A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys
Year 2022,
Volume: 5 Issue: 1, 51 - 61, 09.07.2022
Safar Saeed Mohammed
,
Mediha Kök
,
Ibrahim Qader
,
Razaw Qadır
Abstract
Despite of many interesting behaviors and attractive properties of Shape memory alloys (SMAs), there are some drawbacks and limitations that prevent them from being used in technology. But there are some treatment techniques that can be used to improve the behaviors of shape memory alloys. Also, they can remove or reduce the limitations of SMAs. In this study both and mechanical treatment techniques (Ball- and Roller-Burnishing Treatment, Surface mechanical attrition treatment, and Laser shock peening) and heat treatment techniques (Annealing, Normalizing, Hardening, and Tempering) have been clarified. And the effect of both treatment techniques of the properties of shape memory alloys have been reviewed.
References
- [1] S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121(14):1411-1417.
- [2] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta additive into Cu84− xAl13Ni3 (wt%) shape memory alloy produced by induction melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44(4):1167-1175.
- [3] S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator systems. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
- [4] S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.1-1.
- [5] S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications.5(2):125-130.
- [6] S. Al-Qawabah. Investigation on the Effect of Roller Burnishing Process on the Surface Quality and Microhardness of Cu-Zn-Al Sma Alloys. Research Journal of Applied Sciences, Engineering and Technology. 2012;4(16):2682-2694.
- [7] T. Hu, C. Wen, G. Sun, S. Wu, C. Chu, Z. Wu, G. Li, J. Lu, K. Yeung and P. K. Chu. Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surface and coatings technology. 2010;205(2):506-510.
- [8] M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
- [9] I. N. Qader, M. Kök and F. Dağdelen. Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter. 2019;553:1-5.
- [10] C.-l. Chu, J.-C. Chung and P.-K. Chu. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique. Transactions of Nonferrous Metals Society of China. 2006;16(1):49-53.
- [11] Z. Wang, X. Zu, X. Feng and J. Dai. Effect of thermomechanical treatment on the two-way shape memory effect of NiTi alloy spring. Materials Letters. 2002;54(1):55-61.
- [12] J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
- [13] W. D. Callister and D. G. Rethwisch. Materials science and engineering: an introduction. John wiley & sons New York; 2007.
- [14] R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
[15] M. M. Kheirikhah, S. Rabiee and M. E. Edalat, editors. A review of shape memory alloy actuators in robotics. Robot Soccer World Cup; 2010: Springer.
- [16] W. Huang. Shape memory alloys and their application to actuators for deployable structures. 1998.
- [17] I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and thermal behavior of Cu84− xAl13Ni3Hfx shape memory alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45(1):343-349.
- [18] P. Kumar and D. Lagoudas. Introduction to shape memory alloys. Shape memory alloys. Springer; 2008. p. 1-51.
- [19] M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
- [20] S. S. MOHAMMED. PRODUCTION AND INVESTIGATION OF SOME PHYSICAL PROPERTIES OF CU-AL-NI-TA QUATERNARY SHAPE MEMORY ALLOY. 2021.
- [21] W. Huang, Z. Ding, C. Wang, J. Wei, Y. Zhao and H. Purnawali. Shape memory materials. Materials today. 2010;13(7-8):54-61.
- [22] F. Dagdelen, M. Aldalawi, M. Kok and I. Qader. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus. 2019;134(2):66.
- [23] K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki. Shape memory and superelastic alloys: Applications and technologies. Elsevier; 2011.
- [24] E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry.1-8.
- [25] N. Pandis and C. P. Bourauel. Nickel-Titanium (NiTi) Arch Wires: The Clinical Significance of Super Elasticity. Seminars in Orthodontics. 2010;16(4):249-257. doi:10.1053/j.sodo.2010.06.003.
- [26] F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72(4):1664-1672.
- [27] D. J. Fernandes, R. V. Peres, A. M. Mendes and C. N. Elias. Understanding the shape-memory alloys used in orthodontics. ISRN dentistry. 2011;2011.
- [28] Y. Liu, J. Van Humbeeck, R. Stalmans and L. Delaey. Some aspects of the properties of NiTi shape memory alloy. Journal of alloys and compounds. 1997;247(1-2):115-121.
- [29] F. Kayser and J. Patterson. Sir William Chandler Roberts-Austen—His role in the development of binary diagrams and modern physical metallurgy. Journal of phase equilibria. 1998;19(1):11.
- [30] M. Ahlers. The martensitic transformation. Revista Materia. 2004;9(3):169-183.
- [31] M. Zhu, T. Li, J. Liu and D. Yang. Microstructure characteristics of NiTi shape memory alloy obtained by explosive compact of elemental nickel and titanium powders. Acta metallurgica et materialia. 1991;39(7):1481-1487.
- [32] G. B. Kauffman and I. Mayo. The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator. 1997;2(2):1-21.
- [33] A. Ziólkowski. On analysis of DSC curves for characterization of intrinsic properties of NiTi shape memory alloys. Acta Physica Polonica-Series A General Physics.
2012;122(3):601.
- [34] W. J. Buehler, J. Gilfrich and R. Wiley. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics. 1963;34(5):1475-1477.
- [35] J. Van Humbeeck. Shape memory alloys with high transformation temperatures. Materials Research Bulletin. 2012;47(10):2966-2968.
- [36] K. Andrianesis, A. Tzes, E. Kolyvas and Y. Koveos. Development and Control of an Ultra-Lightweight Anthropomorphic Modular Finger Actuated by Shape Memory Alloy Wires.
- [37] H. Basak, M. Ozkan and I. Toktas. Experimental research and ANN modeling on the impact of the ball burnishing process on the mechanical properties of 5083 Al-Mg material. Kovove Mater. 2019;57:61-74.
- [38] D. Saini, M. Kapoor and C. Jawalkar. Parametric Analysis of Mild Steel Specimens Using Roller Burnishing Process. International Refereed Journal of Engineering and Science. 2017;6(3):45-51.
- [39] K. Lu and J. Lu. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering: A. 2004;375:38-45.
- [40] H. Du, Y. Wei, W. Lin, L. Hou, Z. Liu, Y. An and W. Yang. One way of surface alloying treatment on iron surface based on surface mechanical attrition treatment and heat treatment. Applied Surface Science. 2009;255(20):8660-8666.
- [41] B. Arifvianto and M. Mahardika. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Applied Surface Science. 2012;258(10):4538-4543.
- [42] K. Ding and L. Ye. Laser shock peening: performance and process simulation. Woodhead Publishing; 2006.
- [43] C. Ye, S. Suslov, X. Fei and G. J. Cheng. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing. Acta materialia. 2011;59(19):7219-7227.
- [44] R. Zhang, S. Mankoci, N. Walters, H. Gao, H. Zhang, X. Hou, H. Qin, Z. Ren, X. Zhou and G. L. Doll. Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel–titanium alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018.
- [45] A. Gujba and M. Medraj. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials. 2014;7(12):7925-7974.
- [46] Ş. N. Balo and N. Sel. Effects of thermal aging on transformation temperatures and some physical parameters of Cu–13.5 wt.% Al–4 wt.% Ni shape memory alloy. Thermochimica acta. 2012;536:1-5.
- [47] U. Sarı and T. Kırındı. Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Materials characterization. 2008;59(7):920-929.
- [48] S. H. Yoon and D. J. Yeo, editors. Phase transformations of nitinol shape memory alloy by varying with annealing heat treatment conditions. Smart Materials III; 2004: International Society for Optics and Photonics.
- [49] T. Cheng. High temperature shape memory effects in Ni-34. 6at% Al with improved ductility and toughness. Scripta Metallurgica et Materialia;(United States). 1994;31(9).
- [50] Y. Zhuang, H. Xue, Z. Chen, Z. Hu and J. He. Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Materials Science and Engineering: A. 2013;572:30-35.
- [51] Z. J. Hu and Y. T. Yang, editors. Effects of normalizing and tempering temperature on mechanical properties and microstructure of low alloy wear resistant steel casting. Advanced Materials Research; 2013: Trans Tech Publ.
- [52] S. Sultan, A. Shabu and I. Garash. The Effect of Heat Treatment on The Mechanical Properties and Microstructure of Martensitic Stainless Steel AISI 410.
- [53] G. Kamoshita, M. Kitada and T. Tsuchimoto. Method for hardening treatment of aluminum or aluminum-base alloy. Google Patents; 1974.
- [54] S. Nie, B. Gao, X. Wang, Z. Cao, E. Guo and T. Wang. The Influence of Holding Time on the Microstructure Evolution of Mg–10Zn–6.8 Gd–4Y Alloy during Semi-Solid Isothermal Heat Treatment. Metals. 2019;9(4):420.
- [55] S. Hashmi. Comprehensive materials finishing. Elsevier; 2016.
- [56] B. A. Tabatabae, F. Ashrafizadeh and A. M. Hassanli. Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings. ISIJ international. 2011;51(3):471-475.
Year 2022,
Volume: 5 Issue: 1, 51 - 61, 09.07.2022
Safar Saeed Mohammed
,
Mediha Kök
,
Ibrahim Qader
,
Razaw Qadır
References
- [1] S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121(14):1411-1417.
- [2] S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta additive into Cu84− xAl13Ni3 (wt%) shape memory alloy produced by induction melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44(4):1167-1175.
- [3] S. S. Mohammed, K. Mediha, I. N. Qader and F. Dağdelen. The developments of piezoelectric materials and shape memory alloys in robotic actuator systems. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030.
- [4] S. MOHAMMED, F. DAĞDELEN and I. N. QADER. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75. 5-Nb25. 5 (% at.) Alloy. Gazi University Journal of Science.1-1.
- [5] S. MOHAMMED, K. Mediha, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications.5(2):125-130.
- [6] S. Al-Qawabah. Investigation on the Effect of Roller Burnishing Process on the Surface Quality and Microhardness of Cu-Zn-Al Sma Alloys. Research Journal of Applied Sciences, Engineering and Technology. 2012;4(16):2682-2694.
- [7] T. Hu, C. Wen, G. Sun, S. Wu, C. Chu, Z. Wu, G. Li, J. Lu, K. Yeung and P. K. Chu. Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surface and coatings technology. 2010;205(2):506-510.
- [8] M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
- [9] I. N. Qader, M. Kök and F. Dağdelen. Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter. 2019;553:1-5.
- [10] C.-l. Chu, J.-C. Chung and P.-K. Chu. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique. Transactions of Nonferrous Metals Society of China. 2006;16(1):49-53.
- [11] Z. Wang, X. Zu, X. Feng and J. Dai. Effect of thermomechanical treatment on the two-way shape memory effect of NiTi alloy spring. Materials Letters. 2002;54(1):55-61.
- [12] J. M. Jani, M. Leary, A. Subic and M. A. Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56:1078-1113.
- [13] W. D. Callister and D. G. Rethwisch. Materials science and engineering: an introduction. John wiley & sons New York; 2007.
- [14] R. QADIR, S. MOHAMMED, K. Mediha and I. QADER. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56.
[15] M. M. Kheirikhah, S. Rabiee and M. E. Edalat, editors. A review of shape memory alloy actuators in robotics. Robot Soccer World Cup; 2010: Springer.
- [16] W. Huang. Shape memory alloys and their application to actuators for deployable structures. 1998.
- [17] I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and thermal behavior of Cu84− xAl13Ni3Hfx shape memory alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45(1):343-349.
- [18] P. Kumar and D. Lagoudas. Introduction to shape memory alloys. Shape memory alloys. Springer; 2008. p. 1-51.
- [19] M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
- [20] S. S. MOHAMMED. PRODUCTION AND INVESTIGATION OF SOME PHYSICAL PROPERTIES OF CU-AL-NI-TA QUATERNARY SHAPE MEMORY ALLOY. 2021.
- [21] W. Huang, Z. Ding, C. Wang, J. Wei, Y. Zhao and H. Purnawali. Shape memory materials. Materials today. 2010;13(7-8):54-61.
- [22] F. Dagdelen, M. Aldalawi, M. Kok and I. Qader. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus. 2019;134(2):66.
- [23] K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki. Shape memory and superelastic alloys: Applications and technologies. Elsevier; 2011.
- [24] E. Ercan, F. Dagdelen and I. Qader. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry.1-8.
- [25] N. Pandis and C. P. Bourauel. Nickel-Titanium (NiTi) Arch Wires: The Clinical Significance of Super Elasticity. Seminars in Orthodontics. 2010;16(4):249-257. doi:10.1053/j.sodo.2010.06.003.
- [26] F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72(4):1664-1672.
- [27] D. J. Fernandes, R. V. Peres, A. M. Mendes and C. N. Elias. Understanding the shape-memory alloys used in orthodontics. ISRN dentistry. 2011;2011.
- [28] Y. Liu, J. Van Humbeeck, R. Stalmans and L. Delaey. Some aspects of the properties of NiTi shape memory alloy. Journal of alloys and compounds. 1997;247(1-2):115-121.
- [29] F. Kayser and J. Patterson. Sir William Chandler Roberts-Austen—His role in the development of binary diagrams and modern physical metallurgy. Journal of phase equilibria. 1998;19(1):11.
- [30] M. Ahlers. The martensitic transformation. Revista Materia. 2004;9(3):169-183.
- [31] M. Zhu, T. Li, J. Liu and D. Yang. Microstructure characteristics of NiTi shape memory alloy obtained by explosive compact of elemental nickel and titanium powders. Acta metallurgica et materialia. 1991;39(7):1481-1487.
- [32] G. B. Kauffman and I. Mayo. The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator. 1997;2(2):1-21.
- [33] A. Ziólkowski. On analysis of DSC curves for characterization of intrinsic properties of NiTi shape memory alloys. Acta Physica Polonica-Series A General Physics.
2012;122(3):601.
- [34] W. J. Buehler, J. Gilfrich and R. Wiley. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics. 1963;34(5):1475-1477.
- [35] J. Van Humbeeck. Shape memory alloys with high transformation temperatures. Materials Research Bulletin. 2012;47(10):2966-2968.
- [36] K. Andrianesis, A. Tzes, E. Kolyvas and Y. Koveos. Development and Control of an Ultra-Lightweight Anthropomorphic Modular Finger Actuated by Shape Memory Alloy Wires.
- [37] H. Basak, M. Ozkan and I. Toktas. Experimental research and ANN modeling on the impact of the ball burnishing process on the mechanical properties of 5083 Al-Mg material. Kovove Mater. 2019;57:61-74.
- [38] D. Saini, M. Kapoor and C. Jawalkar. Parametric Analysis of Mild Steel Specimens Using Roller Burnishing Process. International Refereed Journal of Engineering and Science. 2017;6(3):45-51.
- [39] K. Lu and J. Lu. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering: A. 2004;375:38-45.
- [40] H. Du, Y. Wei, W. Lin, L. Hou, Z. Liu, Y. An and W. Yang. One way of surface alloying treatment on iron surface based on surface mechanical attrition treatment and heat treatment. Applied Surface Science. 2009;255(20):8660-8666.
- [41] B. Arifvianto and M. Mahardika. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Applied Surface Science. 2012;258(10):4538-4543.
- [42] K. Ding and L. Ye. Laser shock peening: performance and process simulation. Woodhead Publishing; 2006.
- [43] C. Ye, S. Suslov, X. Fei and G. J. Cheng. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing. Acta materialia. 2011;59(19):7219-7227.
- [44] R. Zhang, S. Mankoci, N. Walters, H. Gao, H. Zhang, X. Hou, H. Qin, Z. Ren, X. Zhou and G. L. Doll. Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel–titanium alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018.
- [45] A. Gujba and M. Medraj. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials. 2014;7(12):7925-7974.
- [46] Ş. N. Balo and N. Sel. Effects of thermal aging on transformation temperatures and some physical parameters of Cu–13.5 wt.% Al–4 wt.% Ni shape memory alloy. Thermochimica acta. 2012;536:1-5.
- [47] U. Sarı and T. Kırındı. Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Materials characterization. 2008;59(7):920-929.
- [48] S. H. Yoon and D. J. Yeo, editors. Phase transformations of nitinol shape memory alloy by varying with annealing heat treatment conditions. Smart Materials III; 2004: International Society for Optics and Photonics.
- [49] T. Cheng. High temperature shape memory effects in Ni-34. 6at% Al with improved ductility and toughness. Scripta Metallurgica et Materialia;(United States). 1994;31(9).
- [50] Y. Zhuang, H. Xue, Z. Chen, Z. Hu and J. He. Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Materials Science and Engineering: A. 2013;572:30-35.
- [51] Z. J. Hu and Y. T. Yang, editors. Effects of normalizing and tempering temperature on mechanical properties and microstructure of low alloy wear resistant steel casting. Advanced Materials Research; 2013: Trans Tech Publ.
- [52] S. Sultan, A. Shabu and I. Garash. The Effect of Heat Treatment on The Mechanical Properties and Microstructure of Martensitic Stainless Steel AISI 410.
- [53] G. Kamoshita, M. Kitada and T. Tsuchimoto. Method for hardening treatment of aluminum or aluminum-base alloy. Google Patents; 1974.
- [54] S. Nie, B. Gao, X. Wang, Z. Cao, E. Guo and T. Wang. The Influence of Holding Time on the Microstructure Evolution of Mg–10Zn–6.8 Gd–4Y Alloy during Semi-Solid Isothermal Heat Treatment. Metals. 2019;9(4):420.
- [55] S. Hashmi. Comprehensive materials finishing. Elsevier; 2016.
- [56] B. A. Tabatabae, F. Ashrafizadeh and A. M. Hassanli. Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings. ISIJ international. 2011;51(3):471-475.