Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 1, 12 - 17, 19.07.2019

Öz

Kaynakça

  • 1. Montanaro, A., Quantum algorithms: an overview. npj Quantum Information, 2016. 2: p. 15023.
  • 2. QADER, I.N. and KOC, R., Simulation of Controlled Physical Quantum Gates by using Mathematica. International Journal of Computer Science and Network Security, 2014. 14(1): p. 59-65.
  • 3. Biamonte, J., et al., Quantum machine learning. Nature, 2017. 549(7671): p. 195.
  • 4. QADER, I.N., Physical Realization of Controlled Quantum Gates, in Engineering Physics. 2013, Gaziantep University.
  • 5. Abdullah, S.S., Simulation of Quantum Computers on Classical Computers by Using Mathematica, in Physics. 2012, Gaziantep University: Turkey.
  • 6. Alsina, D. and J.I. Latorre, Experimental test of Mermin inequalities on a five-qubit quantum computer. Physical Review A, 2016. 94(1): p. 012314.
  • 7. Behera, B.K., A. Banerjee, and P.K. Panigrahi, Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Information Processing, 2017. 16(12): p. 312.
  • 8. Kandala, A., et al., Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017. 549(7671): p. 242.
  • 9. Wolfram, S., Wolfram research. Inc., Mathematica, Version, 2013. 8: p. 23.
  • 10. Munoz, J.G. and F. Delgado. QUANTUM: A Wolfram Mathematica add-on for Dirac Bra-Ket Notation, Non-Commutative Algebra, and Simulation of Quantum Computing Circuits. in Journal of Physics: Conference Series. 2016. IOP Publishing.
  • 11. Tulsi, A., Faster quantum searching with almost any diffusion operator. Physical Review A, 2015. 91(5): p. 052307.
  • 12. Venegas-Andraca, S.E., Quantum walks: a comprehensive review. Quantum Information Processing, 2012. 11(5): p. 1015-1106.
  • 13. Khan, M.H., A recursive method for synthesizing quantum/reversible quaternary parallel adder/subtractor with look-ahead carry. Journal of Systems Architecture, 2008. 54(12): p. 1113-1121.
  • 14. Saeedi, M., M.S. Zamani, and M. Sedighi. Algebraic characterization of CNOT-based quantum circuits with its applications on logic synthesis. in 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007). 2007. IEEE.
  • 15. Goodman, D., A quantum circuit simulator based on decision diagrams. 2007, Southern Methodist University.
  • 16. Maity, S., et al. Design of an efficient quantum circuit simulator. in 2010 International Symposium on Electronic System Design. 2010. IEEE.
  • 17. Dirac, P.A.M. A new notation for quantum mechanics. in Mathematical Proceedings of the Cambridge Philosophical Society. 1939. Cambridge University Press.
  • 18. Deutsch, D. and R. Jozsa, Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992. 439(1907): p. 553-558.
  • 19. Steane, A., Quantum computing. Reports on Progress in Physics, 1998. 61(2): p. 117.
  • 20. Aaronson, S. and D. Gottesman, Improved simulation of stabilizer circuits. Physical Review A, 2004. 70(5): p. 052328.
  • 21. Nyman, P., Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer. 2008, School of Mathematics and System Engineering, Växjö University.
  • 22. Abdullah, S.S., Design and Implementation of a Tutorial Binary Adder/Subtractor, in Physics. 2007, Duhok University: Iraq.
  • 23. Gossett, P., Quantum carry-save arithmetic. arXiv preprint quant-ph/9808061, 1998.
  • 24. Draper, T.G., Addition on a quantum computer. arXiv preprint quant-ph/0008033, 2000.
  • 25. Fahdil, M.A., A.F. Al-Azawi, and S. Said, Operations algorithms on quantum computer. IJCSNS, 2010. 10(1): p. 85.
  • 26. Islam, M.S., et al., Realization of a Novel Fault Tolerant Reversible Full Adder Circuit in Nanotechnology. Int. Arab J. Inf. Technol., 2010. 7(3): p. 317-323.
  • 27. Haghparast, M., et al., Optimized reversible multiplier circuit. Journal of Circuits, Systems, and Computers, 2009. 18(02): p. 311-323.

Simulation of 4-Qubit Full-Adder Circuit by Mathematica

Yıl 2019, Cilt: 2 Sayı: 1, 12 - 17, 19.07.2019

Öz

A correct simulation
of a quantum circuit on a classical computer is more important because of their
future use. The main purpose of this work is to illustrate a full adder circuit
by using a standard Mathematica add-on package. The circuit can be constructed
by using CNOT-based quantum gates. The program provides a curriculum unit, to
generate the basic elements that make up quantum circuit.  This paper shows effective computational
design by using analogy of classical circuits. We presented an explicit example
to show efficiency of the 4 qubit full adder circuit on classical computer. The
method given in this paper can be used to design various quantum circuits.

Kaynakça

  • 1. Montanaro, A., Quantum algorithms: an overview. npj Quantum Information, 2016. 2: p. 15023.
  • 2. QADER, I.N. and KOC, R., Simulation of Controlled Physical Quantum Gates by using Mathematica. International Journal of Computer Science and Network Security, 2014. 14(1): p. 59-65.
  • 3. Biamonte, J., et al., Quantum machine learning. Nature, 2017. 549(7671): p. 195.
  • 4. QADER, I.N., Physical Realization of Controlled Quantum Gates, in Engineering Physics. 2013, Gaziantep University.
  • 5. Abdullah, S.S., Simulation of Quantum Computers on Classical Computers by Using Mathematica, in Physics. 2012, Gaziantep University: Turkey.
  • 6. Alsina, D. and J.I. Latorre, Experimental test of Mermin inequalities on a five-qubit quantum computer. Physical Review A, 2016. 94(1): p. 012314.
  • 7. Behera, B.K., A. Banerjee, and P.K. Panigrahi, Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Information Processing, 2017. 16(12): p. 312.
  • 8. Kandala, A., et al., Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017. 549(7671): p. 242.
  • 9. Wolfram, S., Wolfram research. Inc., Mathematica, Version, 2013. 8: p. 23.
  • 10. Munoz, J.G. and F. Delgado. QUANTUM: A Wolfram Mathematica add-on for Dirac Bra-Ket Notation, Non-Commutative Algebra, and Simulation of Quantum Computing Circuits. in Journal of Physics: Conference Series. 2016. IOP Publishing.
  • 11. Tulsi, A., Faster quantum searching with almost any diffusion operator. Physical Review A, 2015. 91(5): p. 052307.
  • 12. Venegas-Andraca, S.E., Quantum walks: a comprehensive review. Quantum Information Processing, 2012. 11(5): p. 1015-1106.
  • 13. Khan, M.H., A recursive method for synthesizing quantum/reversible quaternary parallel adder/subtractor with look-ahead carry. Journal of Systems Architecture, 2008. 54(12): p. 1113-1121.
  • 14. Saeedi, M., M.S. Zamani, and M. Sedighi. Algebraic characterization of CNOT-based quantum circuits with its applications on logic synthesis. in 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007). 2007. IEEE.
  • 15. Goodman, D., A quantum circuit simulator based on decision diagrams. 2007, Southern Methodist University.
  • 16. Maity, S., et al. Design of an efficient quantum circuit simulator. in 2010 International Symposium on Electronic System Design. 2010. IEEE.
  • 17. Dirac, P.A.M. A new notation for quantum mechanics. in Mathematical Proceedings of the Cambridge Philosophical Society. 1939. Cambridge University Press.
  • 18. Deutsch, D. and R. Jozsa, Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992. 439(1907): p. 553-558.
  • 19. Steane, A., Quantum computing. Reports on Progress in Physics, 1998. 61(2): p. 117.
  • 20. Aaronson, S. and D. Gottesman, Improved simulation of stabilizer circuits. Physical Review A, 2004. 70(5): p. 052328.
  • 21. Nyman, P., Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer. 2008, School of Mathematics and System Engineering, Växjö University.
  • 22. Abdullah, S.S., Design and Implementation of a Tutorial Binary Adder/Subtractor, in Physics. 2007, Duhok University: Iraq.
  • 23. Gossett, P., Quantum carry-save arithmetic. arXiv preprint quant-ph/9808061, 1998.
  • 24. Draper, T.G., Addition on a quantum computer. arXiv preprint quant-ph/0008033, 2000.
  • 25. Fahdil, M.A., A.F. Al-Azawi, and S. Said, Operations algorithms on quantum computer. IJCSNS, 2010. 10(1): p. 85.
  • 26. Islam, M.S., et al., Realization of a Novel Fault Tolerant Reversible Full Adder Circuit in Nanotechnology. Int. Arab J. Inf. Technol., 2010. 7(3): p. 317-323.
  • 27. Haghparast, M., et al., Optimized reversible multiplier circuit. Journal of Circuits, Systems, and Computers, 2009. 18(02): p. 311-323.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

Shakhawan Salih Abdullah 0000-0001-6468-3793

Yayımlanma Tarihi 19 Temmuz 2019
Gönderilme Tarihi 21 Mayıs 2019
Kabul Tarihi 24 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Abdullah, S. S. (2019). Simulation of 4-Qubit Full-Adder Circuit by Mathematica. Journal of Physical Chemistry and Functional Materials, 2(1), 12-17.
AMA Abdullah SS. Simulation of 4-Qubit Full-Adder Circuit by Mathematica. Journal of Physical Chemistry and Functional Materials. Temmuz 2019;2(1):12-17.
Chicago Abdullah, Shakhawan Salih. “Simulation of 4-Qubit Full-Adder Circuit by Mathematica”. Journal of Physical Chemistry and Functional Materials 2, sy. 1 (Temmuz 2019): 12-17.
EndNote Abdullah SS (01 Temmuz 2019) Simulation of 4-Qubit Full-Adder Circuit by Mathematica. Journal of Physical Chemistry and Functional Materials 2 1 12–17.
IEEE S. S. Abdullah, “Simulation of 4-Qubit Full-Adder Circuit by Mathematica”, Journal of Physical Chemistry and Functional Materials, c. 2, sy. 1, ss. 12–17, 2019.
ISNAD Abdullah, Shakhawan Salih. “Simulation of 4-Qubit Full-Adder Circuit by Mathematica”. Journal of Physical Chemistry and Functional Materials 2/1 (Temmuz 2019), 12-17.
JAMA Abdullah SS. Simulation of 4-Qubit Full-Adder Circuit by Mathematica. Journal of Physical Chemistry and Functional Materials. 2019;2:12–17.
MLA Abdullah, Shakhawan Salih. “Simulation of 4-Qubit Full-Adder Circuit by Mathematica”. Journal of Physical Chemistry and Functional Materials, c. 2, sy. 1, 2019, ss. 12-17.
Vancouver Abdullah SS. Simulation of 4-Qubit Full-Adder Circuit by Mathematica. Journal of Physical Chemistry and Functional Materials. 2019;2(1):12-7.