrystals: liquid‐phase synthesis and catalytic applications. Advanced Materials. 2011;23(9):1044-1060.
  • [149] D. Nelli, A. Krishnadas, R. Ferrando and C. Minnai. One-step growth of core–shell (PtPd)@ Pt and (PtPd)@ Pd nanoparticles in the gas phase. The Journal of Physical Chemistry C. 2020;124(26):14338-14349.
  • [150] R. Ferrando. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. Journal of Physics: Condensed Matter. 2014;27(1):013003.
  • [151] X. Y. Liu, A. Wang, T. Zhang and C.-Y. Mou. Catalysis by gold: New insights into the support effect. Nano Today. 2013;8(4):403-416.
  • [152] F. Baletto, C. Mottet and R. Ferrando. Growth of three-shell onionlike bimetallic nanoparticles. Physical review letters. 2003;90(13):135504.
  • [153] R. Ferrando, J. Jellinek and R. L. Johnston. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews. 2008;108(3):845-910.
  • [154] S.-X. Liang, L.-C. Zhang, S. Reichenberger and S. Barcikowski. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Physical Chemistry Chemical Physics. 2021;23(19):11121-11154.
  • [155] C. Zong, M. Xu, L.-J. Xu, T. Wei, X. Ma, X.-S. Zheng, R. Hu and B. Ren. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews. 2018;118(10):4946-4980.
  • [156] I. Martynenko, A. Litvin, F. Purcell-Milton, A. Baranov, A. Fedorov and Y. Gun'Ko. Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B. 2017;5(33):6701-6727.
  • [157] H.-L. Jiang and Q. Xu. Recent progress in synergistic catalysis over heterometallic nanoparticles. Journal of Materials Chemistry. 2011;21(36):13705-13725.
  • [158] S. K. Nune, P. Gunda, P. K. Thallapally, Y.-Y. Lin, M. Laird Forrest and C. J. Berkland. Nanoparticles for biomedical imaging. Expert opinion on drug delivery. 2009;6(11):1175-1194.
  • [159] S.-W. Chou, C.-L. Liu, T.-M. Liu, Y.-F. Shen, L.-C. Kuo, C.-H. Wu, T.-Y. Hsieh, P.-C. Wu, M.-R. Tsai and C.-C. Yang. Infrared-active quadruple contrast FePt nanoparticles for multiple scale molecular imaging. Biomaterials. 2016;85:54-64.
  • [160] L. Chen, J. M. Chabu and Y. Liu. Bimetallic AgM (M= Pt, Pd, Au) nanostructures: synthesis and applications for surface-enhanced Raman scattering. RSC advances. 2013;3(13):4391-4399.
  • [161] H. Khodabandehloo, H. Zahednasab and A. A. Hafez. Nanocarriers usage for drug delivery in cancer therapy. Iranian journal of cancer prevention. 2016;9(2).
  • [162] Q. Zhou, L. Zhang and H. Wu. Nanomaterials for cancer therapies. Nanotechnology Reviews. 2017;6(5):473-496.
  • [163] T. Shanmugasundaram, M. Radhakrishnan, V. Gopikrishnan, K. Kadirvelu and R. Balagurunathan. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives. Nanoscale. 2017;9(43):16773-16790.
  • [164] P. Srinoi, Y.-T. Chen, V. Vittur, M. D. Marquez and T. R. Lee. Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications. Applied Sciences. 2018;8(7):1106.
  • [165] K. Mondal and A. Sharma. Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC advances. 2016;6(87):83589-83612.
  • [166] P. Rai, S. M. Majhi, Y.-T. Yu and J.-H. Lee. Noble metal@ metal oxide semiconductor core@ shell nano-architectures as a new platform for gas sensor applications. RSC advances. 2015;5(93):76229-76248.
  • [167] P. C. Mendes, Y. Song, W. Ma, T. Z. Gani, K. H. Lim, S. Kawi and S. M. Kozlov. Opportunities in the design of metal@ oxide core-shell nanoparticles. Advances in Physics: X. 2023;8(1):2175623.
  • [168] G. Dzhardimalieva, A. Pomogailo, N. Golubeva, S. Pomogailo, O. Roshchupkina, G. Novikov, A. Rozenberg and M. Leonowicz. Metal-containing nanoparticles with core-polymer shell structure. Colloid journal. 2011;73:458-466.
  • [169] A. D. Pomogailo and V. N. Kestelʹman. Metallopolymer nanocomposites. Springer Science & Business Media; 2006.
  • [170] K. Chatterjee, S. Sarkar, K. J. Rao and S. Paria. Core/shell nanoparticles in biomedical applications. Advances in colloid and interface science. 2014;209:8-39.
  • [171] M. A. Correa-Duarte, M. Giersig and L. M. Liz-Marzán. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chemical physics letters. 1998;286(5-6):497-501.
  • [172] S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin and Z. Guo. Multifunctional composite core–shell nanoparticles. Nanoscale. 2011;3(11):4474-4502.
  • [173] R. E. Rosensweig. Fluidmagnetic buoyancy. Aiaa Journal. 1966;4(10):1751-1758.
  • [174] T. Mokari, E. Rothenberg, I. Popov, R. Costi and U. Banin. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science. 2004;304(5678):1787-1790.
  • [175] J. Jackson and N. Halas. Silver nanoshells: variations in morphologies and optical properties. The Journal of Physical Chemistry B. 2001;105(14):2743-2746.
  • [176] R. Ghosh Chaudhuri and S. Paria. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews. 2012;112(4):2373-2433.
  • [177] J. Ye, B. Van de Broek, R. De Palma, W. Libaers, K. Clays, W. Van Roy, G. Borghs and G. Maes. Surface morphology changes on silica-coated gold colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;322(1-3):225-233.
  • [178] T. Liu, D. Li, Y. Zou, D. Yang, H. Li, Y. Wu and M. Jiang. Preparation of metal@ silica core–shell particle films by interfacial self-assembly. Journal of colloid and interface science. 2010;350(1):58-62.
  • [179] W. Han, L. Yi, N. Zhao, A. Tang, M. Gao and Z. Tang. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. Journal of the American Chemical Society. 2008;130(39):13152-13161.
  • [180] P. Sharma, S. Brown, G. Walter, S. Santra and B. Moudgil. Nanoparticles for bioimaging. Advances in colloid and interface science. 2006;123:471-485.
  • [181] A. Hagit, B. Soenke, B. Johannes and M. Shlomo. Synthesis and characterization of dual modality (CT/MRI) core− shell microparticles for embolization purposes. Biomacromolecules. 2010;11(6):1600-1607.
  • [182] F. Xie, M. S. Baker and E. M. Goldys. Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. The Journal of Physical Chemistry B. 2006;110(46):23085-23091.
  • [183] L. Chen and M. Subirade. Chitosan/β-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials. 2005;26(30):6041-6053.
  • [184] N. Sahiner, N. Pekel, P. Akkas and O. Güven. Amidoximation and characterization of new complexing hydrogels prepared from N-vinyl 2-pyrrolidone/acrylonitrile systems. 2000.
  • [185] S. Kayal and R. V. Ramanujan. Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@ Au) for magnetic drug targeting. Journal of nanoscience and nanotechnology. 2010;10(9):5527-5539.

Nano Particles: Types and Their Biomedical Applications

Year 2025, Volume: 8 Issue: 2, 114 - 137, 23.12.2025
https://doi.org/10.54565/jphcfum.1623212

Abstract

The small size of nanomaterials, which generally ranges from one to one hundred nanometers (nm), is what distinguishes them from other forms of smart materials. Nanomaterials are a distinctive sort of smart material. The remarkable size of these materials, together with their other physical and chemical properties, makes them an excellent candidate for a broad range of applications, particularly in the field of modern technology. Nanomaterials are very adaptable and successful in a broad variety of applications due to their high surface-to-volume ratios, quantum effects, and increased mechanical, electrical, and optical characteristics. The categorization of nanomaterials into many categories, including metal, metal oxide, quantum dot, Nano alloy, and core shell, is discussed in this review. The classification is based on the literature. In this article, nanoparticles and the uses of each substance in the area of biomedicine, such as diagnosis, Bioimaging, drug transport, anti-bacterial, antiviral, anti-cancer, and dentistry, are discussed.

References

  • [1] S. S. Salem, E. N. Hammad, A. A. Mohamed and W. El-Dougdoug. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022;13(1):41.
  • [2] H. S. Mansur. Quantum dots and nanocomposites. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2(2):113-129.
  • [3] F. Schellauf. Regulation of Nanomaterials in Cosmetic Products on the EU Market. Nanocosmetics: From Ideas to Products. 2019:337-346.
  • [4] D. V. Talapin and E. V. Shevchenko. Introduction: nanoparticle chemistry. Chemical Reviews. 2016;116(18):10343-10345.
  • [5] S. Lai, J. Guo, V. Petrova, G. Ramanath and L. Allen. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Physical review letters. 1996;77(1):99.
  • [6] M. Stratakis and H. Garcia. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chemical Reviews. 2012;112(8):4469-4506.
  • [7] W. J. Stark, P. R. Stoessel, W. Wohlleben and A. Hafner. Industrial applications of nanoparticles. Chemical Society Reviews. 2015;44(16):5793-5805.
  • [8] L. K. Adams, D. Y. Lyon, A. McIntosh and P. J. Alvarez. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol. 2006;54(11-12):327-34. doi:10.2166/wst.2006.891.
  • [9] C. Jin and J. Wei. The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel: A review. Fuel. 2023;343:127940.
  • [10] K. A. Abd-Elsalam, R. Periakaruppan and S. Rajeshkumar. Agri-waste and microbes for production of sustainable nanomaterials. Elsevier; 2021.
  • [11] M. Aslam, F. Fozia, A. Gul, I. Ahmad, R. Ullah, A. Bari, R. A. Mothana and H. Hussain. Phyto-extract-mediated synthesis of silver nanoparticles using aqueous extract of Sanvitalia procumbens, and characterization, optimization and photocatalytic degradation of azo dyes Orange G and Direct Blue-15. Molecules. 2021;26(20):6144.
  • [12] A. F. Burlec, M. Hăncianu, I. Macovei, C. Mircea, A. Fifere, I.-A. Turin-Moleavin, C. Tuchiluș, S. Robu and A. Corciovă. Eco-friendly synthesis and comparative in vitro biological evaluation of silver nanoparticles using Tagetes erecta flower extracts. Applied Sciences. 2022;12(2):887.
  • [13] S. Ibrahim, Z. Ahmad, M. Z. Manzoor, M. Mujahid, Z. Faheem and A. Adnan. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Scientific Reports. 2021;11(1):770.
  • [14] H. J. Hsu, J. Bugno, S. r. Lee and S. Hong. Dendrimer‐based nanocarriers: a versatile platform for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2017;9(1):e1409. [15] L. Palmerston Mendes, J. Pan and V. P. Torchilin. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9):1401.
  • [16] Y. Qin. Silver‐containing alginate fibres and dressings. International wound journal. 2005;2(2):172-176.
  • [17] T. Wolfe, D. Chatterjee, J. Lee, J. D. Grant, S. Bhattarai, R. Tailor, G. Goodrich, P. Nicolucci and S. Krishnan. Corrigendum to" Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo"[Nanomedicine: Nanotechnology, Biology, and Medicine 11 (2015) 1277-1283]. Nanomedicine: Nanotechnology, Biology, and Medicine. 2016;12(3):851-852.
  • [18] A. N. Geraldes, A. A. da Silva, J. Leal, G. M. Estrada-Villegas, N. Lincopan, K. V. Katti and A. B. Lugão. Green nanotechnology from plant extracts: synthesis and characterization of gold nanoparticles. Advances in Nanoparticles. 2016;5(03):176-185.
  • [19] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel and C. A. Mirkin. Gold nanoparticles for biology and medicine. Spherical Nucleic Acids. 2020:55-90.
  • [20] D. Philip. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010;77(4):807-810.
  • [21] A. CORCIOVĂ, C. Mircea, A.-F. Burlec, O. CIOANCĂ, C. TUCHILUŞ, A. Fifere, A.-L. LUNGOCI, N. Marangoci and M. HĂNCIANU. ANTIOXIDANT, ANTIMICROBIAL AND PHOTOCATALYTIC ACTIVITIES OF SILVER NANOPARTICLES OBTAINED BY BEE PROPOLIS EXTRACT ASSISTED BIOSYNTHESIS. Farmacia. 2019;67(3).
  • [22] N. Lewinski, V. Colvin and R. Drezek. Cytotoxicity of nanoparticles. small. 2008;4(1):26-49.
  • [23] L. Tang, L. Zhu, F. Tang, C. Yao, J. Wang and L. Li. Mild synthesis of copper nanoparticles with enhanced oxidative stability and their application in antibacterial films. Langmuir. 2018;34(48):14570-14576.
  • [24] W. Zhang, Q. Chang, L. Xu, G. Li, G. Yang, X. Ding, X. Wang, D. Cui and X. Jiang. Graphene oxide‐copper Nanocomposite‐coated porous CaP scaffold for vascularized bone regeneration via activation of Hif‐1α. Advanced healthcare materials. 2016;5(11):1299-1309.
  • [25] Y. Lu, L. Li, Y. Zhu, X. Wang, M. Li, Z. Lin, X. Hu, Y. Zhang, Q. Yin and H. Xia. Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS applied materials & interfaces. 2018;10(1):127-138.
  • [26] J. Blaškovičová, V. Vyskočil, M. Augustín and A. Purdešová. Ethanol and NaCl-induced gold nanoparticle aggregation toxicity toward DNA investigated with a DNA/GCE biosensor. Sensors. 2023;23(7):3425.
  • [27] A. G. Cuenca, H. Jiang, S. N. Hochwald, M. Delano, W. G. Cance and S. R. Grobmyer. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006;107(3):459-466.
  • [28] F. Kiessling, M. E. Mertens, J. Grimm and T. Lammers. Nanoparticles for imaging: top or flop? Radiology. 2014;273(1):10-28.
  • [29] J. Ferrucci and D. Stark. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR. American journal of roentgenology. 1990;155(5):943-950.
  • [30] X. Huang, Z. Zhao, J. Fan, Y. Tan and N. Zheng. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. Journal of the American chemical Society. 2011;133(13):4718-4721.
  • [31] N. R. Jabir, S. Tabrez, G. M. Ashraf, S. Shakil, G. A. Damanhouri and M. A. Kamal. Nanotechnology-based approaches in anticancer research. International journal of nanomedicine. 2012:4391-4408.
  • [32] B. N. A. da Silva Pimentel, C. C. de Foggi, P. A. Barbugli, R. C. de Oliveira, E. D. de Avila, E. Longo and C. E. Vergani. Antifungal activity and biocompatibility of α-AgVO3 microcrystals: A promising material against oral Candida disease. Materials Science and Engineering: C. 2020;108:110405.
  • [33] R. Armstrong, G. Briggs and E. Charles. Some effects of the addition of cobalt to the nickel hydroxide electrode. Journal of Applied Electrochemistry. 1988;18:215-219.
  • [34] S. S. Mohammed, A. H. Ahmed and A. Hassan. IMPACT OF HEAVY METALS ON THE ENVIRONMENT AND HUMAN BODY. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi. 2025;13(2):356-377. doi:10.33715/inonusaglik.1592059.
  • [35] X.-h. Han, J.-b. Sun, T.-y. Liu, H.-w. Wang, Y. Zhang and C.-x. Cui. Effects of magnetic field and annealing on the structure and magnetic properties of Alnico ribbons. Journal of Alloys and Compounds. 2019;785:715-724.
  • [36] J. Mohapatra, M. Xing, J. Elkins and J. P. Liu. Hard and semi-hard magnetic materials based on cobalt and cobalt alloys. Journal of Alloys and Compounds. 2020;824:153874.
  • [37] C. C. Berry and A. S. Curtis. Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of physics D: Applied physics. 2003;36(13):R198.
  • [38] M. F. Sanad, A. E. Shalan, S. M. Bazid, E. S. A. Serea, E. M. Hashem, S. Nabih and M. A. Ahsan. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC advances. 2019;9(53):31021-31029.
  • [39] R. A. Hamouda, M. H. Hussein, R. A. Abo-Elmagd and S. S. Bawazir. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports. 2019;9(1):13071.
  • [40] K. A. Saharudin, S. Sreekantan, R. B. S. M. N. Mydin, S. N. Q. A. A. Aziz and G. A. Govindasamy. Nano TiO2 for Biomedical Applications. In: S. Siddiquee, G. J. H. Melvin and M. M. Rahman, editors. Nanotechnology: Applications in Energy, Drug and Food. Cham: Springer International Publishing; 2019. p. 267-281.
  • [41] J. Bai Aswathanarayan, R. Rai Vittal and U. Muddegowda. Anticancer activity of metal nanoparticles and their peptide conjugates against human colon adenorectal carcinoma cells. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46(7):1444-1451.
  • [42] S. A. Loutfy, N. A. Al-Ansary, N. T. Abdel-Ghani, A. R. Hamed, M. B. Mohamed, J. D. Craik, T. A. S. Eldin, A. M. Abdellah, Y. Hussein and M. Hasanin. Anti-proliferative activities of metallic nanoparticles in an in vitro breast cancer model. Asian Pacific Journal of Cancer Prevention. 2015;16(14):6039-6046.
  • [43] E. S. Al-Sheddi, N. N. Farshori, M. M. Al-Oqail, S. M. Al-Massarani, Q. Saquib, R. Wahab, J. Musarrat, A. A. Al-Khedhairy and M. A. Siddiqui. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications. 2018;2018(1):9390784.
  • [44] B. Thiesen and A. Jordan. Clinical applications of magnetic nanoparticles for hyperthermia. International journal of hyperthermia. 2008;24(6):467-474.
  • [45] M. Ozdal and S. Gurkok. Recent advances in nanoparticles as antibacterial agent. ADMET and DMPK. 2022;10(2):115-129.
  • [46] C. Lei, N. Sun, H. Wu, Y. Zhao, C. Yu, B. J. Janani and A. Fakhri. Bio-photoelectrochemical degradation, and photocatalysis process by the fabrication of copper oxide/zinc cadmium sulfide heterojunction nanocomposites: Mechanism, microbial community and antifungal analysis. Chemosphere. 2022;308:136375.
  • [47] Y. N. Slavin, J. Asnis, U. O. Hńfeli and H. Bach. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of nanobiotechnology. 2017;15:1-20.
  • [48] B. E. Al-Dhubiab, A. B. Nair, R. Kumria, M. Attimarad and S. Harsha. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids and Surfaces B: Biointerfaces. 2015;136:878-884.
  • [49] Y.-y. Ren, H. Yang, T. Wang and C. Wang. Bio-synthesis of silver nanoparticles with antibacterial activity. Materials Chemistry and Physics. 2019;235:121746.
  • [50] Y. Huang, S. He, W. Cao, K. Cai and X.-J. Liang. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale. 2012;4(20):6135-6149.
  • [51] N. Lee and T. Hyeon. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews. 2012;41(7):2575-2589.
  • [52] Y. Patel, S. Saha, C. DiMarzio, D. O'Malley, D. Nagesha and S. Sridhar, editors. Metallic nanoparticles for biomedical imaging. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2009: IEEE.
  • [53] N. Siddharthan, G. Kalaivani, E. Poongothai, M. Arul and N. Hemalatha. Characterization of silver nanoparticles synthesized from catheranthus roseus (vinca rosea) plant leaf extract and their antibacterial activity. Int. J. Res. Anal. Rev. 2019;6:680-685.
  • [54] I. Sondi and B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 2004;275(1):177-182.
  • [55] R. W.-Y. Sun, R. Chen, N. P.-Y. Chung, C.-M. Ho, C.-L. S. Lin and C.-M. Che. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical communications. 2005(40):5059-5061.
  • [56] H. H. Lara, L. Ixtepan-Turrent, E. N. Garza-Treviño and C. Rodriguez-Padilla. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. Journal of nanobiotechnology. 2010;8:1-11.
  • [57] C. Lekutis, U. Olshevsky, C. Furman, M. Thali and J. Sodroski. Contribution of disulfide bonds in the carboxyl terminus of the human immunodeficiency virus type I gp120 glycoprotein to CD4 binding. JAIDS Journal of Acquired Immune Deficiency Syndromes. 1992;5(1):78-81.
  • [58] J. Haldar, A. K. Weight and A. M. Klibanov. Preparation, application and testing of permanent antibacterial and antiviral coatings. Nature Protocols. 2007;2(10):2412-2417.
  • [59] N. Van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg and S. I. Gerber. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England journal of medicine. 2020;382(16):1564-1567.
  • [60] Y. Khan, H. Sadia, S. Z. Ali Shah, M. N. Khan, A. A. Shah, N. Ullah, M. F. Ullah, H. Bibi, O. T. Bafakeeh and N. B. Khedher. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts. 2022;12(11):1386.
  • [61] N. M. Kulshreshtha, I. Jadhav, M. Dixit, N. Sinha, D. Shrivastava and P. S. Bisen. Nanostructures as antimicrobial therapeutics. Antimicrobial Nanoarchitectonics. Elsevier; 2017. p. 29-59.
  • [62] Y. Huang, P. Li, R. Zhao, L. Zhao, J. Liu, S. Peng, X. Fu, X. Wang, R. Luo and R. Wang. Silica nanoparticles: Biomedical applications and toxicity. Biomedicine & Pharmacotherapy. 2022;151:113053.
  • [63] H. A. Aljaerani, M. Samykano, R. Saidur, A. Pandey and K. Kadirgama. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: A critical review. Journal of Energy Storage. 2021;44:103280.
  • [64] A. Garzon-Roman, C. Zúñiga-Islas and D. H. Cuate-Gomez. Morphological, Structural, Optical and Electrical Characterization of TiO2 and Porous Silicon Structures Working as a Promising Breathing Detector. Silicon. 2024;16(1):61-71.
  • [65] M. Landmann, E. Rauls and W. Schmidt. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of physics: condensed matter. 2012;24(19):195503.
  • [66] Z. F. Yin, L. Wu, H. G. Yang and Y. H. Su. Recent progress in biomedical applications of titanium dioxide. Physical chemistry chemical physics. 2013;15(14):4844-4858.
  • [67] X. Chen and S. S. Mao. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews. 2007;107(7):2891-2959.
  • [68] J. Bonse, H. Sturm, D. Schmidt and W. Kautek. Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Applied Physics A. 2000;71(6):657-665. doi:10.1007/s003390000585.
  • [69] X. Liu and J. Fu. Electronic and elastic properties of the tetragonal anatase TiO2 structure from first principle calculation. Optik. 2020;206:164342. doi:https://doi.org/10.1016/j.ijleo.2020.164342.
  • [70] M. J. Gázquez, S. M. P. Moreno and J. P. Bolívar. 9 - TiO2 as white pigment and valorization of the waste coming from its production. In: F. Parrino and L. Palmisano, editors. Titanium Dioxide (Tio₂) and Its Applications. Elsevier; 2021. p. 311-335.
  • [71] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain and S. Tanemura. Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Applied Surface Science. 2003;212-213:255-263. doi:https://doi.org/10.1016/S0169-4332(03)00106-5.
  • [72] M. Mhadhbi, B. Avar and H. Abderazzak. Synthesis and Properties of Titanium Dioxide Nanoparticles. In: B. Bejaoui, editor. Updates on Titanium Dioxide. Rijeka: IntechOpen; 2023.
  • [73] N. A. Kadhim, M. B. Harouni and D. M. Hachim. Improving Solar Cell Performance with TiO₂/PVA Nanocoating and Natural Dyes from Acacia and Spirulina. 2025.
  • [74] X. Feng, X. Huang and X. Wang. Thermal conductivity and secondary porosity of single anatase TiO2 nanowire. Nanotechnology. 2012;23(18):185701. doi:10.1088/0957-4484/23/18/185701.
  • [75] A. Hunger, G. Carl, A. Gebhardt and C. Rüssel. Ultra-high thermal expansion glass–ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite. Journal of Non-Crystalline Solids. 2008;354(52):5402-5407. doi:https://doi.org/10.1016/j.jnoncrysol.2008.09.001.
  • [76] K. Möls, L. Aarik, H. Mändar, A. Kasikov, A. Niilisk, R. Rammula and J. Aarik. Influence of phase composition on optical properties of TiO2: Dependence of refractive index and band gap on formation of TiO2-II phase in thin films. Optical Materials. 2019;96:109335. doi:https://doi.org/10.1016/j.optmat.2019.109335.
  • [77] G. Neumark, Y. Gong and I. Kuskovsky. Doping aspects of Zn-based wide-band-gap semiconductors. Springer handbook of electronic and photonic materials. 2007:843.
  • [78] Z. Fan and J. G. Lu. Zinc oxide nanostructures: synthesis and properties. Journal of nanoscience and nanotechnology. 2005;5(10):1561-1573.
  • [79] M. Soosen Samuel, L. Bose and K. George. Optical properties of ZnO nanoparticles. Academic Review. 2009;16:57-65.
  • [80] Z. Lu, J. Gao, Q. He, J. Wu, D. Liang, H. Yang and R. Chen. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate polymers. 2017;156:460-469.
  • [81] R. Y. Pelgrift and A. J. Friedman. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced drug delivery reviews. 2013;65(13-14):1803-1815.
  • [82] K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai and W. Jiang. Synthesis of ultrafine γ-Al2O3 powders by pulsed laser ablation. Journal of Nanoparticle Research. 2000;2:75-83.
  • [83] G. Boisier, M. Raciulete, D. Samélor, N. Pébère, A. Gleizes and C. Vahlas. Electrochemical behavior of chemical vapor deposited protective aluminum oxide coatings on Ti6242 titanium alloy. Electrochemical and Solid-State Letters. 2008;11(10):C55.
  • [84] R. M. Cornell and U. Schwertmann. The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-vch Weinheim; 2003.
  • [85] C. Sun, J. Lee and M. Zhang. Nanoparticles in biomedical applications. Adv. Drug Deliv. Rev. 2008;60:1252-1265.
  • [86] Z. Chen, Y. Zhang, S. Zhang, J. Xia, J. Liu, K. Xu and N. Gu. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;316(1-3):210-216.
  • [87] A. S. Teja and P.-Y. Koh. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials. 2009;55(1-2):22-45.
  • [88] S. Hasany, I. Ahmed, J. Rajan and A. Rehman. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2012;2(6):148-158.
  • [89] M. Hrubý, S. K. Filippov and P. Štěpánek. Smart polymers in drug delivery systems on crossroads: Which way deserves following? European Polymer Journal. 2015;65:82-97.
  • [90] A. Senyei, K. Widder and G. Czerlinski. Magnetic guidance of drug‐carrying microspheres. Journal of Applied Physics. 1978;49(6):3578-3583.
  • [91] M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra and J. Santamaría. Magnetic nanoparticles for drug delivery. Nano today. 2007;2(3):22-32.
  • [92] M. Vallet-Regi, A. Rámila, R. Del Real and J. Pérez-Pariente. A new property of MCM-41: drug delivery system. Chemistry of materials. 2001;13(2):308-311.
  • [93] K. McNamara and S. A. Tofail. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Physical chemistry chemical physics. 2015;17(42):27981-27995.
  • [94] P. Khadka, J. Ro, H. Kim, I. Kim, J. T. Kim, H. Kim, J. M. Cho, G. Yun and J. Lee. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian journal of pharmaceutical sciences. 2014;9(6):304-316.
  • [95] M. Silindir Gunay, A. Yekta Ozer and S. Chalon. Drug delivery systems for imaging and therapy of Parkinson’s disease. Current neuropharmacology. 2016;14(4):376-391.
  • [96] H. Lu, J. Wang, T. Wang, J. Zhong, Y. Bao and H. Hao. Recent progress on nanostructures for drug delivery applications. Journal of Nanomaterials. 2016;2016(1):5762431.
  • [97] C. Kurzmann, J. Verheyen, M. Coto, R. V. Kumar, G. Divitini, H. A. Shokoohi-Tabrizi, P. Verheyen, R. J. Gentil De Moor, A. Moritz and H. Agis. In vitro evaluation of experimental light activated gels for tooth bleaching. Photochemical & Photobiological Sciences. 2019;18:1009-1019.
  • [98] G. Chen, Y. Wang, R. Xie and S. Gong. A review on core–shell structured unimolecular nanoparticles for biomedical applications. Advanced drug delivery reviews. 2018;130:58-72.
  • [99] N.-T. Chen, J. S. Souris, S.-H. Cheng, C.-H. Chu, Y.-C. Wang, V. Konda, U. Dougherty, M. Bissonnette, C.-Y. Mou and C.-T. Chen. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;13(6):1941-1952.
  • [100] R. Prieto-Montero, A. Katsumiti, M. P. Cajaraville, I. López-Arbeloa and V. Martínez-Martínez. Functionalized fluorescent silica nanoparticles for bioimaging of cancer cells. Sensors. 2020;20(19):5590.
  • [101] H. M. Xiong. ZnO nanoparticles applied to bioimaging and drug delivery. Advanced Materials. 2013;25(37):5329-5335.
  • [102] J. S. Weinstein, C. G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W. D. Rooney, L. L. Muldoon and E. A. Neuwelt. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. Journal of Cerebral Blood Flow & Metabolism. 2010;30(1):15-35.
  • [103] M. Javidi, M. Zarei, N. Naghavi, M. Mortazavi and A. H. Nejat. Zinc oxide nano-particles as sealer in endodontics and its sealing ability. Contemporary clinical dentistry. 2014;5(1):20-24.
  • [104] M. A. Karimi, R. S. HAGHDAR, R. ASADINIA, M. A. A. HATEFI, M. H. Mashhadizadeh, A. R. BEHJATMANESH, A. M. MAZLOUM, H. Kargar and S. M. Zebarjad. Synthesis and characterization of nanoparticles and nanocomposite of ZnO and MgO by sonochemical method and their application for zinc polycarboxylate dental cement preparation. 2011.
  • [105] S. Bonetta, S. Bonetta, F. Motta, A. Strini and E. Carraro. Photocatalytic bacterial inactivation by TiO 2-coated surfaces. Amb Express. 2013;3:1-8.
  • [106] S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani and L. Tayebi. Biomedical applications of TiO2 nanostructures: recent advances. International journal of nanomedicine. 2020:3447-3470.
  • [107] M. Fang, J.-H. Chen, X.-L. Xu, P.-H. Yang and H. F. Hildebrand. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. International journal of antimicrobial agents. 2006;27(6):513-517.
  • [108] I. M. Garcia, A. A. Balhaddad, M. S. Ibrahim, M. D. Weir, H. H. Xu, F. M. Collares and M. A. S. Melo. Antibacterial response of oral microcosm biofilm to nano-zinc oxide in adhesive resin. Dental Materials. 2021;37(3):e182-e193.
  • [109] L. Adams, D. Lyon, A. McIntosh and P. Alvarez. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Science and Technology. 2006;54(11-12):327-334.
  • [110] I. M. Garcia, V. C. B. Leitune, F. Visioli, S. M. W. Samuel and F. M. Collares. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. Journal of Dentistry. 2018;73:57-60.
  • [111] Y. Li, X. Hu, Y. Xia, Y. Ji, J. Ruan, M. D. Weir, X. Lin, Z. Nie, N. Gu and R. Masri. Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dental Materials. 2018;34(9):1310-1322.
  • [112] I. M. Garcia, A. A. Balhaddad, Y. Lan, A. Simionato, M. S. Ibrahim, M. D. Weir, R. Masri, H. H. Xu, F. M. Collares and M. A. S. Melo. Magnetic motion of superparamagnetic iron oxide nanoparticles-loaded dental adhesives: physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomaterialia. 2021;134:337-347.
  • [113] R. Singh, R. K. Shukla, A. Kumar, A. Dhawan and S. Singh. PEGylated nanoceria protect human epidermal cells from reactive oxygen species. Molecular Cytogenetics. 2014;7(Suppl 1):P78.
  • [114] J. Estelrich, M. J. Sánchez-Martín and M. A. Busquets. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International journal of nanomedicine. 2015:1727-1741.
  • [115] D. Yoo, J.-H. Lee, T.-H. Shin and J. Cheon. Theranostic magnetic nanoparticles. Accounts of chemical research. 2011;44(10):863-874.
  • [116] J. Gao and B. Xu. Applications of nanomaterials inside cells. Nano Today. 2009;4(1):37-51.
  • [117] X. T. Zheng, A. Ananthanarayanan, K. Q. Luo and P. Chen. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. small. 2015;11(14):1620-1636.
  • [118] W.-T. Liu. Nanoparticles and their biological and environmental applications. Journal of bioscience and bioengineering. 2006;102(1):1-7.
  • [119] A. P. Alivisatos, W. Gu and C. Larabell. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005;7(1):55-76.
  • [120] F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer and E. H. Sargent. Semiconductor quantum dots: Technological progress and future challenges. Science. 2021;373(6555):eaaz8541.
  • [121] R. D. Tilley and K. Yamamoto. The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Advanced Materials. 2006;18(15):2053-2056.
  • [122] M. Bacon, S. J. Bradley and T. Nann. Graphene quantum dots. Particle & Particle Systems Characterization. 2014;31(4):415-428.
  • [123] M. Tinkham. Metallic quantum dots. Philosophical Magazine B. 1999;79(9):1267-1280.
  • [124] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani and A. M. Seifalian. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717-4732.
  • [125] D. Morgan, K. Gong, A. M. Kelley and D. F. Kelley. Biexciton dynamics in alloy quantum dots. The Journal of Physical Chemistry C. 2017;121(33):18307-18316.
  • [126] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and T. Nann. Quantum dots versus organic dyes as fluorescent labels. Nature methods. 2008;5(9):763-775.
  • [127] E. Balci, F. Dagdelen, S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960.
  • [128] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • [129] E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • [130] I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45(1):343-349. doi:10.1007/s40995-020-01008-w.
  • [131] S. Mohammed, R. Qadır, M. Kök and I. Qader. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56. doi:10.54565/jphcfum.1018817.
  • [132] S. S. Mohammed, M. Kök, Z. D. Çirak, I. N. Qader, F. Dağdelen and H. S. A. Zardawi. The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys. Physics of Metals and Metallography. 2020;121(14):1411-1417. doi:10.1134/S0031918X2013013X.
  • [133] S. Mohammed, M. Kök, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130. doi:10.46460/ijiea.957722.
  • [134] S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61. doi:10.54565/jphcfum.1087881.
  • [135] S. S. Mohammed, B. Mohammed Ibrahım and E. Balci. A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2023;6(2):40-50. doi:10.54565/jphcfum.1357636.
  • [136] S. S. Mohammed, A. S. Karim, R. A. Qadir, M. Kök, F. Dağdelen, A. F. Wsw and A. M. Othman. The effect of heat treatment on crystal structure and thermodynamic properties of Cu–Al–Ni shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2025;150(5):3297-3304. doi:10.1007/s10973-025-14037-7.
  • [137] S. S. Mohammed and A. Hassan. The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review. Journal of Physical Chemistry and Functional Materials. 2024;7(2):101-111. doi:10.54565/jphcfum.1534504.
  • [138] F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. Jom. 2020;72:1664-1672.
  • [139] M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • [140] M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • [141] S. Mohammed, E. Balci, F. Dagdelen and S. Saydam. Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys. Physics of Metals and Metallography. 2022;123(14):1427-1435.
  • [142] S. S. Mohammed, M. Kök, İ. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
  • [143] S. S. Mohammed, R. A. Qadir, A. Hassan, A. Mohammedamin and A. H. Ahmed. The development of Biomaterials in Medical Applications: A review. Journal of Physical Chemistry and Functional Materials. 2023;6(2):27-39. doi:10.54565/jphcfum.1371619.
  • [144] S. S. Mohammed, E. Balci, H. A. Qadir, I. N. Qader, S. Saydam and F. Dagdelen. The exploring microstructural, caloric, and corrosion behavior of NiTiNb shape-memory alloys. Journal of Thermal Analysis and Calorimetry. 2022;147(21):11705-11713. doi:10.1007/s10973-022-11440-2.
  • [145] I. N. Qader, S. Mohammed and F. Dağdelen. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy. Gazi University Journal of Science. 2022;35(3):1129-1138. doi:10.35378/gujs.947678.
  • [146] S. S. Mohammed, R. A. Qadir, A. S. Karim and M. Kök. A review on the effect of alloying element on physical properties of Cu-Al-Mn Magnetic Shape Memory Alloy Material. Journal of Physical Chemistry and Functional Materials. 2024;7(2):112-123. doi:10.54565/jphcfum.1537050.
  • [147] J. Jellinek and E. B. Krissinel. Alloy clusters: structural classes, mixing, and phase changes. Theory of Atomic and Molecular Clusters: With a Glimpse at Experiments. Springer; 1999. p. 277-308.
  • [148] D. Wang and Y. Li. Bimetallic nanocrystals: liquid‐phase synthesis and catalytic applications. Advanced Materials. 2011;23(9):1044-1060.
  • [149] D. Nelli, A. Krishnadas, R. Ferrando and C. Minnai. One-step growth of core–shell (PtPd)@ Pt and (PtPd)@ Pd nanoparticles in the gas phase. The Journal of Physical Chemistry C. 2020;124(26):14338-14349.
  • [150] R. Ferrando. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. Journal of Physics: Condensed Matter. 2014;27(1):013003.
  • [151] X. Y. Liu, A. Wang, T. Zhang and C.-Y. Mou. Catalysis by gold: New insights into the support effect. Nano Today. 2013;8(4):403-416.
  • [152] F. Baletto, C. Mottet and R. Ferrando. Growth of three-shell onionlike bimetallic nanoparticles. Physical review letters. 2003;90(13):135504.
  • [153] R. Ferrando, J. Jellinek and R. L. Johnston. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews. 2008;108(3):845-910.
  • [154] S.-X. Liang, L.-C. Zhang, S. Reichenberger and S. Barcikowski. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Physical Chemistry Chemical Physics. 2021;23(19):11121-11154.
  • [155] C. Zong, M. Xu, L.-J. Xu, T. Wei, X. Ma, X.-S. Zheng, R. Hu and B. Ren. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews. 2018;118(10):4946-4980.
  • [156] I. Martynenko, A. Litvin, F. Purcell-Milton, A. Baranov, A. Fedorov and Y. Gun'Ko. Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B. 2017;5(33):6701-6727.
  • [157] H.-L. Jiang and Q. Xu. Recent progress in synergistic catalysis over heterometallic nanoparticles. Journal of Materials Chemistry. 2011;21(36):13705-13725.
  • [158] S. K. Nune, P. Gunda, P. K. Thallapally, Y.-Y. Lin, M. Laird Forrest and C. J. Berkland. Nanoparticles for biomedical imaging. Expert opinion on drug delivery. 2009;6(11):1175-1194.
  • [159] S.-W. Chou, C.-L. Liu, T.-M. Liu, Y.-F. Shen, L.-C. Kuo, C.-H. Wu, T.-Y. Hsieh, P.-C. Wu, M.-R. Tsai and C.-C. Yang. Infrared-active quadruple contrast FePt nanoparticles for multiple scale molecular imaging. Biomaterials. 2016;85:54-64.
  • [160] L. Chen, J. M. Chabu and Y. Liu. Bimetallic AgM (M= Pt, Pd, Au) nanostructures: synthesis and applications for surface-enhanced Raman scattering. RSC advances. 2013;3(13):4391-4399.
  • [161] H. Khodabandehloo, H. Zahednasab and A. A. Hafez. Nanocarriers usage for drug delivery in cancer therapy. Iranian journal of cancer prevention. 2016;9(2).
  • [162] Q. Zhou, L. Zhang and H. Wu. Nanomaterials for cancer therapies. Nanotechnology Reviews. 2017;6(5):473-496.
  • [163] T. Shanmugasundaram, M. Radhakrishnan, V. Gopikrishnan, K. Kadirvelu and R. Balagurunathan. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives. Nanoscale. 2017;9(43):16773-16790.
  • [164] P. Srinoi, Y.-T. Chen, V. Vittur, M. D. Marquez and T. R. Lee. Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications. Applied Sciences. 2018;8(7):1106.
  • [165] K. Mondal and A. Sharma. Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC advances. 2016;6(87):83589-83612.
  • [166] P. Rai, S. M. Majhi, Y.-T. Yu and J.-H. Lee. Noble metal@ metal oxide semiconductor core@ shell nano-architectures as a new platform for gas sensor applications. RSC advances. 2015;5(93):76229-76248.
  • [167] P. C. Mendes, Y. Song, W. Ma, T. Z. Gani, K. H. Lim, S. Kawi and S. M. Kozlov. Opportunities in the design of metal@ oxide core-shell nanoparticles. Advances in Physics: X. 2023;8(1):2175623.
  • [168] G. Dzhardimalieva, A. Pomogailo, N. Golubeva, S. Pomogailo, O. Roshchupkina, G. Novikov, A. Rozenberg and M. Leonowicz. Metal-containing nanoparticles with core-polymer shell structure. Colloid journal. 2011;73:458-466.
  • [169] A. D. Pomogailo and V. N. Kestelʹman. Metallopolymer nanocomposites. Springer Science & Business Media; 2006.
  • [170] K. Chatterjee, S. Sarkar, K. J. Rao and S. Paria. Core/shell nanoparticles in biomedical applications. Advances in colloid and interface science. 2014;209:8-39.
  • [171] M. A. Correa-Duarte, M. Giersig and L. M. Liz-Marzán. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chemical physics letters. 1998;286(5-6):497-501.
  • [172] S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin and Z. Guo. Multifunctional composite core–shell nanoparticles. Nanoscale. 2011;3(11):4474-4502.
  • [173] R. E. Rosensweig. Fluidmagnetic buoyancy. Aiaa Journal. 1966;4(10):1751-1758.
  • [174] T. Mokari, E. Rothenberg, I. Popov, R. Costi and U. Banin. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science. 2004;304(5678):1787-1790.
  • [175] J. Jackson and N. Halas. Silver nanoshells: variations in morphologies and optical properties. The Journal of Physical Chemistry B. 2001;105(14):2743-2746.
  • [176] R. Ghosh Chaudhuri and S. Paria. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews. 2012;112(4):2373-2433.
  • [177] J. Ye, B. Van de Broek, R. De Palma, W. Libaers, K. Clays, W. Van Roy, G. Borghs and G. Maes. Surface morphology changes on silica-coated gold colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;322(1-3):225-233.
  • [178] T. Liu, D. Li, Y. Zou, D. Yang, H. Li, Y. Wu and M. Jiang. Preparation of metal@ silica core–shell particle films by interfacial self-assembly. Journal of colloid and interface science. 2010;350(1):58-62.
  • [179] W. Han, L. Yi, N. Zhao, A. Tang, M. Gao and Z. Tang. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. Journal of the American Chemical Society. 2008;130(39):13152-13161.
  • [180] P. Sharma, S. Brown, G. Walter, S. Santra and B. Moudgil. Nanoparticles for bioimaging. Advances in colloid and interface science. 2006;123:471-485.
  • [181] A. Hagit, B. Soenke, B. Johannes and M. Shlomo. Synthesis and characterization of dual modality (CT/MRI) core− shell microparticles for embolization purposes. Biomacromolecules. 2010;11(6):1600-1607.
  • [182] F. Xie, M. S. Baker and E. M. Goldys. Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. The Journal of Physical Chemistry B. 2006;110(46):23085-23091.
  • [183] L. Chen and M. Subirade. Chitosan/β-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials. 2005;26(30):6041-6053.
  • [184] N. Sahiner, N. Pekel, P. Akkas and O. Güven. Amidoximation and characterization of new complexing hydrogels prepared from N-vinyl 2-pyrrolidone/acrylonitrile systems. 2000.
  • [185] S. Kayal and R. V. Ramanujan. Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@ Au) for magnetic drug targeting. Journal of nanoscience and nanotechnology. 2010;10(9):5527-5539.
There are 184 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Review Article
Authors

Ashan Ahmed 0009-0002-0661-9587

Asyar Khoshnaw 0009-0007-3126-3750

Safar Saeed Mohammed 0000-0002-2794-8024

Ahmad Hassan 0009-0008-4964-222X

Submission Date January 19, 2025
Acceptance Date August 29, 2025
Publication Date December 23, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Ahmed, A., Khoshnaw, A., Mohammed, S. S., Hassan, A. (2025). Nano Particles: Types and Their Biomedical Applications. Journal of Physical Chemistry and Functional Materials, 8(2), 114-137. https://doi.org/10.54565/jphcfum.1623212
AMA Ahmed A, Khoshnaw A, Mohammed SS, Hassan A. Nano Particles: Types and Their Biomedical Applications. Journal of Physical Chemistry and Functional Materials. December 2025;8(2):114-137. doi:10.54565/jphcfum.1623212
Chicago Ahmed, Ashan, Asyar Khoshnaw, Safar Saeed Mohammed, and Ahmad Hassan. “Nano Particles: Types and Their Biomedical Applications”. Journal of Physical Chemistry and Functional Materials 8, no. 2 (December 2025): 114-37. https://doi.org/10.54565/jphcfum.1623212.
EndNote Ahmed A, Khoshnaw A, Mohammed SS, Hassan A (December 1, 2025) Nano Particles: Types and Their Biomedical Applications. Journal of Physical Chemistry and Functional Materials 8 2 114–137.
IEEE A. Ahmed, A. Khoshnaw, S. S. Mohammed, and A. Hassan, “Nano Particles: Types and Their Biomedical Applications”, Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, pp. 114–137, 2025, doi: 10.54565/jphcfum.1623212.
ISNAD Ahmed, Ashan et al. “Nano Particles: Types and Their Biomedical Applications”. Journal of Physical Chemistry and Functional Materials 8/2 (December2025), 114-137. https://doi.org/10.54565/jphcfum.1623212.
JAMA Ahmed A, Khoshnaw A, Mohammed SS, Hassan A. Nano Particles: Types and Their Biomedical Applications. Journal of Physical Chemistry and Functional Materials. 2025;8:114–137.
MLA Ahmed, Ashan et al. “Nano Particles: Types and Their Biomedical Applications”. Journal of Physical Chemistry and Functional Materials, vol. 8, no. 2, 2025, pp. 114-37, doi:10.54565/jphcfum.1623212.
Vancouver Ahmed A, Khoshnaw A, Mohammed SS, Hassan A. Nano Particles: Types and Their Biomedical Applications. Journal of Physical Chemistry and Functional Materials. 2025;8(2):114-37.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum