Araştırma Makalesi
BibTex RIS Kaynak Göster

Compositae ve Liliales Familyalarına Ait Bazı Bitkilerin İnülin İçerikleri ile Fonksiyonel Özelliklerinin Belirlenmesi

Yıl 2025, Cilt: 2025 Sayı: 22, 17 - 31, 03.06.2025

Öz

İnülin, çok çeşitli gıda ve farmasötik uygulamaları olan, doğal, bitki kaynaklı bir depopolisakkaritidir ve günümüzde gıda endüstrisinde, fonksiyonel gıdaların hazırlanmasında önemli bir yere sahiptir. İnülin elde etmeye yönelik artan bir ilgi olması nedeniyle bu çalışmada Compositae ve Liliales familyalarına ait bazı bitkilerde inülin kaynaklarının araştırılması, inülin içeriklerinin belirlenmesi ve fonksiyonel özelliklerinin saptanması amaçlanmıştır. Araştırmada ayçiçeği (taç kısmı), enginar (yaprak), karahindiba, pırasa, sarımsak, soğan ve yer elmasında inülin varlığı tespit edilmiş ve inülin tespit edilen materyallerdeki toplam fenolik madde ve antioksidan kapasite değerleri arasındaki ilişki araştırılmıştır. Ek olarak materyallerin renk ve pH değerleri belirlenmiştir. Çalışılan materyaller içerisinde en yüksek inülin içeriği sarımsak örneklerinde (20.179±0.188 g/100g) tespit edilmiştir. Toplam fenolik madde ve toplam antioksidan kapasitesi arasındaki korelasyon tüm materyallerde 0.866-0.989 arasında belirlenmiştir.

Destekleyen Kurum

Tokat Gaziosmanpaşa Üniversitesi

Proje Numarası

2022/56

Teşekkür

Bu çalışma, Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2022/56 numaralı proje ile desteklenmiştir.

Kaynakça

  • [1] Mensink, M. A., Frijlink, H. W., Maarschalk, K. v., & Hinrichs, W. L. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers, 130, 405-419.
  • [2] Peters, D. (2007). Raw Materials. Advances in Biochemical Engineering/Biotechnology - White Biotechnology (Cilt 105, s. 8-9). içinde
  • [3] Ronkart, S. N., Blecker, C. S., Fourmanoir, H., Fougnies, C., Deroanne, C., Van Herck, J., & Paquot, M. (2007). Isolation and identification of inulinoligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta, 604(1), 81-87.
  • [4] Apolinário, A. C., Damasceno, B. P., Beltrão, N. E., Pessoa, A., Converti, A., & Silva, J. A. (2014). Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers, 101, 368-378.
  • [5] Rubel, I. A., Iraporda, C., Manrique, G. D., Genovese, D. B., & Abraham, A. G. (2021). Inulin from Jerusalem artichoke (Helianthus tuberosus L.): From its biosynthesis to its application as bioactive ingredient. Bioactive Carbohydrates and Dietary Fibre, 26.
  • [6] Arruda, H. S., Silva, E. K., Pereira, G. A., Meireles, M. A., & Pastore, G. M. (2020). Inulin thermal stability in prebiotic carbohydrate-enriched araticum whey beverage. LWT-Food Science and Technology, 128, 1-8.
  • [7] Kriukova, Y., Jakubiak-Augustyn, A., Ilyinska, N., Krotkiewski, H., Gontova, T., Evtifeyeva, O., Matkowski, A. (2017). Chain length distribution of inulin from dahlia tubers as influenced by the extraction method. International Journal of Food Properties, 20, 3112-3122.
  • [8] Guimarães, J. T., Silva, E. K., Costa, A. L., Cunha, R. L., Freitas, M. Q., Meireles, M. A., & Cruz, A. G. (2018). Manufacturing a prebiotic whey beverage exploring the influence of degree of inulin polymerization. Food Hydrocolloids, 77, 787-795.
  • [9] Paciulli, M., Littardi, P., Carini, E., Paradiso, V. M., Castellino, M., & Chiavaro, E. (2020). Inulin-based emulsion filled gel as fat replacer in shortbread cookies: Effects during storage. LWT-Food Science and Technology, 133, 1-9.
  • [10] Gaafar, A. M., El-Din, M. S., Boudy, E. A., & El-Gazar, H. H. (2010). Extraction conditions of inulin from Jerusalem artichoke tubers and its effects on blood glucose and lipid profile in diabetic rats. Journal of American Science, 6(5), 36-43.
  • [11] Cho, K. D., Kim, E. J., Kim, M. Y., Kim, J. S., Han, C. K., & Lee, B. H. (2010). Antiobesity and antidiabetic effects of Jerusalem artichoke and purple sweet potato in the diet-induced obese rats. The FASEB Journal, 24, 722-723.
  • [12] Yang, H. J., Kwon, D. Y., Kim, M. J., Kang, S., Kim, D. S., & Park, S. (2012). Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats. Nutrition Metabolism, 1(9), 1-12.
  • [13] Kim, H. S., & Han, G. D. (2013). Hypoglycemic and hepatoprotective effects of Jerusalem artichoke extracts on streptozotocin-induced diabetic rats. Food Science and Biotechnology, 22(4), 1121-1124.
  • [14] Samal, L., Chaturvedi, V. B., Saikumar, G., Somvanshi, R., & Pattanaik, A. K. (2014). Prebiotic potential of jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: Effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. Journal of the Science of Food and Agriculture, 95(8), 1689–1696.
  • [15] El-Kholy, W. M., & Mahrous, H. (2015). Biological studies on bio-yoghurt fortified with prebiotic obtained from Jerusalem artichoke. Food and Nutrition Sciences, 6(16), 1552.
  • [16] Wang, Z., Hwang, S. H., Lee, S. Y., & Lim, S. S. (2016). Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Nutrition Research and Practice, 10(3), 282-287.
  • [17] Okada, N., Kobayashi, S., Moriyama, K., Miyataka, K., Abe, S., Sato, C., & Kawazoe, K. (2017). Helianthus tuberosus (Jerusalem artichoke) tubers improve glucose tolerance and hepatic lipid profile in rats fed a high-fat diet. Asian Pacific Journal of Tropical Medicine, 10(5), 439-443.
  • [18] Shao, T., Yu, Q., Zhu, T., Liu, A., Gao, X., Long, X., & Liu, Z. (2020). Inulin from Jerusalem artichoke tubers alleviates hyperglycaemia in high-fat-diet-induced diabetes mice through the intestinal microflora improvement. British Journal of Nutrition, 123(3), 308-318.
  • [19] Tiengtam, N., Khempaka, S., Paengkoum, P., & Boonanuntanasarn, S. (2015). Effects of inulin and Jerusalem artichoke (Helianthus tuberosus) as prebiotic ingredients in the diet of juvenile Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 207, 120–129., 120-129.
  • [20] Van Doan, H., Doolgindachbaporn, S., & Suksri, A. J. (2016). Effect of Lactobacillus plantarum and Jerusalem artichoke (Helianthus tuberosus) on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). Aquaculture Nutrition, 22(2), 444-456.
  • [21] Arcia, P. L., Costell, E., & Tárrega, A. (2011). Inulin blend as prebiotic and fat replacer in dairy desserts: Optimization by response surface methodology. Journal of Dairy Science, 94(5), 2192-2200.
  • [22] Meyer, D., Bayarri, S., Tárrega, A., & Costell, E. (2011). Inulin as texture modifier in dairy products. Food Hydrocolloids, 25(8), 1881–1890.
  • [23] Sevane, N., Bialade, F., Velasco, S., Rebola, A., Rodriguez, M. L., Ortiz, L. T., & Dunner, S. (2014). Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. , 9(6), e98942. PloS One, 9(6).
  • [24] Salinas, M. V., & Puppo, M. C. (2014). Optimization of the formulation of nutritional breads based on calcium carbonate and inulin. LWT - Food Science and Technology, 60(1), 95-101.
  • [25] Zahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science and Technology, 45(12), 2531-2537.
  • [26] Celik, I., Isik, F., Gursoy, O., & Yilmaz, Y. (2013). Use of Jeruselam Artichoke (Helianthus Tuberosus) Tubers As A Natural Source of Inulin in Cakes. Journal of Food Processing and Preservation, 37(5), 483-488.
  • [27] Zbikowska, A., Marciniak-Lukasiak, K., Kowalska, M., & Onacik-Gur, S. (2017). Multivariate Study of Inulin Addition on the Quality of Sponge Cakes. Polish Journal of Food and Nutrition Sciences, 67(3), 201-209.
  • [28] Tsatsaragkou, K., Methven, L., Chatzifragkou, A., & Rodriguez-Garcia, J. (2021). The Functionality of Inulin as a Sugar Replacer in Cakes and Biscuits; Highlighting the Influence of Differences in Degree of Polymerisation on the Properties of Cake Batter and Product. Foods, 10(5).
  • [29] Capriles, V. D., Conti-Silva, A. C., & Arêas, J. A. (2021). Effects of oligofructose-enriched inulin addition before and after the extrusion process on the quality and postprandial glycemic response of corn-snacks. Food Bioscience, 43, 101263.
  • [30] Drabinska, N., Krupa-Kozak, U., Abramowicz, P., & Jarocka-Cyrta, E. (2018). Beneficial Effect of Oligofructose-Enriched Inulin on Vitamin D and E Status in Children with Celiac Disease on a Long-Term Gluten-Free Diet: A Preliminary Randomized, Placebo-Controlled Nutritional Intervention Study. Nutrients, 10(11), 1768.
  • [31] Kristanti, D., & Herminiati, A. (2018). Characteristics of physical, chemical, and organoleptic properties of inulin-enriched pudding as a complementary food. 2. I. Sciences (Dü.). içinde, 251, s. 012032.
  • [32] Ferreira, S. M., Capriles, V. D., & Conti-Silva, A. C. (2021). Inulin as an ingredient for improvement of glycemic response and sensory acceptance of breakfast cereals. Food Hydrocolloids, 114.
  • [33] Morais, E. C., Morais, A. R., Cruz, A. G., & Bolini, H. M. (2014). Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high-intensity sweeteners. Journal of Dairy Science. Journal of Dairy Science, 97(5), 2600–2609.
  • [34] Wibawanti, J., Mulyani, S., Legowo, A., Hartanto, R., Al-Baarri, A., & Pramono, Y. (2021). Characteristics of inulin from mangrove apple (Soneratia caseolaris) with different extraction temperatures. Food Research, 5(4), 99-106.
  • [35] Franke, S., Chless, K., Silveria, J., & Robensam, G. (2004). Study of a antioxidant and mutajenic activity of different orange juices. Food Chemistry, 88, 45-55.
  • [36] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26(9-10), 1231-1237.
  • [37] Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30.
  • [38] Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry, 239, 70-76.
  • [39] Lario, Y., Sendra, E., GarcIa-Perez, J., Fuentes, C., Sayas-Barbera, E., Fernandez-Lopez, J., & Perez-Alvarez, J. (2004). Preparation of high dietary fiber powder from lemon juice by products. Innovative Food Science and Emerging Technologies, 5, 113-117.
  • [40] Anonim, Minolta CR-300 Chromameter Operator’S Instruction Manual. (1991). Minolta-Crop. Ramsey, NJ.
  • [41] Martínez-Noël, G. M., Dosio, G. A., Puebla, A. F., Insani, E. M., & Tognetti, J. A. (2015). Sunflower: a potential fructan-bearing crop? Front Plant Sci., 12(6), 798.
  • [42] Zeaiter, Z., Regonesi, M. E., Cavini, S., Labra, M., Sello, G., & Di Gennaro, P. (2019). Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health. BioMed Research International, 1-8.
  • [43] Singh, R. S., & Singh, R. P. (2010). Production of Fructooligosaccharides from Inulin by Endoinulinases and Their Prebiotic Potential. Food Technol. Biotechnol., 48(4), 435-450.
  • [44] Gupta, D., & Chaturvedi, N. (2020). Prebiotic potential of underutilized Jerusalem artichoke in Human Health: A Comprehensive Review. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 5(1), 97-103.
  • [45] Sarkis, J. R., Côrrea, A., Michel, I., Brandeli, A., Tessaro, I., & Marczak, L. (2014). Evaluation of the phenolic content and antioxidant activity of different seed and nut cakes from the edible oil industry. J. Am. Oil Chem. Soc., 91, 1773–1782.
  • [46] Matthäus, B. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem., 50, 3444–3452.
  • [47] Mehmood, A., Zhao, L., Ishaq, M., Safdar, B., Wang, C., & Nadeem, M. (2018). Optimization of total phenolic contents, antioxidant, and in-vitro xanthine oxidase inhibitory activity of sunflower head. CyTA-J. Food, 16, 957–964.
  • [48] Gai, F., Karamać, M., Janiak, M. A., Amarowicz, R., & Peiretti, P. G. (2020). Sunflower (Helianthus annuus L.) Plants at Various Growth Stages Subjected to Extraction—Comparison of the Antioxidant Activity and Phenolic Profile. Antioxidants (Basel), 9(6), 535.
  • [49] Moreno, N. J., Cimminelli, M. J., Volpe, F., Ansó, R., Esparza, I., Mármol, I., . . . Azpilicueta, C. A. (2019). Phenolic Composition of Artichoke Waste and Its Antioxidant Capacity on Differentiated Caco-2 Cells. Nutrients, 11(8), 1723.
  • [50] Ivanov, I. G. (2014). Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. International Journal of Pharmacognosy and Phytochemical Research, 6(4), 889-893.
  • [51] Andrejiová, A. K. (2011). Effect of fertilization and cultivar on total polyphenol content in onion (Allium cepa L.). Nutrition and Health, Proceeding from the Conference, SPU : Nitra, 12-17.
  • [52] Armand, B. A. (2012). Effect of Solar and Electric Dryingon the Content of the Phenolic Compounds and Antioxidant activity of three varietes of onion (Allium cepa L.). International Journal of Biology Pharmacy and Allied Sciences, 1(3), 204-220.
  • [53] Priecina, L. K. (2013). Total Polyphenol, Flavonoid Content And Antiradical Activity Of Celery, Dill, Parsley, Onion And Garlic Dried Conventive And Microwave-Vacuum Dryers. International Conference on Nutrition and Food Sciences, 5, s. 107-112.
  • [54] Kavalcová, P., Bystrická, J., Tomáš, J., Karovičová, J., & Kuchtová, V. (2014). Evaluation and Comparison of the Content of Total Polyphenols and Antioxidant Activity in Onion, Garlic and Leek. Potravinarstvo® Scientific Journal for Food Industry, 8(1), 272-276.
  • [55] Catană, L., Catană, M., Iorga, E., Lazăr, A. G., Lazăr, M. A., Teodorescu, R. I., . . . Belc, N. I. (2018). Valorification of Jerusalem Artichoke Tubers (Helianthus Tuberosus) for Achieving of Functional Ingredient with High Nutritional Value. “Agriculture for Life, Life for Agriculture” Conference Proceedings, (s. 276-283). [56] Petkova, N., Ivanov, I., Denev, P., & Pavlov, A. (2014). Bioactive substance and free radical scavenging activities of flour from Jerusalem Artichoke (Helianthus tuberosus L.) Tubers: a comparative study. Turkish Journal of Agricultural and Natural Science, 1773-1778.
  • [57] Inchuen, S., Porniammongkol, O., & Duangkhamchan, W. (2014). Effect of drying methods on chemical and functional properties of Jerusalem Artichoke (Helianthus tuberosus L.) powders. Advanced Materials Research, 931-932, 1512–1517.
  • [58] Alyas, N. D., Puteh, F., Zulkifli, N. I., & Hasnan, N. Z. (2021). Evaluation of total phenolic content and antioxidant activities from different type of extraction technique of Helianthus tuberosus. Advances in Agricultural and Food Research Journal, 2(1), 1-12.
  • [59] Hunter, R. S., & Harold, R. W. (1987). The Measurement of Appearence (Cilt 2. Edition). John Wiley.
  • [60] Kimura, S., Tungy, Y., Pan, M., Su, N., Lai, Y., & Cheng, K. (2017). Black garlic: A critical review of its production, bioactivity, andapplication. J. Food Drug Anal. , 25, 62–70.
  • [61] Ryu, J., & Kang, D. ( 2017). Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: Areview. Molecules, 22, 919.
  • [62] Gökçe, A., Kaya, C., Serçe, S., & Özgen, M. (2010). Effect of scale color on the antioxidant capacity of onions. Scientia Horticulturae, 123, 431-435.
  • [63] Lee, D. J., Han, J., & Lim, S. T. (2016). Enhancement of Antioxidant Activity of Onion Powders by Browning during Drying Process. Korean Journal of Food Science and Technology, 1, 15-19.
  • [64] Martínez, N. G., Martínez, P. A., & Almela, L. (2017). Characterization of Six Artichoke Cultivars and Their Suitability for Agro-industrial Processing. Journal of Food and Nutrition Research, 5(4), 234-242.
  • [65] Puyanda, I. R., Uriyapongson, S., & Uriyapongson, J. (2020). Influence of drying method on qualities of Jerusalem artichoke (Helianthus tuberosus L.) tuber harvested in Northeastern Thailand. 42(6), 1279-1285.
  • [66] Biernacka, B., Dziki, D., Kozłowska, J., Kowalska, I., & Soluch, A. (2021). Dehydrated at Different Conditions and Powdered Leek as aConcentrate of Biologically Active Substances: AntioxidantActivity and Phenolic Compound Profile. Materials, 14(20).
  • [67] Martinić, A., Kalušević, A., Lević, S., Nedović, V., Cebin, A. V., Karlović, S., . . . Komes, D. (2022). Microencapsulation of Dandelion (Taraxacum officinale L.) Leaf Extract by Spray Drying. Food Technology and Biotechnology, 60(2).
  • [68] Sutradhar, A., Lollato, R. P., Butchee, K., & Arnall, D. B. (2014). Determining Critical Soil pH for Sunflower Production. International Journal of Agronomy, 2014(1).
  • [69] Boonpeng, S., Siripongvutikorn, S., & Sae-wong, C. (2014). The antioxidant and anti-cadmium toxicity properties of garlic extracts. Food Science and Nutrition, 2(6), 1-10.
  • [70] McGlynn, W. (2003). The Importance of Food pH in Commercial Canning Operations. The Oklahoma State University Cooperative Extension Service Food Technology Fact Sheet(118), 1-8. https://www.clemson.edu. adresinden alınmıştır
  • [71] Holm, L., Doll, J., Holm, E., Pancho, J., & Herberger, J. (1997). World Weeds: Natural Histories and Distribution. Wiley and Sons, Hoboken.
  • [72] Abou-Arab, A. A., Abou-Arab, E. A., & Abu-Salem, F. M. (2008). Physical and Functional Properties of Jerusalem Artichoke Flour Produced by Different Drying Methods. J. Agric. Sci. Mansoura Univ., 33(11), 7891 - 7903.

Determination of Inulin Contents and Functional Properties of Some Plants Belonging to Compositae and Liliales Families

Yıl 2025, Cilt: 2025 Sayı: 22, 17 - 31, 03.06.2025

Öz

Inulin is a natural, plant-derived storage polysaccharide with a wide range of food and pharmaceutical applications, and today it has an important place in the food industry in the preparation of functional foods. Due to the increasing interest in obtaining inulin, this study aimed to investigate the sources of inulin in some plants belonging to the Compositae and Liliales families, to determine their inulin contents, and functional properties. In this study, the presence of inulin was determined in sunflower (crown part), artichoke (leaf), dandelion, leek, garlic, onion, and Jerusalem artichoke. Additionally, the relationship between total phenolic substances and antioxidant capacity values in products where inulin was detected was investigated. In addition, the color and pH values of the materials were determined. The highest inulin content among the studied materials was determined in garlic samples (20.179±0.188 g/100g). The correlation between total phenolic substances and total antioxidant capacity was determined between 0.866 and 0.989 in all materials.

Destekleyen Kurum

Tokat Gaziosmanpasa University

Proje Numarası

2022/56

Teşekkür

This study was supported by Tokat Gaziosmanpasa University Scientific Research Projects Coordination Office with project number 2022/56.

Kaynakça

  • [1] Mensink, M. A., Frijlink, H. W., Maarschalk, K. v., & Hinrichs, W. L. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers, 130, 405-419.
  • [2] Peters, D. (2007). Raw Materials. Advances in Biochemical Engineering/Biotechnology - White Biotechnology (Cilt 105, s. 8-9). içinde
  • [3] Ronkart, S. N., Blecker, C. S., Fourmanoir, H., Fougnies, C., Deroanne, C., Van Herck, J., & Paquot, M. (2007). Isolation and identification of inulinoligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta, 604(1), 81-87.
  • [4] Apolinário, A. C., Damasceno, B. P., Beltrão, N. E., Pessoa, A., Converti, A., & Silva, J. A. (2014). Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers, 101, 368-378.
  • [5] Rubel, I. A., Iraporda, C., Manrique, G. D., Genovese, D. B., & Abraham, A. G. (2021). Inulin from Jerusalem artichoke (Helianthus tuberosus L.): From its biosynthesis to its application as bioactive ingredient. Bioactive Carbohydrates and Dietary Fibre, 26.
  • [6] Arruda, H. S., Silva, E. K., Pereira, G. A., Meireles, M. A., & Pastore, G. M. (2020). Inulin thermal stability in prebiotic carbohydrate-enriched araticum whey beverage. LWT-Food Science and Technology, 128, 1-8.
  • [7] Kriukova, Y., Jakubiak-Augustyn, A., Ilyinska, N., Krotkiewski, H., Gontova, T., Evtifeyeva, O., Matkowski, A. (2017). Chain length distribution of inulin from dahlia tubers as influenced by the extraction method. International Journal of Food Properties, 20, 3112-3122.
  • [8] Guimarães, J. T., Silva, E. K., Costa, A. L., Cunha, R. L., Freitas, M. Q., Meireles, M. A., & Cruz, A. G. (2018). Manufacturing a prebiotic whey beverage exploring the influence of degree of inulin polymerization. Food Hydrocolloids, 77, 787-795.
  • [9] Paciulli, M., Littardi, P., Carini, E., Paradiso, V. M., Castellino, M., & Chiavaro, E. (2020). Inulin-based emulsion filled gel as fat replacer in shortbread cookies: Effects during storage. LWT-Food Science and Technology, 133, 1-9.
  • [10] Gaafar, A. M., El-Din, M. S., Boudy, E. A., & El-Gazar, H. H. (2010). Extraction conditions of inulin from Jerusalem artichoke tubers and its effects on blood glucose and lipid profile in diabetic rats. Journal of American Science, 6(5), 36-43.
  • [11] Cho, K. D., Kim, E. J., Kim, M. Y., Kim, J. S., Han, C. K., & Lee, B. H. (2010). Antiobesity and antidiabetic effects of Jerusalem artichoke and purple sweet potato in the diet-induced obese rats. The FASEB Journal, 24, 722-723.
  • [12] Yang, H. J., Kwon, D. Y., Kim, M. J., Kang, S., Kim, D. S., & Park, S. (2012). Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats. Nutrition Metabolism, 1(9), 1-12.
  • [13] Kim, H. S., & Han, G. D. (2013). Hypoglycemic and hepatoprotective effects of Jerusalem artichoke extracts on streptozotocin-induced diabetic rats. Food Science and Biotechnology, 22(4), 1121-1124.
  • [14] Samal, L., Chaturvedi, V. B., Saikumar, G., Somvanshi, R., & Pattanaik, A. K. (2014). Prebiotic potential of jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: Effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. Journal of the Science of Food and Agriculture, 95(8), 1689–1696.
  • [15] El-Kholy, W. M., & Mahrous, H. (2015). Biological studies on bio-yoghurt fortified with prebiotic obtained from Jerusalem artichoke. Food and Nutrition Sciences, 6(16), 1552.
  • [16] Wang, Z., Hwang, S. H., Lee, S. Y., & Lim, S. S. (2016). Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice. Nutrition Research and Practice, 10(3), 282-287.
  • [17] Okada, N., Kobayashi, S., Moriyama, K., Miyataka, K., Abe, S., Sato, C., & Kawazoe, K. (2017). Helianthus tuberosus (Jerusalem artichoke) tubers improve glucose tolerance and hepatic lipid profile in rats fed a high-fat diet. Asian Pacific Journal of Tropical Medicine, 10(5), 439-443.
  • [18] Shao, T., Yu, Q., Zhu, T., Liu, A., Gao, X., Long, X., & Liu, Z. (2020). Inulin from Jerusalem artichoke tubers alleviates hyperglycaemia in high-fat-diet-induced diabetes mice through the intestinal microflora improvement. British Journal of Nutrition, 123(3), 308-318.
  • [19] Tiengtam, N., Khempaka, S., Paengkoum, P., & Boonanuntanasarn, S. (2015). Effects of inulin and Jerusalem artichoke (Helianthus tuberosus) as prebiotic ingredients in the diet of juvenile Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 207, 120–129., 120-129.
  • [20] Van Doan, H., Doolgindachbaporn, S., & Suksri, A. J. (2016). Effect of Lactobacillus plantarum and Jerusalem artichoke (Helianthus tuberosus) on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). Aquaculture Nutrition, 22(2), 444-456.
  • [21] Arcia, P. L., Costell, E., & Tárrega, A. (2011). Inulin blend as prebiotic and fat replacer in dairy desserts: Optimization by response surface methodology. Journal of Dairy Science, 94(5), 2192-2200.
  • [22] Meyer, D., Bayarri, S., Tárrega, A., & Costell, E. (2011). Inulin as texture modifier in dairy products. Food Hydrocolloids, 25(8), 1881–1890.
  • [23] Sevane, N., Bialade, F., Velasco, S., Rebola, A., Rodriguez, M. L., Ortiz, L. T., & Dunner, S. (2014). Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. , 9(6), e98942. PloS One, 9(6).
  • [24] Salinas, M. V., & Puppo, M. C. (2014). Optimization of the formulation of nutritional breads based on calcium carbonate and inulin. LWT - Food Science and Technology, 60(1), 95-101.
  • [25] Zahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science and Technology, 45(12), 2531-2537.
  • [26] Celik, I., Isik, F., Gursoy, O., & Yilmaz, Y. (2013). Use of Jeruselam Artichoke (Helianthus Tuberosus) Tubers As A Natural Source of Inulin in Cakes. Journal of Food Processing and Preservation, 37(5), 483-488.
  • [27] Zbikowska, A., Marciniak-Lukasiak, K., Kowalska, M., & Onacik-Gur, S. (2017). Multivariate Study of Inulin Addition on the Quality of Sponge Cakes. Polish Journal of Food and Nutrition Sciences, 67(3), 201-209.
  • [28] Tsatsaragkou, K., Methven, L., Chatzifragkou, A., & Rodriguez-Garcia, J. (2021). The Functionality of Inulin as a Sugar Replacer in Cakes and Biscuits; Highlighting the Influence of Differences in Degree of Polymerisation on the Properties of Cake Batter and Product. Foods, 10(5).
  • [29] Capriles, V. D., Conti-Silva, A. C., & Arêas, J. A. (2021). Effects of oligofructose-enriched inulin addition before and after the extrusion process on the quality and postprandial glycemic response of corn-snacks. Food Bioscience, 43, 101263.
  • [30] Drabinska, N., Krupa-Kozak, U., Abramowicz, P., & Jarocka-Cyrta, E. (2018). Beneficial Effect of Oligofructose-Enriched Inulin on Vitamin D and E Status in Children with Celiac Disease on a Long-Term Gluten-Free Diet: A Preliminary Randomized, Placebo-Controlled Nutritional Intervention Study. Nutrients, 10(11), 1768.
  • [31] Kristanti, D., & Herminiati, A. (2018). Characteristics of physical, chemical, and organoleptic properties of inulin-enriched pudding as a complementary food. 2. I. Sciences (Dü.). içinde, 251, s. 012032.
  • [32] Ferreira, S. M., Capriles, V. D., & Conti-Silva, A. C. (2021). Inulin as an ingredient for improvement of glycemic response and sensory acceptance of breakfast cereals. Food Hydrocolloids, 114.
  • [33] Morais, E. C., Morais, A. R., Cruz, A. G., & Bolini, H. M. (2014). Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high-intensity sweeteners. Journal of Dairy Science. Journal of Dairy Science, 97(5), 2600–2609.
  • [34] Wibawanti, J., Mulyani, S., Legowo, A., Hartanto, R., Al-Baarri, A., & Pramono, Y. (2021). Characteristics of inulin from mangrove apple (Soneratia caseolaris) with different extraction temperatures. Food Research, 5(4), 99-106.
  • [35] Franke, S., Chless, K., Silveria, J., & Robensam, G. (2004). Study of a antioxidant and mutajenic activity of different orange juices. Food Chemistry, 88, 45-55.
  • [36] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26(9-10), 1231-1237.
  • [37] Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30.
  • [38] Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry, 239, 70-76.
  • [39] Lario, Y., Sendra, E., GarcIa-Perez, J., Fuentes, C., Sayas-Barbera, E., Fernandez-Lopez, J., & Perez-Alvarez, J. (2004). Preparation of high dietary fiber powder from lemon juice by products. Innovative Food Science and Emerging Technologies, 5, 113-117.
  • [40] Anonim, Minolta CR-300 Chromameter Operator’S Instruction Manual. (1991). Minolta-Crop. Ramsey, NJ.
  • [41] Martínez-Noël, G. M., Dosio, G. A., Puebla, A. F., Insani, E. M., & Tognetti, J. A. (2015). Sunflower: a potential fructan-bearing crop? Front Plant Sci., 12(6), 798.
  • [42] Zeaiter, Z., Regonesi, M. E., Cavini, S., Labra, M., Sello, G., & Di Gennaro, P. (2019). Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health. BioMed Research International, 1-8.
  • [43] Singh, R. S., & Singh, R. P. (2010). Production of Fructooligosaccharides from Inulin by Endoinulinases and Their Prebiotic Potential. Food Technol. Biotechnol., 48(4), 435-450.
  • [44] Gupta, D., & Chaturvedi, N. (2020). Prebiotic potential of underutilized Jerusalem artichoke in Human Health: A Comprehensive Review. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 5(1), 97-103.
  • [45] Sarkis, J. R., Côrrea, A., Michel, I., Brandeli, A., Tessaro, I., & Marczak, L. (2014). Evaluation of the phenolic content and antioxidant activity of different seed and nut cakes from the edible oil industry. J. Am. Oil Chem. Soc., 91, 1773–1782.
  • [46] Matthäus, B. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem., 50, 3444–3452.
  • [47] Mehmood, A., Zhao, L., Ishaq, M., Safdar, B., Wang, C., & Nadeem, M. (2018). Optimization of total phenolic contents, antioxidant, and in-vitro xanthine oxidase inhibitory activity of sunflower head. CyTA-J. Food, 16, 957–964.
  • [48] Gai, F., Karamać, M., Janiak, M. A., Amarowicz, R., & Peiretti, P. G. (2020). Sunflower (Helianthus annuus L.) Plants at Various Growth Stages Subjected to Extraction—Comparison of the Antioxidant Activity and Phenolic Profile. Antioxidants (Basel), 9(6), 535.
  • [49] Moreno, N. J., Cimminelli, M. J., Volpe, F., Ansó, R., Esparza, I., Mármol, I., . . . Azpilicueta, C. A. (2019). Phenolic Composition of Artichoke Waste and Its Antioxidant Capacity on Differentiated Caco-2 Cells. Nutrients, 11(8), 1723.
  • [50] Ivanov, I. G. (2014). Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. International Journal of Pharmacognosy and Phytochemical Research, 6(4), 889-893.
  • [51] Andrejiová, A. K. (2011). Effect of fertilization and cultivar on total polyphenol content in onion (Allium cepa L.). Nutrition and Health, Proceeding from the Conference, SPU : Nitra, 12-17.
  • [52] Armand, B. A. (2012). Effect of Solar and Electric Dryingon the Content of the Phenolic Compounds and Antioxidant activity of three varietes of onion (Allium cepa L.). International Journal of Biology Pharmacy and Allied Sciences, 1(3), 204-220.
  • [53] Priecina, L. K. (2013). Total Polyphenol, Flavonoid Content And Antiradical Activity Of Celery, Dill, Parsley, Onion And Garlic Dried Conventive And Microwave-Vacuum Dryers. International Conference on Nutrition and Food Sciences, 5, s. 107-112.
  • [54] Kavalcová, P., Bystrická, J., Tomáš, J., Karovičová, J., & Kuchtová, V. (2014). Evaluation and Comparison of the Content of Total Polyphenols and Antioxidant Activity in Onion, Garlic and Leek. Potravinarstvo® Scientific Journal for Food Industry, 8(1), 272-276.
  • [55] Catană, L., Catană, M., Iorga, E., Lazăr, A. G., Lazăr, M. A., Teodorescu, R. I., . . . Belc, N. I. (2018). Valorification of Jerusalem Artichoke Tubers (Helianthus Tuberosus) for Achieving of Functional Ingredient with High Nutritional Value. “Agriculture for Life, Life for Agriculture” Conference Proceedings, (s. 276-283). [56] Petkova, N., Ivanov, I., Denev, P., & Pavlov, A. (2014). Bioactive substance and free radical scavenging activities of flour from Jerusalem Artichoke (Helianthus tuberosus L.) Tubers: a comparative study. Turkish Journal of Agricultural and Natural Science, 1773-1778.
  • [57] Inchuen, S., Porniammongkol, O., & Duangkhamchan, W. (2014). Effect of drying methods on chemical and functional properties of Jerusalem Artichoke (Helianthus tuberosus L.) powders. Advanced Materials Research, 931-932, 1512–1517.
  • [58] Alyas, N. D., Puteh, F., Zulkifli, N. I., & Hasnan, N. Z. (2021). Evaluation of total phenolic content and antioxidant activities from different type of extraction technique of Helianthus tuberosus. Advances in Agricultural and Food Research Journal, 2(1), 1-12.
  • [59] Hunter, R. S., & Harold, R. W. (1987). The Measurement of Appearence (Cilt 2. Edition). John Wiley.
  • [60] Kimura, S., Tungy, Y., Pan, M., Su, N., Lai, Y., & Cheng, K. (2017). Black garlic: A critical review of its production, bioactivity, andapplication. J. Food Drug Anal. , 25, 62–70.
  • [61] Ryu, J., & Kang, D. ( 2017). Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: Areview. Molecules, 22, 919.
  • [62] Gökçe, A., Kaya, C., Serçe, S., & Özgen, M. (2010). Effect of scale color on the antioxidant capacity of onions. Scientia Horticulturae, 123, 431-435.
  • [63] Lee, D. J., Han, J., & Lim, S. T. (2016). Enhancement of Antioxidant Activity of Onion Powders by Browning during Drying Process. Korean Journal of Food Science and Technology, 1, 15-19.
  • [64] Martínez, N. G., Martínez, P. A., & Almela, L. (2017). Characterization of Six Artichoke Cultivars and Their Suitability for Agro-industrial Processing. Journal of Food and Nutrition Research, 5(4), 234-242.
  • [65] Puyanda, I. R., Uriyapongson, S., & Uriyapongson, J. (2020). Influence of drying method on qualities of Jerusalem artichoke (Helianthus tuberosus L.) tuber harvested in Northeastern Thailand. 42(6), 1279-1285.
  • [66] Biernacka, B., Dziki, D., Kozłowska, J., Kowalska, I., & Soluch, A. (2021). Dehydrated at Different Conditions and Powdered Leek as aConcentrate of Biologically Active Substances: AntioxidantActivity and Phenolic Compound Profile. Materials, 14(20).
  • [67] Martinić, A., Kalušević, A., Lević, S., Nedović, V., Cebin, A. V., Karlović, S., . . . Komes, D. (2022). Microencapsulation of Dandelion (Taraxacum officinale L.) Leaf Extract by Spray Drying. Food Technology and Biotechnology, 60(2).
  • [68] Sutradhar, A., Lollato, R. P., Butchee, K., & Arnall, D. B. (2014). Determining Critical Soil pH for Sunflower Production. International Journal of Agronomy, 2014(1).
  • [69] Boonpeng, S., Siripongvutikorn, S., & Sae-wong, C. (2014). The antioxidant and anti-cadmium toxicity properties of garlic extracts. Food Science and Nutrition, 2(6), 1-10.
  • [70] McGlynn, W. (2003). The Importance of Food pH in Commercial Canning Operations. The Oklahoma State University Cooperative Extension Service Food Technology Fact Sheet(118), 1-8. https://www.clemson.edu. adresinden alınmıştır
  • [71] Holm, L., Doll, J., Holm, E., Pancho, J., & Herberger, J. (1997). World Weeds: Natural Histories and Distribution. Wiley and Sons, Hoboken.
  • [72] Abou-Arab, A. A., Abou-Arab, E. A., & Abu-Salem, F. M. (2008). Physical and Functional Properties of Jerusalem Artichoke Flour Produced by Different Drying Methods. J. Agric. Sci. Mansoura Univ., 33(11), 7891 - 7903.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Emrah Oral

Aslihan Demirdöven 0000-0003-1246-9132

Proje Numarası 2022/56
Erken Görünüm Tarihi 12 Mayıs 2025
Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 18 Nisan 2025
Kabul Tarihi 12 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2025 Sayı: 22

Kaynak Göster

APA Oral, E., & Demirdöven, A. (2025). Compositae ve Liliales Familyalarına Ait Bazı Bitkilerin İnülin İçerikleri ile Fonksiyonel Özelliklerinin Belirlenmesi. Journal of New Results in Engineering and Natural Sciences, 2025(22), 17-31.