Research Article
BibTex RIS Cite

Year 2025, Volume: 22 Issue: 2, 47 - 54, 28.12.2025

Abstract

References

  • Abd El-Khalek, H. H., & Zahran, D. A. (2013). Utilization of fruit by-product in ground meat preservation. Food Science and Quality Management, 11, 49-60.
  • Ademosun, A. O., Oboh, G., & Ajeigbe, O. F. (2021). Antioxidant activities and glycemic indices of ice creams enriched with orange (Citrus sinensis) and shaddock (Citrus maxima) peels and effects on rat lipid profiles. Journal of Food Biochemistry, 45(7), e13813.
  • Altuner, E. M., Çeter, T., Gür, M., Güney, K., Kıran, B., Akwıeten, H. E., & Soulman, S. İ. (2018). Chemical composition and antimicrobial activities of cold-pressed oils obtained from nettle, radish and pomegranate seeds. Kastamonu University Journal of Forestry Faculty, 18(3), 236-247.
  • Ambrosio, C. M., de Alencar, S. M., de Sousa, R. L., Moreno, A. M., & Da Gloria, E. M. (2017). Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Industrial Crops and Products, 97, 128-136.
  • Bagheri, R., Ariaii, P., & Motamedzadegan, A. (2021). Effects of chitosan incorporated with basil seed gum and nettle (Urtica dioica L.) essential oil on the quality of beef burger during refrigerated storage. Journal of Food Measurement and Characterization, 15(1), 256-264.
  • Baydar, H., Kuleasan, H., Kara, N., Secilmis-Canbay, H., & Kineci, S. (2013). The effects of pasteurization, ultraviolet radiation and chemiclal preservatives on microbial spoilage and scent composition of rose water. Journal of Essential oil bearing plants, 16(2), 151-160.
  • Bourgou, S., Rahali, F. Z., Ourghemmi, I., & Saïdani Tounsi, M. (2012). Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. The Scientific World Journal, 2012(1), 528593.
  • Byun, K. H., Han, S. H., Yoon, J. W., Park, S. H., & Ha, S. D. (2021). Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control, 123, 107838.
  • Cesur, A., & Soyer, Y. (2021). Determination of antimicrobial effect of the aqueous extract of stinging nettle (Urtica dioica) on biofilm formation of Salmonella enterica serovars. Gıda, 46(2), 324-338.
  • Clinical and Laboratory Standards Institute (2021). Performance Standards for Antimicrobial Disk Susceptibility Tests for Bacteria Isolated from Animals: CLSI Supplement VET01S. Replaces VET01-S2.
  • Dhouibi, R., Moalla, D., Ksouda, K., Ben Salem, M., Hammami, S., Sahnoun, Z., ... & Affes, H. (2018). Screening of analgesic activity of Tunisian Urtica dioica and analysis of its major bioactive compounds by GCMS. Archives of physiology and biochemistry, 124(4), 335-343.
  • Dikici, A., Arslan, A., Yalcin, H., Ozdemir, P., Aydin, I., & Calicioglu, M. (2013). Effect of Tween 20 on antibacterial effects of acidic, neutral and alkaline decontaminants on viability of Salmonella on chicken carcasses and survival in waste decontamination fluids. Food Control, 30(2), 365-369.
  • Dosoky, N. S., & Setzer, W. N. (2018). Biological activities and safety of Citrus spp. essential oils. International journal of molecular sciences, 19(7), 1966.
  • Federman, C., Ma, C., & Biswas, D. (2016). Major components of orange oil inhibit Staphylococcus aureus growth and biofilm formation, and alter its virulence factors. Journal of medical microbiology, 65(7), 688-695.
  • Gül, S., Demirci, B., Başer, K. H. C., Akpulat, H. A., & Aksu, P. (2012). Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L. Bulletin of environmental contamination and toxicology, 88(5), 666-671.
  • Gülçin, I., Küfrevioǧlu, Ö. İ., Oktay, M., & Büyükokuroǧlu, M. E. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of ethnopharmacology, 90(2-3), 205-215.
  • Irokanulo, E. O., Oluyomi, B. W., & Nwonuma, C. O. (2022). Effect of citrus fruit (Citrus sinensis, Citrus limon and Citrus aurantifolia) rind essential oils on preservation of chicken meat artificially infected with bacteria. African Journal of Food, Agriculture, Nutrition and Development, 22(10), 18950-18964.
  • Lin, C. M., Sheu, S. R., Hsu, S. C., & Tsai, Y. H. (2010). Determination of bactericidal efficacy of essential oil extracted from orange peel on the food contact surfaces. Food control, 21(12), 1710-1715.
  • Lu, Y., & Wu, C. (2012). Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash. International journal of food microbiology, 152(1-2), 31-34.
  • Mahjoorian, A., Jafarian, S., & Fazeli, F. (2021). Nettle (Utrica dioica) essential oil incorporation in edible film from Caspian whitefish (Rutilus frisii kutum) scale: Physical, antimicrobial, and morphological characterization. Journal of Aquatic Food Product Technology, 30(2), 151-161.
  • Mahmoudi, R., Amini, K., Fakhri, O., & Alem, M. (2014). Aroma profile and antimicrobial properties of alcoholic and aqueous extracts from root, leaf and stalk of nettle (Urtica dioica L.). The Journal of Microbiology, Biotechnology and Food Sciences, 4(3), 220.
  • Marzlan, A. A., Hussin, A. S. M., Bourke, P., Chaple, S., Barroug, S., & Muhialdin, B. J. (2023). Combination of green extraction techniques and essential oils to develop active packaging for improving the quality and shelf life for chicken meat. Food Reviews International, 39(7), 3783-3805.
  • Modarresi-Chahardehi, A., Ibrahim, D., Fariza-Sulaiman, S., & Mousavi, L. (2012). Screening antimicrobial activity of various extracts of Urtica dioica. Revista de biologia tropical, 60(4), 1567-1576.
  • Nannapaneni, R., Muthaiyan, A., Crandall, P. G., Johnson, M. G., O'Bryan, C. A., Chalova, V. I., ... & Ricke, S. C. (2008). Antimicrobial activity of commercial citrus-based natural extracts against Escherichia coli O157: H7 isolates and mutant strains. Foodborne pathogens and disease, 5(5), 695-699.
  • Naveed, R., Siddique, A. B., Hussain, I., Ulhaq, M., Aslam, B., & Mahmood, M. S. (2021). Antimicrobial activity of bioactive components of essential oils from Citrus sinensis against important pathogens. International Food Research Journal, 28(1), 189-198.
  • O'Bryan, C. A., Crandall, P. G., Chalova, V. I., & Ricke, S. C. (2008). Orange essential oils antimicrobial activities against Salmonella spp. Journal of Food Science, 73(6), M264-M267.
  • Rama, E. N., Bailey, M., Kumar, S., Leone, C., den Bakker, H. C., Thippareddi, H., & Singh, M. (2022). Prevalence and antimicrobial resistance of Salmonella in conventional and no antibiotics ever broiler farms in the United States. Food Control, 135, 108738.
  • Rani, V., Sangwan, V., & Malik, P. (2020). Orange peel powder: A potent source of fiber and antioxidants for functional biscuits. International Journal of Current Microbiology and Applied Sciences, 9(9), 1319-1325.
  • Saklani, S., & Chandra, S. (2012). In vitro antimicrobial activity, nutritional profile and phytochemical screening of Garhwal Himalaya medicinal plant-Urtica dioica. International Journal of Pharmaceutical Sciences Review and Research, 12(2), 57-60.
  • Salehzadeh, A., Asadpour, L., Naeemi, A. S., & Houshmand, E. (2014). Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. African Journal of Traditional, Complementary and Alternative Medicines, 11(5), 38-40.
  • Shabani, M., Ghorbani-HasanSaraei, A., Shariatifar, N., Savadkoohi, F., & Shahidi, S. A. (2023). Effect of Urtica dioica L. Essential oil (forms of free and nanoliposome) on some inoculated pathogens (Escherichia coli and Listeria monocytogenes) in minced camel meat. Food Chemistry: X, 20, 101050.
  • Tao, N. G., Liu, Y. J., & Zhang, M. L. (2009). Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). International journal of food science & technology, 44(7), 1281-1285.
  • Thanissery, R., & Smith, D. P. (2014). Marinade with thyme and orange oils reduces Salmonella Enteritidis and Campylobacter coli on inoculated broiler breast fillets and whole wings. Poultry science, 93(5), 1258-1262.
  • World Health Organization (WHO). WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007-2015. Available at: https://apps.who.int/iris/handle/10665/199350. Accessed: 06.02.2021.
  • Yilmaz, E. A., Yalçin, H., & Polat, Z. (2024). Antimicrobial effects of laurel extract, laurel essential oil, zahter extract, and zahter essential oil on chicken wings contaminated with Salmonella Typhimurium. Veterinary Medicine and Science, 10(3), e1445.

Effect of Stinging Nettle (Urtica doica) Essential Oil, Orange (Citrus sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated with Salmonella Typhimurium

Year 2025, Volume: 22 Issue: 2, 47 - 54, 28.12.2025

Abstract

The ingestion of broiler chicken has been associated with foodborne diseases arising from microbial growth. Marination with decontamination agents represents a widely adopted intervention to mitigate microbial proliferation. In this study, after the volatile components of nettle essential oil (NEO) and orange essential oil (CEO) were determined by gas chromatography, these essential oils and their combinations (100% NEO, 75% NEO - 25% CEO, 50% NEO - 50% CEO), 25% NEO - 75% CEO, 100% CEO) effect on Salmonella typhimurium was determined in vitro. While the volatile component found in high amounts in NEO was found to be 21.83% limonene, it was found that 92.55% limonene was the main component in CEO. According to the disk diffusion results, the highest inhibition zone was detected in CEO, while the lowest inhibition zone was detected in NEO (P<0.05). In chicken wings NEO, CEO and combinations were found to reduce the number of S. Typhimurium compared to the control group (P<0.05). It was determined that as the amount of CEO in marination liquids increased, the effectiveness of marination liquids on S. Typhimurium increased (P<0.05). The use of NEO, CEO and combinations in broiler chicken wings is effective in suppressing S. Typhimurium contaminations.

Thanks

The authors thank to Asım KART for his contributions in writing the article

References

  • Abd El-Khalek, H. H., & Zahran, D. A. (2013). Utilization of fruit by-product in ground meat preservation. Food Science and Quality Management, 11, 49-60.
  • Ademosun, A. O., Oboh, G., & Ajeigbe, O. F. (2021). Antioxidant activities and glycemic indices of ice creams enriched with orange (Citrus sinensis) and shaddock (Citrus maxima) peels and effects on rat lipid profiles. Journal of Food Biochemistry, 45(7), e13813.
  • Altuner, E. M., Çeter, T., Gür, M., Güney, K., Kıran, B., Akwıeten, H. E., & Soulman, S. İ. (2018). Chemical composition and antimicrobial activities of cold-pressed oils obtained from nettle, radish and pomegranate seeds. Kastamonu University Journal of Forestry Faculty, 18(3), 236-247.
  • Ambrosio, C. M., de Alencar, S. M., de Sousa, R. L., Moreno, A. M., & Da Gloria, E. M. (2017). Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Industrial Crops and Products, 97, 128-136.
  • Bagheri, R., Ariaii, P., & Motamedzadegan, A. (2021). Effects of chitosan incorporated with basil seed gum and nettle (Urtica dioica L.) essential oil on the quality of beef burger during refrigerated storage. Journal of Food Measurement and Characterization, 15(1), 256-264.
  • Baydar, H., Kuleasan, H., Kara, N., Secilmis-Canbay, H., & Kineci, S. (2013). The effects of pasteurization, ultraviolet radiation and chemiclal preservatives on microbial spoilage and scent composition of rose water. Journal of Essential oil bearing plants, 16(2), 151-160.
  • Bourgou, S., Rahali, F. Z., Ourghemmi, I., & Saïdani Tounsi, M. (2012). Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. The Scientific World Journal, 2012(1), 528593.
  • Byun, K. H., Han, S. H., Yoon, J. W., Park, S. H., & Ha, S. D. (2021). Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control, 123, 107838.
  • Cesur, A., & Soyer, Y. (2021). Determination of antimicrobial effect of the aqueous extract of stinging nettle (Urtica dioica) on biofilm formation of Salmonella enterica serovars. Gıda, 46(2), 324-338.
  • Clinical and Laboratory Standards Institute (2021). Performance Standards for Antimicrobial Disk Susceptibility Tests for Bacteria Isolated from Animals: CLSI Supplement VET01S. Replaces VET01-S2.
  • Dhouibi, R., Moalla, D., Ksouda, K., Ben Salem, M., Hammami, S., Sahnoun, Z., ... & Affes, H. (2018). Screening of analgesic activity of Tunisian Urtica dioica and analysis of its major bioactive compounds by GCMS. Archives of physiology and biochemistry, 124(4), 335-343.
  • Dikici, A., Arslan, A., Yalcin, H., Ozdemir, P., Aydin, I., & Calicioglu, M. (2013). Effect of Tween 20 on antibacterial effects of acidic, neutral and alkaline decontaminants on viability of Salmonella on chicken carcasses and survival in waste decontamination fluids. Food Control, 30(2), 365-369.
  • Dosoky, N. S., & Setzer, W. N. (2018). Biological activities and safety of Citrus spp. essential oils. International journal of molecular sciences, 19(7), 1966.
  • Federman, C., Ma, C., & Biswas, D. (2016). Major components of orange oil inhibit Staphylococcus aureus growth and biofilm formation, and alter its virulence factors. Journal of medical microbiology, 65(7), 688-695.
  • Gül, S., Demirci, B., Başer, K. H. C., Akpulat, H. A., & Aksu, P. (2012). Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L. Bulletin of environmental contamination and toxicology, 88(5), 666-671.
  • Gülçin, I., Küfrevioǧlu, Ö. İ., Oktay, M., & Büyükokuroǧlu, M. E. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of ethnopharmacology, 90(2-3), 205-215.
  • Irokanulo, E. O., Oluyomi, B. W., & Nwonuma, C. O. (2022). Effect of citrus fruit (Citrus sinensis, Citrus limon and Citrus aurantifolia) rind essential oils on preservation of chicken meat artificially infected with bacteria. African Journal of Food, Agriculture, Nutrition and Development, 22(10), 18950-18964.
  • Lin, C. M., Sheu, S. R., Hsu, S. C., & Tsai, Y. H. (2010). Determination of bactericidal efficacy of essential oil extracted from orange peel on the food contact surfaces. Food control, 21(12), 1710-1715.
  • Lu, Y., & Wu, C. (2012). Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash. International journal of food microbiology, 152(1-2), 31-34.
  • Mahjoorian, A., Jafarian, S., & Fazeli, F. (2021). Nettle (Utrica dioica) essential oil incorporation in edible film from Caspian whitefish (Rutilus frisii kutum) scale: Physical, antimicrobial, and morphological characterization. Journal of Aquatic Food Product Technology, 30(2), 151-161.
  • Mahmoudi, R., Amini, K., Fakhri, O., & Alem, M. (2014). Aroma profile and antimicrobial properties of alcoholic and aqueous extracts from root, leaf and stalk of nettle (Urtica dioica L.). The Journal of Microbiology, Biotechnology and Food Sciences, 4(3), 220.
  • Marzlan, A. A., Hussin, A. S. M., Bourke, P., Chaple, S., Barroug, S., & Muhialdin, B. J. (2023). Combination of green extraction techniques and essential oils to develop active packaging for improving the quality and shelf life for chicken meat. Food Reviews International, 39(7), 3783-3805.
  • Modarresi-Chahardehi, A., Ibrahim, D., Fariza-Sulaiman, S., & Mousavi, L. (2012). Screening antimicrobial activity of various extracts of Urtica dioica. Revista de biologia tropical, 60(4), 1567-1576.
  • Nannapaneni, R., Muthaiyan, A., Crandall, P. G., Johnson, M. G., O'Bryan, C. A., Chalova, V. I., ... & Ricke, S. C. (2008). Antimicrobial activity of commercial citrus-based natural extracts against Escherichia coli O157: H7 isolates and mutant strains. Foodborne pathogens and disease, 5(5), 695-699.
  • Naveed, R., Siddique, A. B., Hussain, I., Ulhaq, M., Aslam, B., & Mahmood, M. S. (2021). Antimicrobial activity of bioactive components of essential oils from Citrus sinensis against important pathogens. International Food Research Journal, 28(1), 189-198.
  • O'Bryan, C. A., Crandall, P. G., Chalova, V. I., & Ricke, S. C. (2008). Orange essential oils antimicrobial activities against Salmonella spp. Journal of Food Science, 73(6), M264-M267.
  • Rama, E. N., Bailey, M., Kumar, S., Leone, C., den Bakker, H. C., Thippareddi, H., & Singh, M. (2022). Prevalence and antimicrobial resistance of Salmonella in conventional and no antibiotics ever broiler farms in the United States. Food Control, 135, 108738.
  • Rani, V., Sangwan, V., & Malik, P. (2020). Orange peel powder: A potent source of fiber and antioxidants for functional biscuits. International Journal of Current Microbiology and Applied Sciences, 9(9), 1319-1325.
  • Saklani, S., & Chandra, S. (2012). In vitro antimicrobial activity, nutritional profile and phytochemical screening of Garhwal Himalaya medicinal plant-Urtica dioica. International Journal of Pharmaceutical Sciences Review and Research, 12(2), 57-60.
  • Salehzadeh, A., Asadpour, L., Naeemi, A. S., & Houshmand, E. (2014). Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. African Journal of Traditional, Complementary and Alternative Medicines, 11(5), 38-40.
  • Shabani, M., Ghorbani-HasanSaraei, A., Shariatifar, N., Savadkoohi, F., & Shahidi, S. A. (2023). Effect of Urtica dioica L. Essential oil (forms of free and nanoliposome) on some inoculated pathogens (Escherichia coli and Listeria monocytogenes) in minced camel meat. Food Chemistry: X, 20, 101050.
  • Tao, N. G., Liu, Y. J., & Zhang, M. L. (2009). Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). International journal of food science & technology, 44(7), 1281-1285.
  • Thanissery, R., & Smith, D. P. (2014). Marinade with thyme and orange oils reduces Salmonella Enteritidis and Campylobacter coli on inoculated broiler breast fillets and whole wings. Poultry science, 93(5), 1258-1262.
  • World Health Organization (WHO). WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007-2015. Available at: https://apps.who.int/iris/handle/10665/199350. Accessed: 06.02.2021.
  • Yilmaz, E. A., Yalçin, H., & Polat, Z. (2024). Antimicrobial effects of laurel extract, laurel essential oil, zahter extract, and zahter essential oil on chicken wings contaminated with Salmonella Typhimurium. Veterinary Medicine and Science, 10(3), e1445.
There are 35 citations in total.

Details

Primary Language English
Subjects Poultry Farming and Treatment
Journal Section Research Article
Authors

Halil Yalçın This is me

Zübeyde Polat 0000-0001-6662-1721

Ali Soyuçok 0000-0003-2626-5827

Submission Date March 20, 2025
Acceptance Date June 26, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 22 Issue: 2

Cite

APA Yalçın, H., Polat, Z., & Soyuçok, A. (2025). Effect of Stinging Nettle (Urtica doica) Essential Oil, Orange (Citrus sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated with Salmonella Typhimurium. Journal of Poultry Research, 22(2), 47-54. https://doi.org/10.34233/jpr.1784423
AMA Yalçın H, Polat Z, Soyuçok A. Effect of Stinging Nettle (Urtica doica) Essential Oil, Orange (Citrus sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated with Salmonella Typhimurium. JPR. December 2025;22(2):47-54. doi:10.34233/jpr.1784423
Chicago Yalçın, Halil, Zübeyde Polat, and Ali Soyuçok. “Effect of Stinging Nettle (Urtica Doica) Essential Oil, Orange (Citrus Sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated With Salmonella Typhimurium”. Journal of Poultry Research 22, no. 2 (December 2025): 47-54. https://doi.org/10.34233/jpr.1784423.
EndNote Yalçın H, Polat Z, Soyuçok A (December 1, 2025) Effect of Stinging Nettle (Urtica doica) Essential Oil, Orange (Citrus sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated with Salmonella Typhimurium. Journal of Poultry Research 22 2 47–54.
IEEE H. Yalçın, Z. Polat, and A. Soyuçok, “Effect of Stinging Nettle (Urtica doica) Essential Oil, Orange (Citrus sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated with Salmonella Typhimurium”, JPR, vol. 22, no. 2, pp. 47–54, 2025, doi: 10.34233/jpr.1784423.
ISNAD Yalçın, Halil et al. “Effect of Stinging Nettle (Urtica Doica) Essential Oil, Orange (Citrus Sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated With Salmonella Typhimurium”. Journal of Poultry Research 22/2 (December2025), 47-54. https://doi.org/10.34233/jpr.1784423.
JAMA Yalçın H, Polat Z, Soyuçok A. Effect of Stinging Nettle (Urtica doica) Essential Oil, Orange (Citrus sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated with Salmonella Typhimurium. JPR. 2025;22:47–54.
MLA Yalçın, Halil et al. “Effect of Stinging Nettle (Urtica Doica) Essential Oil, Orange (Citrus Sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated With Salmonella Typhimurium”. Journal of Poultry Research, vol. 22, no. 2, 2025, pp. 47-54, doi:10.34233/jpr.1784423.
Vancouver Yalçın H, Polat Z, Soyuçok A. Effect of Stinging Nettle (Urtica doica) Essential Oil, Orange (Citrus sinensis) Essential Oil and Their Combinations on Chicken Wings Contaminated with Salmonella Typhimurium. JPR. 2025;22(2):47-54.

204x63 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License 
Print ISSN:1302-3209 - Online ISSN:2147-9003

Journal of Poultry Research is indexed by the following national and international scientific indexing services

14964166171665216684166851668616687


166881668916692


1669016691