Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 82 - 87, 18.12.2024
https://doi.org/10.54565/jphcfum.1544293

Abstract

References

  • R. Kumar, D. Shikha and S. K. Sinha. Antioxidant properties and thrombogenic evaluation of Copper-Manganese Alloy-Doped hydroxyapatite in comparison to un-doped hydroxyapatite. Inorganic Chemistry Communications. 2024;165: 112490. https://doi.org/10.1016/j.inoche.2024.112490.
  • F. Hosseini, F. Soltanolkottabi, M. M. Behrouzfar and H. Jafari. Powder mixture of hydroxyapatite and tetracalcium phosphate for hard tissue applications. Moroccan Journal of Chemistry. 2024;12(2):534-553. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.40173.
  • C. Tavares, T. Vieira, J. C. Silva, J. P. Borges and M. C. Lança. Bioactive Hydroxyapatite Aerogels with Piezoelectric Particles. Biomimetics. 2024;9(3):143. https://doi.org/10.3390/biomimetics9030143.
  • H. Inam, S. Sprio, M. Tavoni, Z. Abbas, F. Pupilli and A. Tampieri. Magnetic hydroxyapatite nanoparticles in regenerative medicine and nanomedicine. International Journal of Molecular Sciences. 2024;25(5):2809. https://doi.org/10.3390/ijms25052809.
  • T. Ates, S. V. Dorozhkin, O. Kaygili, M. Kom, I. Ercan, N Bulut, F. Firdolas, S. Keser, N. C. Gursoy, I. H. Ozercan, Y. Eroksuz, T. İnce. The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of β-tricalcium phosphate bioceramics. Ceramics International. 2019;45(17):22752-22758. https://doi.org/10.1016/j.ceramint.2019.07.314.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu, A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. https://doi.org/10.1016/j.matchemphys.2021.125444. D. Predoi, S. C. Ciobanu, S. L. Iconaru, Ş. Ţălu, L. Ghegoiu, R. S. Matos, H. D. da Fonseca Filho, R. Trusca. New Physico-Chemical Analysis of Magnesium-Doped Hydroxyapatite in Dextran Matrix Nanocomposites. Polymers. 2023;16(1):125. https://doi.org/10.3390/polym16010125.
  • H. G. Ateş, O. Kaygili, N. Bulut, F. Osmanlıoğlu, S. Keser, B. Tatar, B. K. Mahmood, T. Ates, F. Ercan, I. Ercan, B. Ates and İ. Özcan. Investigation of the structural, thermal, magnetic and cell viability properties of Ce/Sr co-doped hydroxyapatites. Journal of Molecular Structure. 2023;1283:135318. https://doi.org/10.1016/j.molstruc.2023.135318.
  • O. Kaygili, S. Keser, T. Ates, C. Tatar and F. Yakuphanoglu. Controlling of dielectric parameters of insulating hydroxyapatite by simulated body fluid. Materials Science and Engineering: C. 2015;46:118-124. https://doi.org/10.1016/j.msec.2014.10.024.
  • J. E. Song, N. Tripathy, D. H. Lee, J. H. Park and G. Khang. Quercetin inlaid silk fibroin/hydroxyapatite scaffold promotes enhanced osteogenesis. ACS applied materials & interfaces. 2018;10(39):32955-32964. https://doi.org/10.1021/acsami.8b08119.
  • L. Forte, P. Torricelli, E. Boanini, M. Gazzano, K. Rubini, M. Fini and A. Bigi. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast–osteoclast–endothelial cell co-culture study. Acta Biomaterialia. 2016;32:298-308. https://doi.org/10.1016/j.actbio.2015.12.013.
  • P. N. Silva-Holguín and S. Y. Reyes-López. Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response. 2020;18(3):1559325820951342. https://doi.org/10.1177/1559325820951342.
  • B. Tang, H. Yuan, L. Cheng, X. Zhou, X. Huang and J. Li. Control of hydroxyapatite crystal growth by gallic acid. Dental Materials Journal. 2015;34(1):108-113. https://doi.org/10.4012/dmj.2014-175.
  • S. Jerdioui, L. L. Elansari, N. Jaradat, S. Jodeh, K. Azzaoui, B. Hammouti, M. Lakrat, A. Tahani, C. Jama and F. Bentiss. Effects of gallic acid on the nanocrystalline hydroxyapatite formation using the neutralization process. Journal of Trace Elements and Minerals. 2022;2:100009. https://doi.org/10.1016/j.jtemin.2022.100009.
  • B. Sahin, T. Ates, I. K. Acari, A. A. Barzinjy, B. Ates, İ. Özcan, N. Bulut, S. Keser and O. Kaygili. Tuning electronic properties of hydroxyapatite through controlled doping using zinc, silver, and praseodymium: A density of states and experimental study. Ceramics International. 2024;50(5):7919-7929. https://doi.org/10.1016/j.ceramint.2023.12.120.
  • E. Landi, A. Tampieri, G. Celotti and S. Sprio. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society. 2000;20(14-15):2377-2387. https://doi.org/10.1016/S0955-2219(00)00154-0.
  • L. Ibrahimzade, O. Kaygili, S. Dundar, T. Ates, S. V. Dorozhkin, N. Bulut, S. Koytepe, F. Ercan, C. Gürses and A. H. Hssain. Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. Journal of Molecular Structure. 2021;1240:130557. https://doi.org/10.1016/j.molstruc.2021.130557.
  • F. Baldassarre, A. Altomare, E. Mesto, M. Lacalamita, B. Dida, A. Mele, E. M. Bauer, M. Puzone, E. Tempesta, D. Capelli, D. Siliqi and F. Capitelli. Structural Characterization of Low-Sr-Doped Hydroxyapatite Obtained by Solid-State Synthesis. Crystals. 2023;13(1):117. https://doi.org/10.3390/cryst13010117.
  • S. C. Ciobanu, S. L. Iconaru, M. V. Predoi, L. Ghegoiu, M. L. Badea, D. Predoi and G. Jiga. Physico‐Chemical and Antimicrobial Features of Magnesium Doped Hydroxyapatite Nanoparticles in Polymer Matrix. In Macromolecular Symposia. 2024;413(4):2400022. https://doi.org/10.1002/masy.202400022.
  • S. Joseph, K. Genasan, U. Anjaneyalu, A. Livingston, S. Samuel and S. Sasikumar. Biomineralization and mechanical studies of sodium substituted hydroxyapatite by a time‐saving combustion route. ChemistrySelect. 2023;8(41):e202302660. https://doi.org/10.1002/slct.202302660.
  • M. S. Hossain and S. Ahmed. FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: a comparison of vibrational motion to reflection. RSC advances. 2023;13(21):14625-14630. https://doi.org/10.1039/D3RA02580B.
  • O. Kaygili. Combustion synthesis and characterization of Mg-based Fe-doped biphasic calcium phosphate ceramics. Applied Physics A. 2019;125:431. https://doi.org/10.1007/s00339-019-2728-0.
  • A. A. Korkmaz, L. O. Ahmed, R. O. Kareem, H. Kebiroglu, T. Ates, N. Bulut, O. Kaygili and B. Ates. Theoretical and experimental characterization of Sn-based hydroxyapatites doped with Bi. Journal of the Australian Ceramic Society. 2022;58(3):803-815. https://doi.org/10.1007/s41779-022-00730-5.
  • U. Anjaneyulu, D. K. Pattanayak and U. Vijayalakshmi. Snail shell derived natural hydroxyapatite: effects on NIH-3T3 cells for orthopedic applications. Materials and Manufacturing Processes. 2016;31(2):206-216. https://doi.org/10.1080/10426914.2015.1070415.
  • I. Ercan, O. Kaygili, T. Kayed, N. Bulut, H. Tombuloğlu, T. İnce, F. Al Ahmari, H. Kebiroglu, T. Ates, A. Almofleh, F. Firdolas, O. Köysal, E. A. Al-Suhaimi, T. Ghrib, H. Sözeri, M. Yıldız and F. Ercan. Structural, spectroscopic, dielectric, and magnetic properties of Fe/Cu co-doped hydroxyapatites prepared by a wet-chemical method. Physica B: Condensed Matter. 2022;625:413486. https://doi.org/10.1016/j.physb.2021.413486.
  • F. Ercan, T. S. Kayed, O. Kaygili, N. Bulut, D. Almohazey, T. Ates, F. S. Al-Ahmari, I. Ay, T. Demirci, G. Kirat, T. Flemban, T. İnce, T. Ghrib, E. A. Al-Suhaimi and I. Ercan. Investigation of structural, spectroscopic, dielectric, magnetic, and in vitro biocompatibility properties of Sr/Ni co-doped hydroxyapatites. Ceramics International. 2022;48(18):26585-26607. https://doi.org/10.1016/j.ceramint.2022.05.354.
  • Y. Ş. Tekin and T. Ates. Comprehensive investigation of the electronic properties of zinc and cobalt doped hydroxyapatite. Journal of the Australian Ceramic Society. 2024;60:1219–1231. https://doi.org/10.1007/s41779-024-01024-8.
  • S. Mondal, A. Mondal, N. Mandal, B. Mondal, S. S. Mukhopadhyay, A. Dey and S. Singh. Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold. Bioprocess and Biosystems Engineering. 2014;37:1233–1240. https://doi.org/10.1007/s00449-013-1095-z.

Quercetin and Gallic Acid containing Hydroxyapatites: Synthesis and Characterization

Year 2024, Volume: 7 Issue: 2, 82 - 87, 18.12.2024
https://doi.org/10.54565/jphcfum.1544293

Abstract

In the present study, hydroxyapatite (HAp) samples containing gallic acid or quercetin were synthesized using the wet chemical method. The synthesized samples were examined to ascertain the impact of gallic acid and quercetin incorporation on the structural and thermal characteristics of HAp. The samples were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy. The XRD and FTIR results corroborate the formation of the HAp phase. It was observed that the addition of gallic acid and quercetin used in the synthesis had effects on the morphology, unit cell parameters, degree of crystallinity, and crystallite size. Additionally, the thermal analysis results indicate that gallic acid and quercetin exert a considerable influence on the thermal behavior of HAp.

References

  • R. Kumar, D. Shikha and S. K. Sinha. Antioxidant properties and thrombogenic evaluation of Copper-Manganese Alloy-Doped hydroxyapatite in comparison to un-doped hydroxyapatite. Inorganic Chemistry Communications. 2024;165: 112490. https://doi.org/10.1016/j.inoche.2024.112490.
  • F. Hosseini, F. Soltanolkottabi, M. M. Behrouzfar and H. Jafari. Powder mixture of hydroxyapatite and tetracalcium phosphate for hard tissue applications. Moroccan Journal of Chemistry. 2024;12(2):534-553. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.40173.
  • C. Tavares, T. Vieira, J. C. Silva, J. P. Borges and M. C. Lança. Bioactive Hydroxyapatite Aerogels with Piezoelectric Particles. Biomimetics. 2024;9(3):143. https://doi.org/10.3390/biomimetics9030143.
  • H. Inam, S. Sprio, M. Tavoni, Z. Abbas, F. Pupilli and A. Tampieri. Magnetic hydroxyapatite nanoparticles in regenerative medicine and nanomedicine. International Journal of Molecular Sciences. 2024;25(5):2809. https://doi.org/10.3390/ijms25052809.
  • T. Ates, S. V. Dorozhkin, O. Kaygili, M. Kom, I. Ercan, N Bulut, F. Firdolas, S. Keser, N. C. Gursoy, I. H. Ozercan, Y. Eroksuz, T. İnce. The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of β-tricalcium phosphate bioceramics. Ceramics International. 2019;45(17):22752-22758. https://doi.org/10.1016/j.ceramint.2019.07.314.
  • S. Acar, O. Kaygili, T. Ates, S. V. Dorozhkin, N. Bulut, B. Ates, S. Koytepe, F. Ercan, H. Kebiroglu, A. H. Hssain. Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics. 2022;276:125444. https://doi.org/10.1016/j.matchemphys.2021.125444. D. Predoi, S. C. Ciobanu, S. L. Iconaru, Ş. Ţălu, L. Ghegoiu, R. S. Matos, H. D. da Fonseca Filho, R. Trusca. New Physico-Chemical Analysis of Magnesium-Doped Hydroxyapatite in Dextran Matrix Nanocomposites. Polymers. 2023;16(1):125. https://doi.org/10.3390/polym16010125.
  • H. G. Ateş, O. Kaygili, N. Bulut, F. Osmanlıoğlu, S. Keser, B. Tatar, B. K. Mahmood, T. Ates, F. Ercan, I. Ercan, B. Ates and İ. Özcan. Investigation of the structural, thermal, magnetic and cell viability properties of Ce/Sr co-doped hydroxyapatites. Journal of Molecular Structure. 2023;1283:135318. https://doi.org/10.1016/j.molstruc.2023.135318.
  • O. Kaygili, S. Keser, T. Ates, C. Tatar and F. Yakuphanoglu. Controlling of dielectric parameters of insulating hydroxyapatite by simulated body fluid. Materials Science and Engineering: C. 2015;46:118-124. https://doi.org/10.1016/j.msec.2014.10.024.
  • J. E. Song, N. Tripathy, D. H. Lee, J. H. Park and G. Khang. Quercetin inlaid silk fibroin/hydroxyapatite scaffold promotes enhanced osteogenesis. ACS applied materials & interfaces. 2018;10(39):32955-32964. https://doi.org/10.1021/acsami.8b08119.
  • L. Forte, P. Torricelli, E. Boanini, M. Gazzano, K. Rubini, M. Fini and A. Bigi. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast–osteoclast–endothelial cell co-culture study. Acta Biomaterialia. 2016;32:298-308. https://doi.org/10.1016/j.actbio.2015.12.013.
  • P. N. Silva-Holguín and S. Y. Reyes-López. Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response. 2020;18(3):1559325820951342. https://doi.org/10.1177/1559325820951342.
  • B. Tang, H. Yuan, L. Cheng, X. Zhou, X. Huang and J. Li. Control of hydroxyapatite crystal growth by gallic acid. Dental Materials Journal. 2015;34(1):108-113. https://doi.org/10.4012/dmj.2014-175.
  • S. Jerdioui, L. L. Elansari, N. Jaradat, S. Jodeh, K. Azzaoui, B. Hammouti, M. Lakrat, A. Tahani, C. Jama and F. Bentiss. Effects of gallic acid on the nanocrystalline hydroxyapatite formation using the neutralization process. Journal of Trace Elements and Minerals. 2022;2:100009. https://doi.org/10.1016/j.jtemin.2022.100009.
  • B. Sahin, T. Ates, I. K. Acari, A. A. Barzinjy, B. Ates, İ. Özcan, N. Bulut, S. Keser and O. Kaygili. Tuning electronic properties of hydroxyapatite through controlled doping using zinc, silver, and praseodymium: A density of states and experimental study. Ceramics International. 2024;50(5):7919-7929. https://doi.org/10.1016/j.ceramint.2023.12.120.
  • E. Landi, A. Tampieri, G. Celotti and S. Sprio. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society. 2000;20(14-15):2377-2387. https://doi.org/10.1016/S0955-2219(00)00154-0.
  • L. Ibrahimzade, O. Kaygili, S. Dundar, T. Ates, S. V. Dorozhkin, N. Bulut, S. Koytepe, F. Ercan, C. Gürses and A. H. Hssain. Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. Journal of Molecular Structure. 2021;1240:130557. https://doi.org/10.1016/j.molstruc.2021.130557.
  • F. Baldassarre, A. Altomare, E. Mesto, M. Lacalamita, B. Dida, A. Mele, E. M. Bauer, M. Puzone, E. Tempesta, D. Capelli, D. Siliqi and F. Capitelli. Structural Characterization of Low-Sr-Doped Hydroxyapatite Obtained by Solid-State Synthesis. Crystals. 2023;13(1):117. https://doi.org/10.3390/cryst13010117.
  • S. C. Ciobanu, S. L. Iconaru, M. V. Predoi, L. Ghegoiu, M. L. Badea, D. Predoi and G. Jiga. Physico‐Chemical and Antimicrobial Features of Magnesium Doped Hydroxyapatite Nanoparticles in Polymer Matrix. In Macromolecular Symposia. 2024;413(4):2400022. https://doi.org/10.1002/masy.202400022.
  • S. Joseph, K. Genasan, U. Anjaneyalu, A. Livingston, S. Samuel and S. Sasikumar. Biomineralization and mechanical studies of sodium substituted hydroxyapatite by a time‐saving combustion route. ChemistrySelect. 2023;8(41):e202302660. https://doi.org/10.1002/slct.202302660.
  • M. S. Hossain and S. Ahmed. FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: a comparison of vibrational motion to reflection. RSC advances. 2023;13(21):14625-14630. https://doi.org/10.1039/D3RA02580B.
  • O. Kaygili. Combustion synthesis and characterization of Mg-based Fe-doped biphasic calcium phosphate ceramics. Applied Physics A. 2019;125:431. https://doi.org/10.1007/s00339-019-2728-0.
  • A. A. Korkmaz, L. O. Ahmed, R. O. Kareem, H. Kebiroglu, T. Ates, N. Bulut, O. Kaygili and B. Ates. Theoretical and experimental characterization of Sn-based hydroxyapatites doped with Bi. Journal of the Australian Ceramic Society. 2022;58(3):803-815. https://doi.org/10.1007/s41779-022-00730-5.
  • U. Anjaneyulu, D. K. Pattanayak and U. Vijayalakshmi. Snail shell derived natural hydroxyapatite: effects on NIH-3T3 cells for orthopedic applications. Materials and Manufacturing Processes. 2016;31(2):206-216. https://doi.org/10.1080/10426914.2015.1070415.
  • I. Ercan, O. Kaygili, T. Kayed, N. Bulut, H. Tombuloğlu, T. İnce, F. Al Ahmari, H. Kebiroglu, T. Ates, A. Almofleh, F. Firdolas, O. Köysal, E. A. Al-Suhaimi, T. Ghrib, H. Sözeri, M. Yıldız and F. Ercan. Structural, spectroscopic, dielectric, and magnetic properties of Fe/Cu co-doped hydroxyapatites prepared by a wet-chemical method. Physica B: Condensed Matter. 2022;625:413486. https://doi.org/10.1016/j.physb.2021.413486.
  • F. Ercan, T. S. Kayed, O. Kaygili, N. Bulut, D. Almohazey, T. Ates, F. S. Al-Ahmari, I. Ay, T. Demirci, G. Kirat, T. Flemban, T. İnce, T. Ghrib, E. A. Al-Suhaimi and I. Ercan. Investigation of structural, spectroscopic, dielectric, magnetic, and in vitro biocompatibility properties of Sr/Ni co-doped hydroxyapatites. Ceramics International. 2022;48(18):26585-26607. https://doi.org/10.1016/j.ceramint.2022.05.354.
  • Y. Ş. Tekin and T. Ates. Comprehensive investigation of the electronic properties of zinc and cobalt doped hydroxyapatite. Journal of the Australian Ceramic Society. 2024;60:1219–1231. https://doi.org/10.1007/s41779-024-01024-8.
  • S. Mondal, A. Mondal, N. Mandal, B. Mondal, S. S. Mukhopadhyay, A. Dey and S. Singh. Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold. Bioprocess and Biosystems Engineering. 2014;37:1233–1240. https://doi.org/10.1007/s00449-013-1095-z.
There are 27 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Tankut Ateş 0000-0002-4519-2953

Serhat Keser 0000-0002-9678-1053

Süleyman Köytepe 0000-0002-4788-278X

Niyazi Bulut 0000-0003-2863-7700

Omer Kaygılı 0000-0002-2321-1455

Publication Date December 18, 2024
Submission Date September 5, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Ateş, T., Keser, S., Köytepe, S., Bulut, N., et al. (2024). Quercetin and Gallic Acid containing Hydroxyapatites: Synthesis and Characterization. Journal of Physical Chemistry and Functional Materials, 7(2), 82-87. https://doi.org/10.54565/jphcfum.1544293
AMA Ateş T, Keser S, Köytepe S, Bulut N, Kaygılı O. Quercetin and Gallic Acid containing Hydroxyapatites: Synthesis and Characterization. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):82-87. doi:10.54565/jphcfum.1544293
Chicago Ateş, Tankut, Serhat Keser, Süleyman Köytepe, Niyazi Bulut, and Omer Kaygılı. “Quercetin and Gallic Acid Containing Hydroxyapatites: Synthesis and Characterization”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 82-87. https://doi.org/10.54565/jphcfum.1544293.
EndNote Ateş T, Keser S, Köytepe S, Bulut N, Kaygılı O (December 1, 2024) Quercetin and Gallic Acid containing Hydroxyapatites: Synthesis and Characterization. Journal of Physical Chemistry and Functional Materials 7 2 82–87.
IEEE T. Ateş, S. Keser, S. Köytepe, N. Bulut, and O. Kaygılı, “Quercetin and Gallic Acid containing Hydroxyapatites: Synthesis and Characterization”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 82–87, 2024, doi: 10.54565/jphcfum.1544293.
ISNAD Ateş, Tankut et al. “Quercetin and Gallic Acid Containing Hydroxyapatites: Synthesis and Characterization”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 82-87. https://doi.org/10.54565/jphcfum.1544293.
JAMA Ateş T, Keser S, Köytepe S, Bulut N, Kaygılı O. Quercetin and Gallic Acid containing Hydroxyapatites: Synthesis and Characterization. Journal of Physical Chemistry and Functional Materials. 2024;7:82–87.
MLA Ateş, Tankut et al. “Quercetin and Gallic Acid Containing Hydroxyapatites: Synthesis and Characterization”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 82-87, doi:10.54565/jphcfum.1544293.
Vancouver Ateş T, Keser S, Köytepe S, Bulut N, Kaygılı O. Quercetin and Gallic Acid containing Hydroxyapatites: Synthesis and Characterization. Journal of Physical Chemistry and Functional Materials. 2024;7(2):82-7.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please contact nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest updates in physical chemistry and functional materials research. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.