Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 169 - 179, 18.12.2024
https://doi.org/10.54565/jphcfum.1588037

Abstract

Project Number

TUBITAK 2209/A. Project number: 1919B012217701

References

  • T.C. Kalkınma Bakanlığı Özel İhtisas Komisyonu Raporu, “On Birinci Kalkınma Planı (2019-2023) Su Kaynakları Yöneti̇mi̇ ve Güvenli̇ği̇,” p. 110, 2018.
  • D. K. Enstitüsü, “2040 Yılında En Çok Su Sıkıntısı Çekecek Ülkeler,” 2022.
  • Ç. C. Dilcan, G. Çapar, A. Korkmaz, Ö. İiritaş, Y. Karaaslan, and B. Selek, “İçme Suyu Şebekeleri̇nde Görülen Su Kayıplarının Dünyada ve Ülkemi̇zdeki̇ Durumu,” Kalkınmada Anahtar Veriml. Dergisi, T.C. Sanayi̇ ve Teknol. Bakanl. Aylık Yayın Organı, vol. 30, no. 354, pp. 10–18, 2018.
  • D. Karakaya and Z. F. Toprak, “İçme Suyu Şebekelerindeki Su Kayıplarının ZFT Classification Water Losses in Water Distribution Networks Using ZFT Algorithm,” pp. 22–30, 2018.
  • B. Ulusal and B. Raporuna, “İçme suyu dağitim si̇stemleri̇ndeki̇ kayiplar ve prowat projesi̇,” pp. 1–8, 2007.
  • S. Kartakis, W. Yu, R. Akhavan, and J. A. McCann, “Adaptive edge analytics for distributed networked control of water systems,” Proc. - 2016 IEEE 1st Int. Conf. Internet-of-Things Des. Implementation, IoTDI 2016, pp. 72–82, 2016, doi: 10.1109/IoTDI.2015.34
  • M. I. Mohd Ismail et al., “A review of vibration detection methods using accelerometer sensors for water pipeline leakage,” IEEE Access, vol. 7, pp. 51965–51981, 2019, doi: 10.1109/ACCESS.2019.2896302
  • F. Karray, A. Garcia-Ortiz, M. W. Jmal, A. M. Obeid, and M. Abid, “EARNPIPE: A Testbed for Smart Water Pipeline Monitoring Using Wireless Sensor Network,” Procedia Comput. Sci., vol. 96, pp. 285–294, 2016, doi: 10.1016/j.procs.2016.08.141
  • I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, “PIPENETa wireless sensor network for pipeline monitoring,” IPSN 2007 Proc. Sixth Int. Symp. Inf. Process. Sens. Networks, pp. 264–273, 2007, doi: 10.1145/1236360.1236396
  • A. M. Sadeghioon, N. Metje, D. N. Chapman, and C. J. Anthony, “SmartPipes: Smart wireless sensor networks for leak detection in water pipelines,” J. Sens. Actuator Networks, vol. 3, no. 1, pp. 64–78, 2014, doi: 10.3390/jsan3010064
  • M. Nicola, C. Nicola, A. Vintilă, I. Hurezeanu, and M. Du, “Pipeline Leakage Detection by Means of Acoustic Emission Technique Using Cross-Correlation Function,” J. Mech. Eng. Autom., vol. 8, no. 2, pp. 59–67, 2018, doi: 10.5923/j.jmea.20180802.03
  • K. Marmarokopos, D. Doukakis, G. Frantziskonis, and M. Avlonitis, “Leak detection in plastic water supply pipes with a high signal-to-noise ratio accelerometer,” Meas. Control (United Kingdom), vol. 51, no. 1–2, pp. 27–37, 2018, doi: 10.1177/0020294018758526
  • F. Okosun, P. Cahill, B. Hazra, and V. Pakrashi, “Vibration-based leak detection and monitoring of water pipes using output-only piezoelectric sensors,” Eur. Phys. J. Spec. Top., vol. 228, no. 7, pp. 1659–1675, 2019, doi: 10.1140/epjst/e2019-800150-6
  • A. Martini, M. Troncossi, and A. Rivola, “Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements,” Shock Vib., vol. 2015, pp. 11–15, 2015, doi: 10.1155/2015/165304
  • J. Choi, J. Shin, C. Song, S. Han, and D. Il Park, “Leak detection and location of water pipes using vibration sensors and modified ML prefilter,” Sensors (Switzerland), vol. 17, no. 9, pp. 1–17, 2017, doi: 10.3390/s17092104
  • M. SONGUR, A. DABANLI, B. YILMAZEL, and M. A. ŞENYEL KÜRKÇÜOĞLU, “Su Dağıtım Şebekelerindeki Fiziki Kayıpların Önlenmesinde SCADA’nın Önemi: ASKİ Örneği,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 21, no. 6, pp. 1424–1433, 2021, doi: 10.35414/akufemubid.947662
  • N. A. M. Yussof and H. W. Ho, “Review of Water Leak Detection Methods in Smart Building Applications,” Buildings. 2022. doi: 10.3390/buildings12101535
  • X. Fan, X. Wang, X. Zhang, and X. (Bill) Yu, “Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors,” Reliab. Eng. Syst. Saf., 2022, doi: 10.1016/j.ress.2021.108185
  • E. Şahin and H. Yüce, “Prediction of Water Leakage in Pipeline Networks Using Graph Convolutional Network Method,” Appl. Sci., 2023, doi: 10.3390/app13137427
  • M. Öztürk, “İçme suyu şebeke sistemi sanki halbur,” Independent Türkçe, 2020.
  • H. Muhammetoğlu and A. Muhammetoğlu, “İçme Suyu Temin ve Dağitim Sistemlerindeki Su Kayiplarinin Kontrolü,” 2017, pp. 1-164.
  • A. H. Miry and G. A. Aramice, “Water monitoring and analytic based ThingSpeak,” Int. J. Electr. Comput. Eng., vol. 10, no. 4, pp. 3588–3595, 2020, doi: 10.11591/ijece.v10i4.pp3588-3595
  • H. Benyezza, M. Bouhedda, K. Dyellout, and A. Saidi, “Smart Irrigation System Based Thingspeak and Arduino,” no. November, pp. 7–10, 2018.
  • J. R. Quinlan, “Induction of Decision Trees,” Mach. Learn., 1986, doi: 10.1023/A:1022643204877
  • B. Kamiński, M. Jakubczyk, and P. Szufel, “A framework for sensitivity analysis of decision trees,” Cent. Eur. J. Oper. Res., 2018, doi: 10.1007/s10100-017-0479-6
  • E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties,” Int. Stat. Rev. / Rev. Int. Stat., 1989, doi: 10.2307/1403797
  • T. M. Cover and P. E. Hart, “Nearest Neighbor Pattern Classification,” IEEE Trans. Inf. Theory, 1967, doi: 10.1109/TIT.1967.1053964
  • M. Mohy-eddine, A. Guezzaz, S. Benkirane, and M. Azrour, “An Intrusion Detection Model using election-Based Feature Selection and K-NN,” Microprocess. Microsyst., p. 104966, 2023, doi: https://doi.org/10.1016/j.micpro.2023.104966. Available: https://www.sciencedirect.com/science/article/pii/S0141933123002107
  • F. R. S. R. A. Fisher, Sc.D., “The use of multiple measurements in taxonomic problems,” Ann. Eugen., 1936.
  • B. A. Moore and G. J. McLachlan, “Discriminant Analysis and Statistical Pattern Recognition.,” J. R. Stat. Soc. Ser. A (Statistics Soc., 1994, doi: 10.2307/2983518
  • A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal. Mach. Intell., 2001, doi: 10.1109/34.908974
  • C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., 1995, doi: 10.1023/A:1022627411411
  • T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning, Second Edition,” Springer New York, NY, 2009.
  • S. Dhakshina Kumar, S. Esakkirajan, S. Bama, and B. Keerthiveena, “A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier,” Microprocess. Microsyst., 2020, doi: 10.1016/j.micpro.2020.103090

Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks

Year 2024, Volume: 7 Issue: 2, 169 - 179, 18.12.2024
https://doi.org/10.54565/jphcfum.1588037

Abstract

Water is the most important factor for the survival of living things on Earth. Although 70% of the Earth is water, the amount of drinkable water is approximately 0.3%. Therefore, creating a sustainable water policy and carrying out studies are very important for our world and our future. Most of the potable water resources are physical losses. In the evaluations made based on metropolitan municipalities, it was seen that the water loss rate was approximately 50%. The study aims to find water pipe faults using IoT (Internet of Things) based machine learning classifiers to prevent physical losses in water distribution networks. Within the scope of this study, an experimental environment was created and an IMU (Inertial Measurement Unit) sensor was fixed on plastic pipes of different diameters and lengths. Vibration data collected in different scenarios (pressure, etc. factors) were transferred to the ThingSpeak platform over the internet. The transferred data could be monitored in real-time on a server. Physical damage in the pipes was detected using signal pre-processing, feature extraction, and feature selection algorithms on vibration data. In the study, damages were classified using machine learning-based classification (Decision Trees, k-Nearest Neighbors, Linear Discriminant, Support Vector Machines) methods to predict the type of damage (solid, hole, multi-hole). The data set revealed within the scope of the study is thought to lead to scientific studies in this field. The results obtained are close to the state-of-the-art results.

Project Number

TUBITAK 2209/A. Project number: 1919B012217701

References

  • T.C. Kalkınma Bakanlığı Özel İhtisas Komisyonu Raporu, “On Birinci Kalkınma Planı (2019-2023) Su Kaynakları Yöneti̇mi̇ ve Güvenli̇ği̇,” p. 110, 2018.
  • D. K. Enstitüsü, “2040 Yılında En Çok Su Sıkıntısı Çekecek Ülkeler,” 2022.
  • Ç. C. Dilcan, G. Çapar, A. Korkmaz, Ö. İiritaş, Y. Karaaslan, and B. Selek, “İçme Suyu Şebekeleri̇nde Görülen Su Kayıplarının Dünyada ve Ülkemi̇zdeki̇ Durumu,” Kalkınmada Anahtar Veriml. Dergisi, T.C. Sanayi̇ ve Teknol. Bakanl. Aylık Yayın Organı, vol. 30, no. 354, pp. 10–18, 2018.
  • D. Karakaya and Z. F. Toprak, “İçme Suyu Şebekelerindeki Su Kayıplarının ZFT Classification Water Losses in Water Distribution Networks Using ZFT Algorithm,” pp. 22–30, 2018.
  • B. Ulusal and B. Raporuna, “İçme suyu dağitim si̇stemleri̇ndeki̇ kayiplar ve prowat projesi̇,” pp. 1–8, 2007.
  • S. Kartakis, W. Yu, R. Akhavan, and J. A. McCann, “Adaptive edge analytics for distributed networked control of water systems,” Proc. - 2016 IEEE 1st Int. Conf. Internet-of-Things Des. Implementation, IoTDI 2016, pp. 72–82, 2016, doi: 10.1109/IoTDI.2015.34
  • M. I. Mohd Ismail et al., “A review of vibration detection methods using accelerometer sensors for water pipeline leakage,” IEEE Access, vol. 7, pp. 51965–51981, 2019, doi: 10.1109/ACCESS.2019.2896302
  • F. Karray, A. Garcia-Ortiz, M. W. Jmal, A. M. Obeid, and M. Abid, “EARNPIPE: A Testbed for Smart Water Pipeline Monitoring Using Wireless Sensor Network,” Procedia Comput. Sci., vol. 96, pp. 285–294, 2016, doi: 10.1016/j.procs.2016.08.141
  • I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, “PIPENETa wireless sensor network for pipeline monitoring,” IPSN 2007 Proc. Sixth Int. Symp. Inf. Process. Sens. Networks, pp. 264–273, 2007, doi: 10.1145/1236360.1236396
  • A. M. Sadeghioon, N. Metje, D. N. Chapman, and C. J. Anthony, “SmartPipes: Smart wireless sensor networks for leak detection in water pipelines,” J. Sens. Actuator Networks, vol. 3, no. 1, pp. 64–78, 2014, doi: 10.3390/jsan3010064
  • M. Nicola, C. Nicola, A. Vintilă, I. Hurezeanu, and M. Du, “Pipeline Leakage Detection by Means of Acoustic Emission Technique Using Cross-Correlation Function,” J. Mech. Eng. Autom., vol. 8, no. 2, pp. 59–67, 2018, doi: 10.5923/j.jmea.20180802.03
  • K. Marmarokopos, D. Doukakis, G. Frantziskonis, and M. Avlonitis, “Leak detection in plastic water supply pipes with a high signal-to-noise ratio accelerometer,” Meas. Control (United Kingdom), vol. 51, no. 1–2, pp. 27–37, 2018, doi: 10.1177/0020294018758526
  • F. Okosun, P. Cahill, B. Hazra, and V. Pakrashi, “Vibration-based leak detection and monitoring of water pipes using output-only piezoelectric sensors,” Eur. Phys. J. Spec. Top., vol. 228, no. 7, pp. 1659–1675, 2019, doi: 10.1140/epjst/e2019-800150-6
  • A. Martini, M. Troncossi, and A. Rivola, “Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements,” Shock Vib., vol. 2015, pp. 11–15, 2015, doi: 10.1155/2015/165304
  • J. Choi, J. Shin, C. Song, S. Han, and D. Il Park, “Leak detection and location of water pipes using vibration sensors and modified ML prefilter,” Sensors (Switzerland), vol. 17, no. 9, pp. 1–17, 2017, doi: 10.3390/s17092104
  • M. SONGUR, A. DABANLI, B. YILMAZEL, and M. A. ŞENYEL KÜRKÇÜOĞLU, “Su Dağıtım Şebekelerindeki Fiziki Kayıpların Önlenmesinde SCADA’nın Önemi: ASKİ Örneği,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 21, no. 6, pp. 1424–1433, 2021, doi: 10.35414/akufemubid.947662
  • N. A. M. Yussof and H. W. Ho, “Review of Water Leak Detection Methods in Smart Building Applications,” Buildings. 2022. doi: 10.3390/buildings12101535
  • X. Fan, X. Wang, X. Zhang, and X. (Bill) Yu, “Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors,” Reliab. Eng. Syst. Saf., 2022, doi: 10.1016/j.ress.2021.108185
  • E. Şahin and H. Yüce, “Prediction of Water Leakage in Pipeline Networks Using Graph Convolutional Network Method,” Appl. Sci., 2023, doi: 10.3390/app13137427
  • M. Öztürk, “İçme suyu şebeke sistemi sanki halbur,” Independent Türkçe, 2020.
  • H. Muhammetoğlu and A. Muhammetoğlu, “İçme Suyu Temin ve Dağitim Sistemlerindeki Su Kayiplarinin Kontrolü,” 2017, pp. 1-164.
  • A. H. Miry and G. A. Aramice, “Water monitoring and analytic based ThingSpeak,” Int. J. Electr. Comput. Eng., vol. 10, no. 4, pp. 3588–3595, 2020, doi: 10.11591/ijece.v10i4.pp3588-3595
  • H. Benyezza, M. Bouhedda, K. Dyellout, and A. Saidi, “Smart Irrigation System Based Thingspeak and Arduino,” no. November, pp. 7–10, 2018.
  • J. R. Quinlan, “Induction of Decision Trees,” Mach. Learn., 1986, doi: 10.1023/A:1022643204877
  • B. Kamiński, M. Jakubczyk, and P. Szufel, “A framework for sensitivity analysis of decision trees,” Cent. Eur. J. Oper. Res., 2018, doi: 10.1007/s10100-017-0479-6
  • E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties,” Int. Stat. Rev. / Rev. Int. Stat., 1989, doi: 10.2307/1403797
  • T. M. Cover and P. E. Hart, “Nearest Neighbor Pattern Classification,” IEEE Trans. Inf. Theory, 1967, doi: 10.1109/TIT.1967.1053964
  • M. Mohy-eddine, A. Guezzaz, S. Benkirane, and M. Azrour, “An Intrusion Detection Model using election-Based Feature Selection and K-NN,” Microprocess. Microsyst., p. 104966, 2023, doi: https://doi.org/10.1016/j.micpro.2023.104966. Available: https://www.sciencedirect.com/science/article/pii/S0141933123002107
  • F. R. S. R. A. Fisher, Sc.D., “The use of multiple measurements in taxonomic problems,” Ann. Eugen., 1936.
  • B. A. Moore and G. J. McLachlan, “Discriminant Analysis and Statistical Pattern Recognition.,” J. R. Stat. Soc. Ser. A (Statistics Soc., 1994, doi: 10.2307/2983518
  • A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal. Mach. Intell., 2001, doi: 10.1109/34.908974
  • C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., 1995, doi: 10.1023/A:1022627411411
  • T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning, Second Edition,” Springer New York, NY, 2009.
  • S. Dhakshina Kumar, S. Esakkirajan, S. Bama, and B. Keerthiveena, “A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier,” Microprocess. Microsyst., 2020, doi: 10.1016/j.micpro.2020.103090
There are 34 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Materials Engineering (Other)
Journal Section Articles
Authors

İrfan Kılıç 0000-0001-5079-2825

Orhan Yaman 0000-0001-9623-2284

Şeyma Saylan 0009-0003-2581-4414

İlayda Hörgüşlüoğlu 0009-0009-4839-6394

Betül Demirelli 0009-0000-1663-5885

Project Number TUBITAK 2209/A. Project number: 1919B012217701
Publication Date December 18, 2024
Submission Date November 19, 2024
Acceptance Date November 26, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Kılıç, İ., Yaman, O., Saylan, Ş., Hörgüşlüoğlu, İ., et al. (2024). Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks. Journal of Physical Chemistry and Functional Materials, 7(2), 169-179. https://doi.org/10.54565/jphcfum.1588037
AMA Kılıç İ, Yaman O, Saylan Ş, Hörgüşlüoğlu İ, Demirelli B. Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):169-179. doi:10.54565/jphcfum.1588037
Chicago Kılıç, İrfan, Orhan Yaman, Şeyma Saylan, İlayda Hörgüşlüoğlu, and Betül Demirelli. “Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 169-79. https://doi.org/10.54565/jphcfum.1588037.
EndNote Kılıç İ, Yaman O, Saylan Ş, Hörgüşlüoğlu İ, Demirelli B (December 1, 2024) Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks. Journal of Physical Chemistry and Functional Materials 7 2 169–179.
IEEE İ. Kılıç, O. Yaman, Ş. Saylan, İ. Hörgüşlüoğlu, and B. Demirelli, “Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 169–179, 2024, doi: 10.54565/jphcfum.1588037.
ISNAD Kılıç, İrfan et al. “Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 169-179. https://doi.org/10.54565/jphcfum.1588037.
JAMA Kılıç İ, Yaman O, Saylan Ş, Hörgüşlüoğlu İ, Demirelli B. Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks. Journal of Physical Chemistry and Functional Materials. 2024;7:169–179.
MLA Kılıç, İrfan et al. “Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 169-7, doi:10.54565/jphcfum.1588037.
Vancouver Kılıç İ, Yaman O, Saylan Ş, Hörgüşlüoğlu İ, Demirelli B. Machine Learning Methods in IoT Based Embedded Systems for Classifying Physical Faults in Water Distribution Networks. Journal of Physical Chemistry and Functional Materials. 2024;7(2):169-7.