Review Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 101 - 111, 18.12.2024
https://doi.org/10.54565/jphcfum.1534504

Abstract

References

  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and thermal behavior of Cu 84− x Al 13 Ni 3 Hf x shape memory alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • S. S. Mohammed, M. Kök, İ. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030. doi:10.31590/ejosat.653751.
  • S. Mohammed, R. Qadır, M. Kök and I. Qader. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56. doi:10.54565/jphcfum.1018817.
  • S. Mohammed, M. Kök, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130. doi:10.46460/ijiea.957722.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • E. Balci, F. Dagdelen, S. S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960. doi:10.1007/s10973-022-11697-7.
  • K. Oshima, S. Matsuda, M. Hosaka and S. Satokawa. Rapid removal of resin from a unidirectional carbon fiber reinforced plastic laminate by a high-voltage electrical treatment. Separation and Purification Technology. 2020;231:115885.
  • S. S. Mohammed, K. Mediha, I. QADER and R. QADIR. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • M. I. Al-Wakeel. Effect of mechanical treatment on the mineralogical constituents of Abu-Tartour phosphate ore, Egypt. International Journal of Mineral Processing. 2005;75(1-2):101-112.
  • M. Y. Khalid, R. Imran, Z. U. Arif, N. Akram, H. Arshad, A. Al Rashid and F. P. García Márquez. Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings. 2021;11(3):293.
  • S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • E. Vandersluis and C. Ravindran. Effects of solution heat treatment time on the as-quenched microstructure, hardness and electrical conductivity of B319 aluminum alloy. Journal of Alloys and Compounds. 2020;838:155577.
  • C. Feng and T. I. Khan. The effect of quenching medium on the wear behaviour of a Ti–6Al–4V alloy. Journal of materials science. 2008;43:788-792.
  • K.-E. Thelning. Steel and its heat treatment. Butterworth-heinemann; 2013.
  • A. N. Isfahany, H. Saghafian and G. Borhani. The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. Journal of Alloys and Compounds. 2011;509(9):3931-3936.
  • D. Fadare, T. G. Fadara and O. Akanbi. Effect of heat treatment on mechanical properties and microstructure of NST 37-2 steel. 2011.
  • J. Adamczyk and A. Grajcar. Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel. Journal of Achievements in Materials and Manufacturing Engineering. 2006;17(1-2):305.
  • C.-l. Chu, J.-C. Chung and P.-K. Chu. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique. Transactions of Nonferrous Metals Society of China. 2006;16(1):49-53.
  • Ş. N. Balo and N. Sel. Effects of thermal aging on transformation temperatures and some physical parameters of Cu–13.5 wt.% Al–4 wt.% Ni shape memory alloy. Thermochimica acta. 2012;536:1-5.
  • U. Sarı and T. Kırındı. Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Materials characterization. 2008;59(7):920-929.
  • S. S. Chhatre, A. Tuteja, W. Choi, A. Revaux, D. Smith, J. M. Mabry, G. H. McKinley and R. E. Cohen. Thermal annealing treatment to achieve switchable and reversible oleophobicity on fabrics. Langmuir. 2009;25(23):13625-13632.
  • A. Mishra, A. Saha and J. Maity. Development of high strength ductile eutectoid steel through cyclic heat treatment involving incomplete austenitization followed by forced air cooling. Materials characterization. 2016;114:277-288.
  • A. Rakhit. Heat treatment of gears: a practical guide for engineers. ASM international; 2000.
  • J. Liang, S. Nishida, M. Arai and N. Shigekawa. Improved electrical properties of nn and pn Si/SiC junctions with thermal annealing treatment. Journal of Applied Physics. 2016;120(3).
  • A. C. A. Fontes, L. Sopchenski, C. A. Laurindo, R. D. Torres, K. C. Popat and P. Soares. Annealing temperature effect on tribocorrosion and biocompatibility properties of TiO 2 nanotubes. Journal of Bio-and Tribo-Corrosion. 2020;6:1-12.
  • W.-Y. Li, C.-J. Li and H. Liao. Effect of annealing treatment on the microstructure and properties of cold-sprayed Cu coating. Journal of Thermal Spray Technology. 2006;15:206-211.
  • Z. Wang, X. Zu, X. Feng and J. Dai. Effect of thermomechanical treatment on the two-way shape memory effect of NiTi alloy spring. Materials Letters. 2002;54(1):55-61.
  • S. H. Yoon and D. J. Yeo, editors. Phase transformations of nitinol shape memory alloy by varying with annealing heat treatment conditions. Smart Materials III; 2004: International Society for Optics and Photonics.
  • T. Cheng. High temperature shape memory effects in Ni-34. 6at% Al with improved ductility and toughness. Scripta Metallurgica et Materialia;(United States). 1994;31(9).
  • Y. Zhuang, H. Xue, Z. Chen, Z. Hu and J. He. Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Materials Science and Engineering: A. 2013;572:30-35.
  • K. Masemola, P. Popoola and N. Malatji. The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic High entropy alloy. Journal of Materials Research and Technology. 2020;9(3):5241-5251.
  • O. Salman, C. Gammer, A. K. Chaubey, J. Eckert and S. Scudino. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science and Engineering: A. 2019;748:205-212.
  • J. M. Park, J. Moon, J. W. Bae, J. Jung, S. Lee and H. S. Kim. Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0. 5CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A. 2018;728:251-258.
  • C. Chen, X. Feng and Y. Shen. Effects of annealing treatment and pre-refinement of raw material on microstructures and properties of mechanically alloyed Cr–Al composite coatings on Ti–6Al–4V alloy. Materials characterization. 2016;120:97-108.
  • N. Zhang, W. Wang, X. Cao and J. Wu. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding. Materials & Design (1980-2015). 2015;65:1100-1109.
  • B. Deng, Y. Jiang, J. Gao and J. Li. Effect of annealing treatment on microstructure evolution and the associated corrosion behavior of a super-duplex stainless steel. Journal of Alloys and Compounds. 2010;493(1-2):461-464.
  • H. D. Manesh and A. K. Taheri. The effect of annealing treatment on mechanical properties of aluminum clad steel sheet. Materials & design. 2003;24(8):617-622.
  • W. Xiaochun and X. Kuangdi. Normalizing. The ECPH Encyclopedia of Mining and Metallurgy. Springer; 2023. p. 1-2.
  • J. Dossett and G. Totten. Normalizing of Steel. 2013.
  • S. Sultan, A. Shabu and I. Garash. The Effect of Heat Treatment on The Mechanical Properties and Microstructure of Martensitic Stainless Steel AISI 410.
  • Z. J. Hu and Y. T. Yang, editors. Effects of normalizing and tempering temperature on mechanical properties and microstructure of low alloy wear resistant steel casting. Advanced Materials Research; 2013: Trans Tech Publ.
  • D. R. Barbadikar, G. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A. Ballal, D. Peshwe, R. Paretkar, M. Nandagopal and M. Mathew. Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel. International Journal of Pressure Vessels and Piping. 2015;132:97-105.
  • S. N. Naik and S. M. Walley. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of materials science. 2020;55(7):2661-2681.
  • G. J. Sun, S. J. Wu and G. C. Su. Research on impact wear resistance of in situ reaction TiCp/Fe composite. Wear. 2010;269(3-4):285-290.
  • M. Gupta, F. Mohamed and E. Lavernia. The Effect of ceramic reinforcements during spray atomization and codeposition of metal matrix composites: part i. heat transfer. Metallurgical Transactions A. 1992;23:831-843.
  • V. da Trindade Filho, A. Guimaraes, J. d. C. Payao Filho and R. d. R. Paranhos. Normalizing heat treatment effect on low alloy steel weld metals. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2004;26:62-66.
  • R. Subbiah, M. Rahel, A. Sravika, R. Ambika, A. Srujana and E. Navya. Investigation on microstructure and mechanical properties of P91 alloy steel treated with normalizing process-a review. Materials Today: Proceedings. 2019;18:2265-2269.
  • X. Pan, J. Jiang, T. Wan, L. Liu, K. Zhang, J. Li, G. Yang and M. Zhang. Effect of High-Temperature Normalizing Heat Treatment on Interfacial Microstructure and Mechanical Properties of Rolled Titanium Steel Composite Plate. Journal of Materials Engineering and Performance. 2023:1-12.
  • Y. Hu, W. Mao, P. Yan and N. Li. Effect of Normalizing Treatment on Mechanical Properties of AISI 441 Stainless Steel Prepared by Investment Casting. Metals. 2021;11(3):474.
  • A. Akdemir, R. Kuş and M. Şimşir. Impact toughness and microstructure of continuous steel wire-reinforced cast iron composite. Materials Science and Engineering: A. 2009;516(1-2):119-125.
  • H.-w. Zhu, K. Xu, S. Qin, F.-r. Xiao and B. Liao. Effect of heat treatment on microstructure and properties of 1045 steel modified with (NbTi) C nanoparticles. Materials Science and Engineering: A. 2018;728:175-182.
  • O. Joseph, R. Leramo and O. Ojudun. Effect of heat treatment on microstructure and mechanical properties of SAE 1025 steel: Analysis by one-way ANOVA. Journal of Materials and Environmental Science. 2015;6(1):101-106.
  • R. Grange. The rapid heat treatment of steel. Metallurgical transactions. 1971;2:65-78.
  • B. C. Kandpal, D. Gupta, A. Kumar, A. K. Jaisal, A. K. Ranjan, A. Srivastava and P. Chaudhary. Effect of heat treatment on properties and microstructure of steels. Materials Today: Proceedings. 2021;44:199-205.
  • N. Bugliarello, B. George, D. Giessel, D. McCurdy, R. Perkins, S. Richardson and C. Zimmerman. Heat Treat Process for Gears. Industrial Heating. 1995.
  • A. Makarov, R. Savrai, N. Pozdejeva, S. Smirnov, D. Vichuzhanin, L. Korshunov and I. Y. Malygina. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surface and Coatings Technology. 2010;205(3):841-852.
  • M. Hofinger, M. Staudacher, M. Ognianov, C. Turk, H. Leitner and R. Schnitzer. Microstructural evolution of a dual hardening steel during heat treatment. Micron. 2019;120:48-56.
  • G. Kamoshita, M. Kitada and T. Tsuchimoto. Method for hardening treatment of aluminum or aluminum-base alloy. Google Patents; 1974.
  • S. Nie, B. Gao, X. Wang, Z. Cao, E. Guo and T. Wang. The Influence of Holding Time on the Microstructure Evolution of Mg–10Zn–6.8 Gd–4Y Alloy during Semi-Solid Isothermal Heat Treatment. Metals. 2019;9(4):420.
  • M. S. Htun, S. T. Kyaw and K. T. Lwin. Effect of heat treatment on microstructures and mechanical properties of spring steel. Journal of metals, materials and minerals. 2008;18(2):191-197.
  • S. Rajaram, T. Subbiah, P. K. Mahali and M. Thangaraj. Effect of Age-Hardening Temperature on Mechanical and Wear Behavior of Furnace-Cooled Al7075-Tungsten Carbide Composite. Materials. 2022;15(15):5344.
  • S. Doddapaneni, S. Sharma, G. Shankar, M. Shettar and A. Hegde. Effect of precipitation hardening treatment on hardness and tensile behaviour of stir cast LM4 hybrid composites through TEM and fractography analysis. Journal of Materials Research and Technology. 2023;23:1584-1598.
  • N. Tuncer, B. Tasdelen and G. Arslan. Effect of passivation and precipitation hardening on processing and mechanical properties of B4C–Al composites. Ceramics International. 2011;37(7):2861-2867.
  • V. Srivastava and M. Gupta. Impact of post hardening mechanism on self-healing assessment of AA2014 nitinol-based smart composites. Metals and Materials International. 2021;27:2666-2681.
  • R. Thompson, J. Dobbs and D. Mayo. The effect of heat treatment on microfissuring in alloy 718. Weld. J. 1986;65(11):299.
  • C. F. Tan and S. M. Radzai. Effect of hardness test on precipitation hardening aluminium alloy 6061-T6. Chiang Mai Journal of Science. 2009;36(3):276-286.
  • A. D. Isadare, B. Aremo, M. O. Adeoye, O. J. Olawale and M. D. Shittu. Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Materials Research. 2013;16:190-194.
  • J.-T. Liang, K.-C. Cheng and S.-H. Chen. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders. Journal of Alloys and Compounds. 2019;803:484-490.
  • V. Euser, A. Clarke and J. Speer. Rapid tempering: Opportunities and challenges. Journal of Materials Engineering and Performance. 2020;29:4155-4161.
  • S. Sackl, M. Zuber, H. Clemens and S. Primig. Induction tempering vs conventional tempering of a heat-treatable steel. Metallurgical and materials transactions a. 2016;47:3694-3702.
  • B. Qin, Z. Wang and Q. Sun. Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel. Materials characterization. 2008;59(8):1096-1100.
  • N. A. ÖZBEK and E. SARAÇ. Effects of tempering heat treatment temperatures on mechanical properties of carbon steels. Gazi Mühendislik Bilimleri Dergisi. 2021;7(1):17-25.
  • S. Hashmi. Comprehensive materials finishing. Elsevier; 2016.
  • B. A. Tabatabae, F. Ashrafizadeh and A. M. Hassanli. Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings. ISIJ international. 2011;51(3):471-475.
  • Y. Li, W. Li, N. Min, W. Liu and X. Jin. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels. Acta Materialia. 2017;139:96-108.
  • E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • D.-G. Lee, K. Lee and S. Lee. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation. Surface and Coatings Technology. 2006;201(3-4):1296-1301.
  • Y. Zhao, Z. Li, Y. Li, H. Chen, Z. Tang, Z. Yang, Y. Luo, C. Wu, Y. Liao and J. Wu. Effect of quenched-tempered heat treatment on the wear resistance mechanism of zirconia toughened alumina ceramic reinforced high chromium cast iron architecture composite. Journal of Manufacturing Processes. 2023;93:288-298.
  • C. Zhang, Y. Duan, H. Xiao, J. Hao, J. Lou and F. Zhang. Investigation on tempering process parameters of in-situ consolidation CF/PEEK thermoplastic composites. Journal of Manufacturing Processes. 2023;85:345-355.

The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review

Year 2024, Volume: 7 Issue: 2, 101 - 111, 18.12.2024
https://doi.org/10.54565/jphcfum.1534504

Abstract

Sometimes materials developed for use in technology have some shortcomings in that some of their properties need to be treated or further improved. There are several techniques to treat the shortcomings of materials, such as mechanical treatment, electrical treatment, surface treatment, chemical treatment, and heat treatment, each of these techniques has its characteristics, and each in some way attempts to fix the deficiencies of technological materials. This review focused on the heat treatment technique. There are four main types of heat treatment techniques: annealing, normalizing, hardening, and tempering. Each of them heats the materials and samples differently and cools them in a different way. Annealing, normalizing, hardening, and tempering have significant effects on improving the mechanical properties of materials including hardness, tensile strength, elongation, grain size, roughness and so on. This review attempts to analyze each of the four different heat treatment techniques, and the effect of each on the physical properties of solids is studied by reviewing the literature works.

References

  • F. Dagdelen, E. Balci, I. Qader, E. Ozen, M. Kok, M. Kanca, S. Abdullah and S. Mohammed. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM. 2020;72:1664-1672.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dağdelen and Y. Aydoğdu. Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science. 2020;44:1167-1175.
  • I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca and Y. Aydoğdu. Mechanical and thermal behavior of Cu 84− x Al 13 Ni 3 Hf x shape memory alloys. Iranian Journal of Science and Technology, Transactions A: Science. 2021;45:343-349.
  • S. Mohammed, M. Kök, Z. Çirak, I. Qader, F. Dağdelen and H. S. Zardawi. The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys. Physics of Metals and Metallography. 2020;121:1411-1417.
  • S. S. Mohammed, M. Kök, İ. N. Qader and F. Dağdelen. The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator. Avrupa Bilim ve Teknoloji Dergisi. 2019(17):1014-1030. doi:10.31590/ejosat.653751.
  • S. Mohammed, R. Qadır, M. Kök and I. Qader. A Review on NiTiCu Shape Memory Alloys: Manufacturing and Characterizations. Journal of Physical Chemistry and Functional Materials. 2021;4(2):49-56. doi:10.54565/jphcfum.1018817.
  • S. Mohammed, M. Kök, I. N. Qader and M. Coşkun. A Review Study on Biocompatible Improvements of NiTi-based Shape Memory Alloys. International Journal of Innovative Engineering Applications. 2021;5(2):125-130. doi:10.46460/ijiea.957722.
  • M. Kok, R. A. Qadir, S. S. Mohammed and I. N. Qader. Effect of transition metals (Zr and Hf) on microstructure, thermodynamic parameters, electrical resistivity, and magnetization of CuAlMn-based shape memory alloy. The European Physical Journal Plus. 2022;137(1):62.
  • E. Balci, F. Dagdelen, S. S. Mohammed and E. Ercan. Corrosion behavior and thermal cycle stability of TiNiTa shape memory alloy. Journal of Thermal Analysis and Calorimetry. 2022;147(24):14953-14960. doi:10.1007/s10973-022-11697-7.
  • K. Oshima, S. Matsuda, M. Hosaka and S. Satokawa. Rapid removal of resin from a unidirectional carbon fiber reinforced plastic laminate by a high-voltage electrical treatment. Separation and Purification Technology. 2020;231:115885.
  • S. S. Mohammed, K. Mediha, I. QADER and R. QADIR. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • M. I. Al-Wakeel. Effect of mechanical treatment on the mineralogical constituents of Abu-Tartour phosphate ore, Egypt. International Journal of Mineral Processing. 2005;75(1-2):101-112.
  • M. Y. Khalid, R. Imran, Z. U. Arif, N. Akram, H. Arshad, A. Al Rashid and F. P. García Márquez. Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings. 2021;11(3):293.
  • S. S. Mohammed, M. Kök, I. Qader and R. Qadır. A Review on the Effect of Mechanical and Thermal Treatment Techniques on Shape Memory Alloys. Journal of Physical Chemistry and Functional Materials. 2022;5(1):51-61.
  • E. Vandersluis and C. Ravindran. Effects of solution heat treatment time on the as-quenched microstructure, hardness and electrical conductivity of B319 aluminum alloy. Journal of Alloys and Compounds. 2020;838:155577.
  • C. Feng and T. I. Khan. The effect of quenching medium on the wear behaviour of a Ti–6Al–4V alloy. Journal of materials science. 2008;43:788-792.
  • K.-E. Thelning. Steel and its heat treatment. Butterworth-heinemann; 2013.
  • A. N. Isfahany, H. Saghafian and G. Borhani. The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. Journal of Alloys and Compounds. 2011;509(9):3931-3936.
  • D. Fadare, T. G. Fadara and O. Akanbi. Effect of heat treatment on mechanical properties and microstructure of NST 37-2 steel. 2011.
  • J. Adamczyk and A. Grajcar. Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel. Journal of Achievements in Materials and Manufacturing Engineering. 2006;17(1-2):305.
  • C.-l. Chu, J.-C. Chung and P.-K. Chu. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique. Transactions of Nonferrous Metals Society of China. 2006;16(1):49-53.
  • Ş. N. Balo and N. Sel. Effects of thermal aging on transformation temperatures and some physical parameters of Cu–13.5 wt.% Al–4 wt.% Ni shape memory alloy. Thermochimica acta. 2012;536:1-5.
  • U. Sarı and T. Kırındı. Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Materials characterization. 2008;59(7):920-929.
  • S. S. Chhatre, A. Tuteja, W. Choi, A. Revaux, D. Smith, J. M. Mabry, G. H. McKinley and R. E. Cohen. Thermal annealing treatment to achieve switchable and reversible oleophobicity on fabrics. Langmuir. 2009;25(23):13625-13632.
  • A. Mishra, A. Saha and J. Maity. Development of high strength ductile eutectoid steel through cyclic heat treatment involving incomplete austenitization followed by forced air cooling. Materials characterization. 2016;114:277-288.
  • A. Rakhit. Heat treatment of gears: a practical guide for engineers. ASM international; 2000.
  • J. Liang, S. Nishida, M. Arai and N. Shigekawa. Improved electrical properties of nn and pn Si/SiC junctions with thermal annealing treatment. Journal of Applied Physics. 2016;120(3).
  • A. C. A. Fontes, L. Sopchenski, C. A. Laurindo, R. D. Torres, K. C. Popat and P. Soares. Annealing temperature effect on tribocorrosion and biocompatibility properties of TiO 2 nanotubes. Journal of Bio-and Tribo-Corrosion. 2020;6:1-12.
  • W.-Y. Li, C.-J. Li and H. Liao. Effect of annealing treatment on the microstructure and properties of cold-sprayed Cu coating. Journal of Thermal Spray Technology. 2006;15:206-211.
  • Z. Wang, X. Zu, X. Feng and J. Dai. Effect of thermomechanical treatment on the two-way shape memory effect of NiTi alloy spring. Materials Letters. 2002;54(1):55-61.
  • S. H. Yoon and D. J. Yeo, editors. Phase transformations of nitinol shape memory alloy by varying with annealing heat treatment conditions. Smart Materials III; 2004: International Society for Optics and Photonics.
  • T. Cheng. High temperature shape memory effects in Ni-34. 6at% Al with improved ductility and toughness. Scripta Metallurgica et Materialia;(United States). 1994;31(9).
  • Y. Zhuang, H. Xue, Z. Chen, Z. Hu and J. He. Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Materials Science and Engineering: A. 2013;572:30-35.
  • K. Masemola, P. Popoola and N. Malatji. The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic High entropy alloy. Journal of Materials Research and Technology. 2020;9(3):5241-5251.
  • O. Salman, C. Gammer, A. K. Chaubey, J. Eckert and S. Scudino. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science and Engineering: A. 2019;748:205-212.
  • J. M. Park, J. Moon, J. W. Bae, J. Jung, S. Lee and H. S. Kim. Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0. 5CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A. 2018;728:251-258.
  • C. Chen, X. Feng and Y. Shen. Effects of annealing treatment and pre-refinement of raw material on microstructures and properties of mechanically alloyed Cr–Al composite coatings on Ti–6Al–4V alloy. Materials characterization. 2016;120:97-108.
  • N. Zhang, W. Wang, X. Cao and J. Wu. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding. Materials & Design (1980-2015). 2015;65:1100-1109.
  • B. Deng, Y. Jiang, J. Gao and J. Li. Effect of annealing treatment on microstructure evolution and the associated corrosion behavior of a super-duplex stainless steel. Journal of Alloys and Compounds. 2010;493(1-2):461-464.
  • H. D. Manesh and A. K. Taheri. The effect of annealing treatment on mechanical properties of aluminum clad steel sheet. Materials & design. 2003;24(8):617-622.
  • W. Xiaochun and X. Kuangdi. Normalizing. The ECPH Encyclopedia of Mining and Metallurgy. Springer; 2023. p. 1-2.
  • J. Dossett and G. Totten. Normalizing of Steel. 2013.
  • S. Sultan, A. Shabu and I. Garash. The Effect of Heat Treatment on The Mechanical Properties and Microstructure of Martensitic Stainless Steel AISI 410.
  • Z. J. Hu and Y. T. Yang, editors. Effects of normalizing and tempering temperature on mechanical properties and microstructure of low alloy wear resistant steel casting. Advanced Materials Research; 2013: Trans Tech Publ.
  • D. R. Barbadikar, G. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A. Ballal, D. Peshwe, R. Paretkar, M. Nandagopal and M. Mathew. Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel. International Journal of Pressure Vessels and Piping. 2015;132:97-105.
  • S. N. Naik and S. M. Walley. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of materials science. 2020;55(7):2661-2681.
  • G. J. Sun, S. J. Wu and G. C. Su. Research on impact wear resistance of in situ reaction TiCp/Fe composite. Wear. 2010;269(3-4):285-290.
  • M. Gupta, F. Mohamed and E. Lavernia. The Effect of ceramic reinforcements during spray atomization and codeposition of metal matrix composites: part i. heat transfer. Metallurgical Transactions A. 1992;23:831-843.
  • V. da Trindade Filho, A. Guimaraes, J. d. C. Payao Filho and R. d. R. Paranhos. Normalizing heat treatment effect on low alloy steel weld metals. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2004;26:62-66.
  • R. Subbiah, M. Rahel, A. Sravika, R. Ambika, A. Srujana and E. Navya. Investigation on microstructure and mechanical properties of P91 alloy steel treated with normalizing process-a review. Materials Today: Proceedings. 2019;18:2265-2269.
  • X. Pan, J. Jiang, T. Wan, L. Liu, K. Zhang, J. Li, G. Yang and M. Zhang. Effect of High-Temperature Normalizing Heat Treatment on Interfacial Microstructure and Mechanical Properties of Rolled Titanium Steel Composite Plate. Journal of Materials Engineering and Performance. 2023:1-12.
  • Y. Hu, W. Mao, P. Yan and N. Li. Effect of Normalizing Treatment on Mechanical Properties of AISI 441 Stainless Steel Prepared by Investment Casting. Metals. 2021;11(3):474.
  • A. Akdemir, R. Kuş and M. Şimşir. Impact toughness and microstructure of continuous steel wire-reinforced cast iron composite. Materials Science and Engineering: A. 2009;516(1-2):119-125.
  • H.-w. Zhu, K. Xu, S. Qin, F.-r. Xiao and B. Liao. Effect of heat treatment on microstructure and properties of 1045 steel modified with (NbTi) C nanoparticles. Materials Science and Engineering: A. 2018;728:175-182.
  • O. Joseph, R. Leramo and O. Ojudun. Effect of heat treatment on microstructure and mechanical properties of SAE 1025 steel: Analysis by one-way ANOVA. Journal of Materials and Environmental Science. 2015;6(1):101-106.
  • R. Grange. The rapid heat treatment of steel. Metallurgical transactions. 1971;2:65-78.
  • B. C. Kandpal, D. Gupta, A. Kumar, A. K. Jaisal, A. K. Ranjan, A. Srivastava and P. Chaudhary. Effect of heat treatment on properties and microstructure of steels. Materials Today: Proceedings. 2021;44:199-205.
  • N. Bugliarello, B. George, D. Giessel, D. McCurdy, R. Perkins, S. Richardson and C. Zimmerman. Heat Treat Process for Gears. Industrial Heating. 1995.
  • A. Makarov, R. Savrai, N. Pozdejeva, S. Smirnov, D. Vichuzhanin, L. Korshunov and I. Y. Malygina. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surface and Coatings Technology. 2010;205(3):841-852.
  • M. Hofinger, M. Staudacher, M. Ognianov, C. Turk, H. Leitner and R. Schnitzer. Microstructural evolution of a dual hardening steel during heat treatment. Micron. 2019;120:48-56.
  • G. Kamoshita, M. Kitada and T. Tsuchimoto. Method for hardening treatment of aluminum or aluminum-base alloy. Google Patents; 1974.
  • S. Nie, B. Gao, X. Wang, Z. Cao, E. Guo and T. Wang. The Influence of Holding Time on the Microstructure Evolution of Mg–10Zn–6.8 Gd–4Y Alloy during Semi-Solid Isothermal Heat Treatment. Metals. 2019;9(4):420.
  • M. S. Htun, S. T. Kyaw and K. T. Lwin. Effect of heat treatment on microstructures and mechanical properties of spring steel. Journal of metals, materials and minerals. 2008;18(2):191-197.
  • S. Rajaram, T. Subbiah, P. K. Mahali and M. Thangaraj. Effect of Age-Hardening Temperature on Mechanical and Wear Behavior of Furnace-Cooled Al7075-Tungsten Carbide Composite. Materials. 2022;15(15):5344.
  • S. Doddapaneni, S. Sharma, G. Shankar, M. Shettar and A. Hegde. Effect of precipitation hardening treatment on hardness and tensile behaviour of stir cast LM4 hybrid composites through TEM and fractography analysis. Journal of Materials Research and Technology. 2023;23:1584-1598.
  • N. Tuncer, B. Tasdelen and G. Arslan. Effect of passivation and precipitation hardening on processing and mechanical properties of B4C–Al composites. Ceramics International. 2011;37(7):2861-2867.
  • V. Srivastava and M. Gupta. Impact of post hardening mechanism on self-healing assessment of AA2014 nitinol-based smart composites. Metals and Materials International. 2021;27:2666-2681.
  • R. Thompson, J. Dobbs and D. Mayo. The effect of heat treatment on microfissuring in alloy 718. Weld. J. 1986;65(11):299.
  • C. F. Tan and S. M. Radzai. Effect of hardness test on precipitation hardening aluminium alloy 6061-T6. Chiang Mai Journal of Science. 2009;36(3):276-286.
  • A. D. Isadare, B. Aremo, M. O. Adeoye, O. J. Olawale and M. D. Shittu. Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Materials Research. 2013;16:190-194.
  • J.-T. Liang, K.-C. Cheng and S.-H. Chen. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders. Journal of Alloys and Compounds. 2019;803:484-490.
  • V. Euser, A. Clarke and J. Speer. Rapid tempering: Opportunities and challenges. Journal of Materials Engineering and Performance. 2020;29:4155-4161.
  • S. Sackl, M. Zuber, H. Clemens and S. Primig. Induction tempering vs conventional tempering of a heat-treatable steel. Metallurgical and materials transactions a. 2016;47:3694-3702.
  • B. Qin, Z. Wang and Q. Sun. Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel. Materials characterization. 2008;59(8):1096-1100.
  • N. A. ÖZBEK and E. SARAÇ. Effects of tempering heat treatment temperatures on mechanical properties of carbon steels. Gazi Mühendislik Bilimleri Dergisi. 2021;7(1):17-25.
  • S. Hashmi. Comprehensive materials finishing. Elsevier; 2016.
  • B. A. Tabatabae, F. Ashrafizadeh and A. M. Hassanli. Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings. ISIJ international. 2011;51(3):471-475.
  • Y. Li, W. Li, N. Min, W. Liu and X. Jin. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels. Acta Materialia. 2017;139:96-108.
  • E. Ö. Öner, G. Ateş, S. S. Mohammed, M. Kanca and M. Kök. Effect of Heat Treatment on Some Thermodynamics Analysis, Crystal and Microstructures of Cu-Al-X (X: Nb, Hf) Shape Memory Alloy. Journal of Physical Chemistry and Functional Materials.7(1):55-64.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. Öner, F. Dağdelen and Y. Aydogdu. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express. 2019;7(1):015702.
  • D.-G. Lee, K. Lee and S. Lee. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation. Surface and Coatings Technology. 2006;201(3-4):1296-1301.
  • Y. Zhao, Z. Li, Y. Li, H. Chen, Z. Tang, Z. Yang, Y. Luo, C. Wu, Y. Liao and J. Wu. Effect of quenched-tempered heat treatment on the wear resistance mechanism of zirconia toughened alumina ceramic reinforced high chromium cast iron architecture composite. Journal of Manufacturing Processes. 2023;93:288-298.
  • C. Zhang, Y. Duan, H. Xiao, J. Hao, J. Lou and F. Zhang. Investigation on tempering process parameters of in-situ consolidation CF/PEEK thermoplastic composites. Journal of Manufacturing Processes. 2023;85:345-355.
There are 83 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Safar Saeed Mohammed 0000-0002-2794-8024

Ahmad Hassan 0009-0004-0839-331X

Publication Date December 18, 2024
Submission Date August 16, 2024
Acceptance Date October 4, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Mohammed, S. S., & Hassan, A. (2024). The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review. Journal of Physical Chemistry and Functional Materials, 7(2), 101-111. https://doi.org/10.54565/jphcfum.1534504
AMA Mohammed SS, Hassan A. The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):101-111. doi:10.54565/jphcfum.1534504
Chicago Mohammed, Safar Saeed, and Ahmad Hassan. “The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A Review”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 101-11. https://doi.org/10.54565/jphcfum.1534504.
EndNote Mohammed SS, Hassan A (December 1, 2024) The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review. Journal of Physical Chemistry and Functional Materials 7 2 101–111.
IEEE S. S. Mohammed and A. Hassan, “The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 101–111, 2024, doi: 10.54565/jphcfum.1534504.
ISNAD Mohammed, Safar Saeed - Hassan, Ahmad. “The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A Review”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 101-111. https://doi.org/10.54565/jphcfum.1534504.
JAMA Mohammed SS, Hassan A. The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review. Journal of Physical Chemistry and Functional Materials. 2024;7:101–111.
MLA Mohammed, Safar Saeed and Ahmad Hassan. “The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A Review”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 101-1, doi:10.54565/jphcfum.1534504.
Vancouver Mohammed SS, Hassan A. The Effect of Thermal Treatment Techniques on Physical Properties of Alloy and Composites: A review. Journal of Physical Chemistry and Functional Materials. 2024;7(2):101-1.