Synthesis and Characterization of Silver- and Dysprosium-doped Zinc Oxide Structures
Year 2025,
Volume: 8 Issue: 2, 190 - 195, 23.12.2025
Tankut Ateş
,
Serhat Keser
,
Niyazi Bulut
,
Omer Kaygili
Abstract
In this study, silver (Ag) and dysprosium (Dy) doped zinc oxide (ZnO) samples were prepared using the wet chemical route, and characterized by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive X-ray (EDX) spectroscopy. For all the samples, a single phase of ZnO was observed. The addition of these dopants and their amounts affected the lattice parameters, bond lengths, and bond angles of the ZnO structure. The morphology was affected by the amount of these elements as used in this study. The EDX spectroscopy results supported the incorporation of these dopants into the ZnO lattice.
References
-
[1] T. F. Khan, M. Muhyuddin, S. Irum, M.A. Ali, S.W. Husain and M.A. Basit. Comparing the antioxidant and hemolytic activity of wet-chemically synthesized ZnO, ZnS, and ZnO/ZnS nanocomposite. Inorganic Chemistry Communications. 2025;174:113902. https://doi.org/10.1016/j.inoche.2025.113902.
-
[2] J.C. Anaya-Zavaleta, A.S. Ledezma-Pérez, C. Gallardo-Vega, J. Rodríguez-Hernández, C.N. Alvarado-Canché, P.E. García-Casillas, A. de León and A.L. Herrera-May. ZnO Nanoparticles by Hydrothermal Method: Synthesis and Characterization. Technologies. 2025;13(1):18. https://doi.org/10.3390/technologies13010018.
-
[3] B. B. Tripathy, J. Das, D.K. Mishra, R. Naik, S.N. Sarangi, P. Kumar and K. Satpathy. Microscopic and spectroscopic behavior of ZnO@ MWCNTs composite. Journal of Materials Science: Materials in Electronics. 2025;36(2):145. https://doi.org/10.1007/s10854-025-14213-3.
-
[4] S. Feng, S. Naim Katea, M. Ek, G. Westin and C.W. Tai. Atomistic Structure Investigation of Eu-Doped ZnO Nanosponges. Inorganic Chemistry. 2025;64(1):232–241. https://doi.org/10.1021/acs.inorgchem.4c04494.
-
[5] O. Gultepe and F. Atay. Corrosion behavior of ZnO: Al nanorod electrodes grown using ZnO nucleation centers and capping agent for energy applications. Applied Physics A. 2025;131(1):74. https://doi.org/10.1007/s00339-024-08111-4.
-
[6] T. Ahmad, B.M. Alotaibi, A.W. Alrowaily, H.A. Alyousef, A. Dahshan, A.M.A. Henaish and K. Ahmad. Development of ZnO/AlFeO3 composite via hydrothermal method as supercapacitor electrode. Journal of Sol-Gel Science and Technology. 2024;111: 309–323. https://doi.org/10.1007/s10971-024-06437-2.
-
[7] M.S. Rathore, H. Verma, S.B. Akhani, J. Pathak, U. Joshi, A. Joshi, C. Prakash, K. Kaur and A. Oza. Photoluminescence and antibacterial performance of sol–gel synthesized ZnO nanoparticles. Materials Advances. 2024;5(8):3472-3481. https://doi.org/10.1039/d3ma01096a.
-
[8] N. Ma, S. Ma, P. Ni, J. Guo, G. Fan, H. Jiang, J. Zhu, H. Wang and Y. Wang. Hydrothermal synthesized ZnO/SnWO4 nanocomposite for triethylamine sensing. Ceramics International. 2024;50(15):27305-27316. https://doi.org/10.1016/j.ceramint.2024.05.028.
-
[9] N.C. Luwang, D.K. Rana, M.K. Yadav, H. Sharma, A. Kumar, S. Kumar and Surbhi. Synthesis of ZnO nanostructure via CBD and solvothermal method using seed technique. Journal of Sol-Gel Science and Technology. 2024;112:728–737. https://doi.org/10.1007/s10971-024-06557-9.
-
[10] B.R. Khanam, M.K. Nidhi, H. Nagaraja, T. Manjunatha, B. Angadi, B.U. Reddy and K. Udaykumar. Physicochemical and therapeutic studies of microwave-synthesized ZnO and Cr-doped ZnO nanoparticles for biomedical applications. Inorganic Chemistry Communications. 2024;170:113454. https://doi.org/10.1016/j.inoche.2024.113454.
-
[11] C. Dunkel, F. Lüttich, H. Graaf, T. Oekermann and M. Wark. Investigation of the pulsed electrochemical deposition of ZnO. Electrochimica Acta. 2012;80:60-67. https://doi.org/10.1016/j.electacta.2012.06.113.
-
[12] Y. Li, B. Huang, Y. Liu, L. Lan and Z. Ji. Sb 2 Se 3/CdS/ZnO photodetectors based on physical vapor deposition for color imaging applications. Optics Letters. 2023;48(10):2583-2586. https://doi.org/10.1364/OL.487169.
-
[13] I.A. Ahmad and Y.H. Mohammed. Synthesis of ZnO nanowires by thermal chemical vapor deposition technique: Role of oxygen flow rate. Micro and Nanostructures. 2023;181:207628. https://doi.org/10.1016/j.micrna.2023.207628.
-
[14] J.M. Galdopórpora, S. Municoy, F. Ibarra, V. Puente, P.E. Antezana, M.I.A. Echazú and M.F. Desimone. A green synthesis method to tune the morphology of CuO and ZnO nanostructures. Current Nanoscience. 2023;19(2):186-193. https://doi.org/10.2174/1573413717666210921152709.
-
[15] S. Shit, T. Kamilya and P.K. Samanta. A novel chemical reduction method of growing ZnO nanocrystals and their optical property. Materials Letters. 2014;118:123-125. https://doi.org/10.1016/j.matlet.2013.12.069.
-
[16] N. Bulut, S. Keser, A. Zanchet, P.S. Zuchowski, T. Ates, İ. Kilic and O. Kaygili. A comprehensive study of cytosine-ZnO interactions: Theoretical and experimental insights. Physica B: Condensed Matter. 2025;697:416732. https://doi.org/10.1016/j.physb.2024.416732.
-
[17] T. Ates, C. Tatar and F. Yakuphanoglu. Preparation of semiconductor ZnO powders by sol–gel method: Humidity sensors. Sensors and Actuators A: Physical. 2013;190:153-160. https://doi.org/10.1016/j.sna.2012.11.031.
-
[18] L. Dejam, S. Kulesza, J. Sabbaghzadeh, A. Ghaderi, S. Solaymani, Ş. Țălu, M. Bramowicz, M. Amouamouha, A.h.S. shayegan and A.h. Sari. ZnO, Cu-doped ZnO, Al-doped ZnO and Cu-Al doped ZnO thin films: Advanced micro-morphology, crystalline structures and optical properties. Results in Physics. 2023;44:106209. https://doi.org/10.1016/j.rinp.2023.106209.
-
[19] M. Toma, R. Domokos, C. Lung, D. Marconi and M. Pop. Characterization of ZnO, Ga-Doped ZnO, and Nd-Ga-Doped ZnO Thin Films Synthesized by Radiofrequency Magnetron Sputtering. Analytical Letters. 2024;57(5):797-811. https://doi.org/10.1080/00032719.2023.2225199.
-
[20] N. Uzar and U. Abdulaziz. Investigation of structural, optical, electrical, thermoelectric and optoelectronic properties of undoped ZnO, Sb-doped ZnO and Sb–B co-doped ZnO thin films. Materials Chemistry and Physics. 2024;322:129519. https://doi.org/10.1016/j.matchemphys.2024.129519.
-
[21] A.H. Ajil, N.M. Ahmed, F.K. Yam, Z.U. Zango, I.A. Wadi, A.M. Binzowaimil, O. Aldaghri, K.H. Ibnaouf and H. Cabrera. Enhancing methyl orange degradation with laser-generated ZnO and Ce-doped ZnO nanoparticles. Applied Sciences. 2023;13(21):11857. https://doi.org/10.3390/app132111857.
-
[22] R.G.B. Madera, H. Nagai, T. Onuma, T., Honda, T., Yamaguchi and M.R. Vasquez Jr. Deposition of ZnO and Al-doped ZnO thin films using pressed-sintered targets. Physica B: Condensed Matter. 2025;698:416733. https://doi.org/10.1016/j.physb.2024.416733.
-
[23] AR. Sarkisian, N.R. Aghamalyan, M.N. Nersisyan, S.I. Petrosyan, A.R. Poghosyan, I.A. Ghambaryan, G.R. Badalyan, R.K. Hovsepyan and Y.A. Kafadaryan. On polaron stability in Ag-doped ZnO films. Applied Physics A. 2024;130(3):207. https://doi.org/10.1007/s00339-024-07324-x.
-
[24] H.E. Okur, N. Bulut, T. Ates and O. Kaygili. Structural and optical characterization of Sm-doped ZnO nanoparticles. Bulletin of Materials Science. 2019;42:199. https://doi.org/10.1007/s12034-019-1877-2.
-
[25] A.M. Saeedi, N.H. Alonizan, A.A. Alsaigh, L. Alaya, L., El Mir, M.Z. El-Readi and M. Hjiri. Antimicrobial Agent Based on Ca‐Doped ZnO Nanopowders. physica status solidi (a). 2023;220(18):2300162. https://doi.org/10.1002/pssa.202300162.
-
[26] S. Feng, S.N. Katea, M. Ek, G. Westin and C.W. Tai. Atomistic Structure Investigation of Eu-Doped ZnO Nanosponges. Inorganic Chemistry. 2025;64(1):232–241. https://doi.org/10.1021/acs.inorgchem.4c04494.
-
[27] A. Sedky, N. Afify, A. Almohammedi, E.M.M. Ibrahim and A.M. Ali. Structural, optical, photoluminescence and magnetic investigation of doped and Co-doped ZnO nanoparticles. Optical and Quantum Electronics. 2023;55(5):456. https://doi.org/10.1007/s11082-023-04718-8.
-
[28] V. Rajesh, N.N. Prabhu and B. Shivamurthy. Acetone vapor sensing characteristics of Cr-doped ZnO nanofibers. Cogent Engineering. 2024;11(1):2311090. https://doi.org/10.1080/23311916.2024.2311090.
-
[29] N. Chen, I. Ramzan, S. Li and C.J. Carmalt. Synthesis and Characterization of Optically Transparent and Electrically Conductive Mo-Doped ZnO, F-Doped ZnO, and Mo/F-Codoped ZnO Thin Films via Aerosol-Assisted Chemical Vapor Deposition. Crystal Growth & Design. 2024;24(24):10256-10266. https://doi.org/10.1021/acs.cgd.4c01238.
-
[30] A.M. Al-Gariaa, G.S. Elasala, E.H. Ismail, M.M. Khalil and I.M. El-Sewify. Photodegradation of antibacterial cefotaxime using Mn doped ZnO nanosphere. Inorganic Chemistry Communications. 2023;158:111434. https://doi.org/10.1016/j.inoche.2023.111434.
-
[31] T. Malaeru, C. Morarı, N. Nıcula, B. Sbarcea, V. Marınescu, A. Cucos, A., Moanta, C. Georgescu and C. Bancıu. Synthesis, characterization, antibacterial and antifungal properties of ZnO and Ag doped ZnO nanoparticles. Journal of Optoelectronics and Advanced Materials. 2024;26(1-2):64-73.
-
[32] M. Salem, A. Rached, S. Nasr, J. Salem, I. Massoudi, Y. Litaiem and M. Gaidi. Ag doping enhancement of photoelectrochemical performance of ZnO nanoparticles. The European Physical Journal Plus. 2023;138(8):746. https://doi.org/10.1140/epjp/s13360-023-04374-7.
-
[33] N. Sharma and P.P. Sahay. Solution combustion synthesis of Dy-doped ZnO nanoparticles: An investigation of their structural, optical and photoluminescence characteristics. Journal of Luminescence. 2023;257:119655. https://doi.org/10.1016/j.jlumin.2022.119655.
-
[34] S. Krishnaswamy, P. Panigrahi, A. Panigrahi and G.S. Nagarajan. Investigation of the optical properties of Dy doped ZnO/PVA thin film: White light emission for LED application. Results in Optics. 2025;18:100786. https://doi.org/10.1016/j.rio.2025.100786.
-
[35] Y. Jing, X. Luan, L. Cui, X. Lu, Y. Pan, Y. Jiang. Ag-doped ZnO nanocomposites for high-performance hydrogen sensing: Synergistic enhancement via structural and electronic modulation. International Journal of Hydrogen Energy. 2025;165:150839.
-
[36] B.D. Cullity. Elements of X-Ray Diffraction. (second ed.), Addison-Wesley Publ Co, Read (1978), pp. 277-279.
-
[37] M. Rozenberg, G. Shoham, I. Reva, R. Fausto. Low temperature FTIR spectroscopy and hydrogen bonding in cytosine polycrystals. Spectrochim. Acta. Part A. 2004;60:463-470. https://doi.org/10.1016/S1386-1425(03)00251-8.
-
[38] T. Ates, S. Keser, N. Bulut, O. Kaygili. Comprehensive structural characterization of chromium-doped zinc oxides. Rend. Fis. Acc. Lincei. 2025;36:677–686. https://doi.org/10.1007/s12210-025-01340-6.
-
[39] A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011;13:251-256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024.
-
[40] Nikita Sharma, PP Sahay. Solution combustion synthesis of Dy-doped ZnO nanoparticles: An investigation of their structural, optical and photoluminescence characteristics. Journal of Luminescence. 2023;257:119655. https://doi.org/10.1016/j.jlumin.2022.119655.
-
[41] S. Hamdi, H. Smaoui, S. Guermazi, G. Leroy, B. Duponchel. Enhancing the structural, optical and electrical conductivity properties of ZnO nanopowders through Dy doping. Inorganic Chemistry Communications. 2022;144:109819. https://doi.org/10.1016/j.inoche.2022.109819.