Research Article
BibTex RIS Cite

Year 2024, Volume: 28 Issue: 6, 1869 - 1882, 28.06.2025
https://doi.org/10.29228/jrp.860

Abstract

References

  • [1] Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway remodeling in asthma. Front Med (Lausanne). 2020; 7: 191. https://doi.org/10.3389/fmed.2020.00191.
  • [2] Hanania N. Targeting Airway Inflammation in Asthma: current and future therapies. Chest. 2008; 133(4): 989-998. https://doi.org/10.1378/chest.07-0829.
  • [3] Peebles RS Jr, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma. Clin Chest Med. 2019; 40(1): 29-50. https://doi.org/10.1016/j.ccm.2018.10.014.
  • [4] Aagaard L, Hansen EH. Adverse drug reactions associated with asthma medications in children: Systematic review of clinical trials. Int J Clin Pharm. 2014; 36(2): 243-252. https://doi.org/10.1007/s11096-014-9924-y.
  • [5] Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10(5): 210-229. https://doi.org/10.4314/ajtcam.v10i5.2.
  • [6] Yoganarasimhan SN, Medical plants of India, second ed., International Book Publishers, Print Cyber Media, Bangalore 2000.
  • [7] Vaithiyanathan V, Mirunalini S. Assessment of antioxidant potential and acute toxicity studies of whole plant extract of Pergularia daemia (Forsk). Toxicol Int. 2015; 22(1): 54-60. https://doi.org/10.4103/0971-6580.172257.
  • [8] Warrier PK, Nambiar VPK, Ramankutty C, Indian medicinal plants : A compendium of 500 species, Vol. 4, Orient Longman, Madras, India 1993.
  • [9] Eltayeb A, Ibrahim K. Potential antileishmanial effect of three medicinal plants. Indian J Pharm Sci. 2012; 74(2): 171 174. https://doi.org/10.4103%2F0250-474X.103856.
  • [10] Hebbar S, Harsha V, Shripathi V, Hegde G. Ethnomedicine of Dharwad district in Karnataka, India-plants used in oral health care. J Ethnopharmacol. 2004; 94(2- 3): 261-266. https://doi.org/10.1016/j.jep.2004.04.021.
  • [11] Sureshkumar S, Mishra S. Hepatoprotective effect of extracts from Pergularia daemia Forsk. J Ethnopharmacol. 2006; 107(2): 164-168. https://doi.org/10.1016/j.jep.2006.02.019.
  • [12] Sadik G, Gafur MA, Shah Alam Bhuiyan M, Motiur Rahman M, Biswas HU. Antifertility activity of the alkaloidal fraction of Pergularia daemia. J Med Sci. 2001; 1: 217-219. https://doi.org/10.3923/jms.2001.217.219.
  • [13] Wahi AK, Ravi J, Hemalatha S, Singh PN. Anti-diabetic activity of Daemia extensa. J Nat Remedies. 2002; 2(1): 80-83.
  • [14] Bhavin V, Ruchi V, Santani DD. Diuretic potential of whole plant extracts of Pergularia daemia (Forsk.). Iran J Pharm Res. 2011; 10(4): 795-768.
  • [15] Ananth DA, Deviram G, Mahalakshmi V, Ratna Bharathi V. Active status on phytochemistry and pharmacology of Pergularia daemia Forsk. (Trellis-vine): A review. Clin Phytosci. 2021; 7: 60. https://doi.org/10.1186/s40816-021 00295-z.
  • [16] Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016; 5(47): 1-15. https://doi.org/10.1017/jns.2016.41.
  • [17] Tanaka T, Takahashi R. https://doi.org/10.3390/nu5062128. Flavonoids and asthma. Nutrients. 2013; 5(6):2128-2143.
  • [18] Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets. 2010; 9: 263-285. https://doi.org/10.2174/187152810793358741.
  • [19] Enechi O, Odo C, Wuave C. Evaluation of the in vitro anti-oxidant activity of Alternanthera brasiliana leaves. J Pharm Res. 2013; 6(9): 919-924. https://doi.org/10.1016/j.jopr.2013.09.006.
  • [20] Jung CH, Lee JY, Cho CH, Kim CJ. Anti-asthmatic action of quercetin and rutin in conscious guinea pigs challenged with aerosolized ovalbumin. Archiv Pharm Res. 2007; 30: 1599-1607. https://doi.org/10.1007/BF02977330.
  • [21] Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 2019; 24: 370. https://doi.org/10.1016/j.btre.2019.e00370.
  • [22] Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011; 48(4): 412-422. https://doi.org/10.1007/s13197-011-0251-1.
  • [23] Song H, Kim H, Kim W, Byun E, Jang B, Choi DS, Byun E. Effect of gamma irradiation on the anti-oxidant and anti melanogenic activity of black ginseng extract in B16F10 melanoma cells. Radiat Phys Chem. 2018; 149: 33-40. https://doi.org/10.1016/j.radphyschem.2018.03.008.
  • [24] Xu W, Hu M, Zhang Q, Yu J, Su W. Effects of anthraquinones from Cassia occidentalis L. on ovalbumin-induced airways inflammation in a mouse model of allergic asthma. J Ethnopharmacol. 2018; 221: 1-9. https://doi.org/10.1016/j.jep.2018.04.012.
  • [25] Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol. 2008; 8(6): 478-486. https://doi.org/10.1038/nri2327.
  • [26] Choi YH, Chai OH, Han EH, Choi SY, Kim HT, Song CH. Lipoic acid suppresses compound 48/80-induced anaphylaxis-like reaction. Anat Cell Biol. 2010; 43(4): 317-324. https://doi.org/10.5115/acb.2010.43.4.317.
  • [27] Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, Grundy D. The mast cell degranulator compound 48/80 directly activates neurons. PLoS One. 2012; 7(12): 1-9. https://doi.org/10.1371/journal.pone.0052104.
  • [28] Fanelli A, Duranti R, Gorini M, Spinelli A, Gigliotti F, Scano G. Histamine-induced changes in breathing pattern may precede bronchoconstriction in selected patients with bronchial asthma. Thorax. 1994; 49(7): 639-643. https://doi.org/10.1136/thx.49.7.639.
  • [29] Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020; 12(1): 1-10. https://doi.org/10.4103/jpbs.JPBS_175_19.
  • [30] Gopalasatheeskumar K. significant role of soxhlet extraction process in phytochemical research. Mintage J Pharm Med Sci. 2018; 7(1): 43-47.
  • [31] Trease GE, Evans WC. Textbook of pharmacognosy, Twelfth ed., Balliese Tindall and Company Publisher, London 1983.
  • [32] Sivakumar G, Gopalasatheeskumar K, Gowtham K, Sindhu E, Akash Raj K, Rajaguru B, Sriram K, Kalaichelvan VK. Phytochemical analysis, antioxidant and antiarthritic activities of different solvent extract of Aegle marmelos L. unripe fruit. Res J Pharm Technol. 2020; 13(6): 2759-2763. https://doi.org/10.5958/0974-360X.2020.00490.4.
  • [33] Bristy AT, Islam T, Ahmed R, Hossain J, Reza HM, Jain P. Evaluation of total phenolic content, HPLC analysis, and antioxidant potential of three local varieties of mushroom: A comparative study. Int J Food Sci. 2022; 2022: 3834936. https://doi.org/10.1155/2022/3834936.
  • [34] Blainski A, Lopes GC, de Mello JC. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules. 2013; 18(6): 6852-6865. https://doi.org/10.3390/molecules18066852.
  • [35] Sanchez-Rangel J, Benavides J, Heredia J, Cisneros-Zevallos L, Jacobo-Velazquez D. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods. 2013; 5(21): 5990 5999. https://doi.org/10.1039/C3AY41125G.
  • [36] Pekal A, Pyrzynska K. Evaluation of Aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014; 7: 1776-1782. https://doi.org/10.1007/s12161-014-9814-x.
  • [37] Chekroun E, Benariba N, Adida H, Bechiri A, Azzi R, Djaziri R. Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and Bryonia dioica roots. Asian Pac J Trop Med. 2015; 5(8): 632-637. https://doi.org/10.1016/S2222-1808(15)60903-3.
  • [38] Sridevi G, Srividya S, Sembulingam K, Sembulingam P. An evaluation of in vitro and in vivo free radical scavenging and antioxidant potential of ethanolic extract of Pergularia daemia. Biocatal Agric Biotechnol. 2018; 15: 131-137. https://doi.org/10.1016/j.bcab.2018.05.007. [39] Ayele DT, Akele ML, Melese AT. Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chem. 2022; 16: 30. https://doi.org/10.1186/s13065-022-00822 0.
  • [40] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181: 1199-1200.
  • [41] Shah MD, DSouza U, Iqbal M. The potential protective effect of Commelina nudiflora L. against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats, mediated by suppression of oxidative stress and inflammation. Environ Health Prev Med. 2017; 22(66): 1-19. https://doi.org/10.1186/s12199-017-0673-0.
  • [42] Jongrungraungchok S, Madaka F, Wunnakup T, Sudsai T, Pongphaew C, Songsak T, Pradubyat N. In vitro antioxidant, anti inflammatory, and anticancer activities of mixture Thai medicinal plants. BMC Complement Med Ther. 2023; 23(43): 1-12. https://doi.org/10.1186/s12906-023-03862-8.
  • [43] Atanu FO, Ikeojukwu A, Owolabi PA, Avwioroko OJ. Evaluation of chemical composition, in vitro antioxidant, and antidiabetic activities of solvent extracts of Irvingia gabonensis leaves. Heliyon. 2022; 8(7): 9922. https://doi.org/10.1016/j.heliyon.2022.e09922.
  • [44] Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006; 1(6): 3159-3165. https://doi.org/10.1038/nprot.2006.378.
  • [45] Costa A, Alves R, Vinha A, Costa E, Costa CSG, Antonia Nunes M, Almeida AA, Santos-Silva A, Oliveira MB. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018; 267: 28-35. https://doi.org/10.1016/j.foodchem.2017.03.106
  • [46] Nonglang FP, Khale A, Wankhar W, Bhane S. Pharmacognostic evaluation of Eranthemum indicum extracts for its in vitro antioxidant activity, acute toxicology, and investigation of potent bioactive phytocompounds using HPTLC and GCMS. Beni-Suef Univ J Basic Appl Sci. 2022; 11(129): 1-17. https://doi.org/10.1186/s43088-022-00311-2
  • [47] Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. 1996; 239: 70-76. https://doi.org/10.1006/abio.1996.0292.
  • [48] Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005; 53: 4290-4302. https://doi.org/10.1021/JF0502698.
  • [49] Djamila B, Eddine LS, Abderrhmane B, Nassiba A, Barhoum A. In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Conv Bioref. 2022. https://doi.org/10.1007/s13399-022-02743-3.
  • [50] Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999; 269(2): 337-341. https://doi.org/10.1006/abio.1999.4019.
  • [51] Chroho M, Bouymajane A, Aazza M, Oulad El Majdoub Y, Cacciola F, Mondello L, Zair T, Bouissane L. Determination of the phenolic profile, and evaluation of biological activities of hydroethanolic extract from aerial parts of Origanum compactum from Morocco. Molecules. 2022; 27(16): 5189. https://doi.org/10.3390/molecules27165189.
  • [52] Taur D, Patil R, Patil R. Antiasthmatic related properties of Abrus precatorius leaves on various models. J Tradit Complement Med. 2017; 7(4): 428-432. https://doi.org/10.1016%2Fj.jtcme.2016.12.007.
  • [53] Singh D, Tanwar H, Jayashankar B, Sharma J, Murthy S, Chanda S, Bala Singh S, Ganju L. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice. Biomed Pharmacother. 2017; 90: 354-360. https://doi.org/10.1016/j.biopha.2017.03.067.
  • [54] Xue Z, Zhang X, Wu J, Xu W, Li L, Liu F, Yu J. Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice. Ann Allergy Asthma Immunol. 2016; 116(6): 506-513. https://doi.org/10.1016/j.anai.2016.03.029.
  • [55] Vaithiyanathan V, Mirunalini S. Assessment of antioxidant potential and acute toxicity studies of whole plant extract of Pergularia daemia (Forsk). Toxicol Int. 2015; 22(1): 54-60. https://doi.org/10.4103/0971-6580.172257.
  • [56] Yang Y, Yang M, Cho K, Lee K, Kim YB, Kim JS, Kang MG, Song CW, Song CW. Study of a BALB/c mouse model for allergic asthma. Toxicol Res. 2008; 24(4): 253-261. https://doi.org/10.5487%2FTR.2008.24.4.253.
  • [57] Du Y, Luan J, Jiang RP, Liu J, Ma Y. Myrcene exerts anti-asthmatic activity in neonatal rats via modulating the matrix remodeling. Int J Immunopathol Pharmacol. 2020; 34: 1-10. https://doi.org/10.1177/2058738420954948.
  • [58] Li F, Li B, Liu J, Wei X, Qiang T, Mu X, Wang Y, Qi Y, Zhang B, Liu H, Xiao P. Anti-asthmatic fraction screening and mechanisms prediction of Schisandrae sphenantherae fructus based on a combined approach. Front Pharmacol. 2022; 13: 902324. https://doi.org/10.3389/fphar.2022.902324.
  • [59] Ingale S, Upadhye P, Ingale P. Evaluation anti-asthmatic activity of hydroalcoholic extract of Luffa cylindrica leaves. J Res Pharm. 2020; 24(6): 855-864. https://doi.org/10.35333/jrp.2020.244.
  • [60] Lee BW, Ha JH, Ji Y, Jeong SH, Kim JH, Lee J, Park JY, Kwon HJ, Jung K, Kim JC, Ryu YB, Lee IC. Alnus hirsuta (Spach) Rupr attenuates airway inflammation and mucus overproduction in a murine model of ovalbumin challenged asthma. Front Pharmacol. 2021; 12: 614442. https://doi.org/10.3389/fphar.2021.614442.
  • [61] Azman S, Sekar M, Bonam SR, Gan SH, Wahidin S, Lum PT, Dhadde SB. Traditional medicinal plants conferring protection against ovalbumin-induced asthma in experimental animals: A review. J Asthma Allergy. 2021; 14: 641 662. https://doi.org/10.2147/JAA.S296391.
  • [62] Yoo H, Kang M, Pyo S, Chae HS, Ryu KH, Kim J, Chin YW. SKI3301, a purified herbal extract from Sophora tonkinensis, inhibited airway inflammation and bronchospasm in allergic asthma animal models in vivo. J Ethnopharmacol. 2017; 206: 298-305. https://doi.org/10.1016/j.jep.2017.05.012.
  • [63] Nair P, Prabhavalkar K. Anti-asthmatic effects of saffron extract and salbutamol in an ovalbumin-induced airway model of allergic asthma. Sinusitis. 2021; 5(1): 17-31. https://doi.org/10.3390/sinusitis5010003.
  • [64] Hsu D, Liu C, Chu P, Li Y, Periasamy S, Liu M. Sesame oil attenuates ovalbumin-induced pulmonary edema and bronchial neutrophilic inflammation in mice. Biomed Res Int. 2013; 2013: 1-7. https://doi.org/10.1155/2013/905670.
  • [65] Thakur VR, Khuman V, Beladiya JV, Chaudagar KK, Mehta AA. An experimental model of asthma in rats using ovalbumin and lipopolysaccharide allergens. Heliyon. 2019; 5(11): 2864. https://doi.org/10.1016/j.heliyon.2019.e02864.
  • [66] Prajapati MS, Shah MB, Saluja AK, Shah UD, Shah SK. Antiasthmatic activity of methanolic extract of Sphaeranthus indicus. Int J Pharmacogn Phytochem Res. 2010; 2(3): 15-19.
  • [67] Marmiroli M, Mussi F, Gallo V, Gianoncelli A, Hartley W, Marmiroli N. Combination of biochemical, molecular, and synchrotron-radiation-based techniques to study the effects of silicon in tomato (Solanum lycopersicum L.). Int J Mol Sci. 2022; 23(24): 15837. https://doi.org/10.3390/ijms232415837.
  • [68] Yuvaraja KR, Santhiagu A, Jasemine S and Gopalasatheeskumar K. Hepatoprotective activity of Ehretia microphylla on paracetamol induced liver toxic rats. J Pharm Res. 2021; 25(1): 89-98. https://doi.org/10.35333/jrp.2021.286.
  • [69] Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015; 8(621): 1-9. https://doi.org/10.1186/s13104-015-1618-6.
  • [70] Paya M, Halliwell B, Hoult J. Interactions of a series of coumarins with reactive oxygen species. Biochem Pharmacol. 1992; 44(2): 205-214. https://doi.org/10.1016/0006-2952(92)90002-z.
  • [71] Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985; 113: 548-555. https://doi.org/10.1016/s0076-6879(85)13073-9.
  • [72] Salbitani G, Bottone C, Carfagna S. Determination of reduced and total glutathione content in extremophilic microalga Galdieria phlegrea. Bio Protoc. 2017; 7(13): 1-5. https://doi.org/10.21769/BioProtoc.2372.
  • [73] Novrizal Abdi Sahid M, Nugroho A, Susidarti R, Maeyama K. Effects of 8- Hydroxyisocapnolactone-2-3-diol and friedelin on mast cell degranulation. Asian Pac J Trop Med. 2017; 10(11): 1043-1046. https://doi.org/10.1016/j.apjtm.2017.10.006.
  • [74] Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr. 2013; 52(1): 9-16. https://doi.org/10.3164/jcbn.12-112.
  • [75] Martin-Fernandez M, Arroyo V, Carnicero C, Sigüenza R, Busta R, Mora N, Antolín B, Tamayo E, Aspichueta P, Carnicero-Frutos I, Gonzalo-Benito H, Aller R. Role of oxidative stress and lipid peroxidation in the pathophysiology of NAFLD. Antioxidants. 2022; 11: 2217. https://doi.org/10.3390/antiox11112217.
  • [76] Al-Seeni MN, El Rabey HA, Zamzami MA, Alnefayee AM. The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats. BMC Complement Altern Med. 2016; 16: 438. https://doi.org/10.1186/s12906-016-1422-4.
  • [77] Zargar S, Wani TA, Alamro AA, Ganaie MA. Amelioration of thioacetamide-induced liver toxicity in Wistar rats by rutin. Int J Immunopathol Pharmacol. 2017; 30(3): 207-214. https://doi.org/10.1177/0394632017714175.
  • [78] Kandhare A, Aswar U, Mohan V, Thakurdesai P. Ameliorative effects of type-A procyanidins polyphenols from cinnamon bark in compound 48/80-induced mast cell degranulation. Anat Cell Biol. 2017; 50(4): 275-283. https://doi.org/10.5115/acb.2017.50.4.275.
  • [79] Patel P, Patel K, Gandhi T. Evaluation of effect of Taxus baccata leaves extract on bronchoconstriction and bronchial hyperreactivity in experimental animals. J Young Pharm. 2011; 3(1): 41-47. https://doi.org/10.4103%2F0975 1483.76418.
  • [80] Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, Grundy D. The mast cell degranulator compound 48/80 directly activates neurons. PLoS One. 2012; 7(12): 52104. https://doi.org/10.1371/journal.pone.0052104.
  • [81] Karmouty-Quintana H, Ble FX, Cannet C, Zurbruegg S, Fozard JR, Page CP, Beckmann N. In vivo pharmacological evaluation of compound 48/80-induced airways oedema by MRI. Br J Pharmacol. 2008; 154(5): 1063-1072. https://doi.org/10.1038/bjp.2008.174.
  • [82] Ahuja D, Bijjem K, Kalia A. Bronchospasm potentiating effect of methanolic extract of Ficus religiosa fruits in guinea pigs. J Ethnopharmacol. 2011; 133(2): 324-328. https://doi.org/10.1016/j.jep.2010.09.023.
  • [83] Delarcina S, Lima-Landman MT, Souccar C, Cysneiros RM, Tanae MM, Lapa AJ. Inhibition of histamine-induced bronchospasm in guinea pigs treated with Cecropia glaziovi sneth and correlation with the in vitro activity in tracheal muscles. Phytomedicine. 2007; 14(5): 328-332. https://doi.org/10.1016/j.phymed.2006.12.022.
  • [84] Liu J, Nie M, Dong C, Safholm J, Pejler G, Nilsson G, Adner M. Monensin inhibits mast cell mediated airway contractions in human and guinea pig asthma models. Sci Rep. 2022; 12(1): 18924. https://doi.org/10.1038/s41598 022-23486-1.
  • [85] Adner M, Canning BJ, Meurs H, Ford W, Ramos Ramírez P, van den Berg MPM, Birrell MA, Stoffels E, Lundblad LKA, Nilsson GP, Olsson HK, Belvisi MG, Dahlen SE. Back to the future: Re-establishing guinea pig in vivo asthma models. Clin Sci. 2020; 134: 1219-1242. https://doi.org/10.1042/cs20200394.
  • [86] Jung C, Lee J, Park J, Cho B, Sim S, Kim C. Flavonols attenuate the immediate and late-phase asthmatic responses to aerosolized-ovalbumin exposure in the conscious guinea pig. Fitoterapia. 2010; 81(7): 803-812. https://doi.org/10.1016/j.fitote.2010.04.011.
  • [87] Ninave PB, Patil SD. Pharmacological screening of Acalypha indica L.: Possible role in the treatment of asthma. J Ethnopharmacol. 2022; 290: 115093. https://doi.org/10.1016/j.jep.2022.115093.

Anti-asthmatic effect of aerial parts of Pergularia daemia through broncho-relaxation, mast cell stabilization, and decreasing bronchial hyperreactivity in experimental animals

Year 2024, Volume: 28 Issue: 6, 1869 - 1882, 28.06.2025
https://doi.org/10.29228/jrp.860

Abstract

Pergularia daemia is one of the medicinal plants traditionally used for the management of asthma. The current study evaluated the anti-asthmatic activity of aerial parts of Pergularia daemia in ovalbumin-induced asthma in BALB/c mice, histamine induced bronchospasm in guinea pigs, and compound 48/80 induced mast cell degranulation in rat peritoneal mast cell. Administration of ovalbumin in BALB/c mice has significantly increased total leukocyte count, infiltration of inflammatory cells, and altered the levels of in vivo anti-oxidant enzymes such as glutathione, catalase with the elevation of lipid peroxidation and total protein. Treatment with the methanolic extract of Pergularia daemia significantly reduced the total leukocyte count, elevated inflammatory cells, lipid peroxidation, and total proteins, and restored the altered levels of glutathione and catalase. The onset of Pre convulsion Dyspnea in guinea pigs was significantly increased on treatment with the methanolic extract of Pergularia daemia. Further, the methanolic extract of Pergularia daemia exhibited significant protection against compound 48/80 induced mast cell degranulation in rat peritoneal mast cells.

References

  • [1] Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway remodeling in asthma. Front Med (Lausanne). 2020; 7: 191. https://doi.org/10.3389/fmed.2020.00191.
  • [2] Hanania N. Targeting Airway Inflammation in Asthma: current and future therapies. Chest. 2008; 133(4): 989-998. https://doi.org/10.1378/chest.07-0829.
  • [3] Peebles RS Jr, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma. Clin Chest Med. 2019; 40(1): 29-50. https://doi.org/10.1016/j.ccm.2018.10.014.
  • [4] Aagaard L, Hansen EH. Adverse drug reactions associated with asthma medications in children: Systematic review of clinical trials. Int J Clin Pharm. 2014; 36(2): 243-252. https://doi.org/10.1007/s11096-014-9924-y.
  • [5] Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10(5): 210-229. https://doi.org/10.4314/ajtcam.v10i5.2.
  • [6] Yoganarasimhan SN, Medical plants of India, second ed., International Book Publishers, Print Cyber Media, Bangalore 2000.
  • [7] Vaithiyanathan V, Mirunalini S. Assessment of antioxidant potential and acute toxicity studies of whole plant extract of Pergularia daemia (Forsk). Toxicol Int. 2015; 22(1): 54-60. https://doi.org/10.4103/0971-6580.172257.
  • [8] Warrier PK, Nambiar VPK, Ramankutty C, Indian medicinal plants : A compendium of 500 species, Vol. 4, Orient Longman, Madras, India 1993.
  • [9] Eltayeb A, Ibrahim K. Potential antileishmanial effect of three medicinal plants. Indian J Pharm Sci. 2012; 74(2): 171 174. https://doi.org/10.4103%2F0250-474X.103856.
  • [10] Hebbar S, Harsha V, Shripathi V, Hegde G. Ethnomedicine of Dharwad district in Karnataka, India-plants used in oral health care. J Ethnopharmacol. 2004; 94(2- 3): 261-266. https://doi.org/10.1016/j.jep.2004.04.021.
  • [11] Sureshkumar S, Mishra S. Hepatoprotective effect of extracts from Pergularia daemia Forsk. J Ethnopharmacol. 2006; 107(2): 164-168. https://doi.org/10.1016/j.jep.2006.02.019.
  • [12] Sadik G, Gafur MA, Shah Alam Bhuiyan M, Motiur Rahman M, Biswas HU. Antifertility activity of the alkaloidal fraction of Pergularia daemia. J Med Sci. 2001; 1: 217-219. https://doi.org/10.3923/jms.2001.217.219.
  • [13] Wahi AK, Ravi J, Hemalatha S, Singh PN. Anti-diabetic activity of Daemia extensa. J Nat Remedies. 2002; 2(1): 80-83.
  • [14] Bhavin V, Ruchi V, Santani DD. Diuretic potential of whole plant extracts of Pergularia daemia (Forsk.). Iran J Pharm Res. 2011; 10(4): 795-768.
  • [15] Ananth DA, Deviram G, Mahalakshmi V, Ratna Bharathi V. Active status on phytochemistry and pharmacology of Pergularia daemia Forsk. (Trellis-vine): A review. Clin Phytosci. 2021; 7: 60. https://doi.org/10.1186/s40816-021 00295-z.
  • [16] Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016; 5(47): 1-15. https://doi.org/10.1017/jns.2016.41.
  • [17] Tanaka T, Takahashi R. https://doi.org/10.3390/nu5062128. Flavonoids and asthma. Nutrients. 2013; 5(6):2128-2143.
  • [18] Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets. 2010; 9: 263-285. https://doi.org/10.2174/187152810793358741.
  • [19] Enechi O, Odo C, Wuave C. Evaluation of the in vitro anti-oxidant activity of Alternanthera brasiliana leaves. J Pharm Res. 2013; 6(9): 919-924. https://doi.org/10.1016/j.jopr.2013.09.006.
  • [20] Jung CH, Lee JY, Cho CH, Kim CJ. Anti-asthmatic action of quercetin and rutin in conscious guinea pigs challenged with aerosolized ovalbumin. Archiv Pharm Res. 2007; 30: 1599-1607. https://doi.org/10.1007/BF02977330.
  • [21] Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 2019; 24: 370. https://doi.org/10.1016/j.btre.2019.e00370.
  • [22] Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011; 48(4): 412-422. https://doi.org/10.1007/s13197-011-0251-1.
  • [23] Song H, Kim H, Kim W, Byun E, Jang B, Choi DS, Byun E. Effect of gamma irradiation on the anti-oxidant and anti melanogenic activity of black ginseng extract in B16F10 melanoma cells. Radiat Phys Chem. 2018; 149: 33-40. https://doi.org/10.1016/j.radphyschem.2018.03.008.
  • [24] Xu W, Hu M, Zhang Q, Yu J, Su W. Effects of anthraquinones from Cassia occidentalis L. on ovalbumin-induced airways inflammation in a mouse model of allergic asthma. J Ethnopharmacol. 2018; 221: 1-9. https://doi.org/10.1016/j.jep.2018.04.012.
  • [25] Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol. 2008; 8(6): 478-486. https://doi.org/10.1038/nri2327.
  • [26] Choi YH, Chai OH, Han EH, Choi SY, Kim HT, Song CH. Lipoic acid suppresses compound 48/80-induced anaphylaxis-like reaction. Anat Cell Biol. 2010; 43(4): 317-324. https://doi.org/10.5115/acb.2010.43.4.317.
  • [27] Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, Grundy D. The mast cell degranulator compound 48/80 directly activates neurons. PLoS One. 2012; 7(12): 1-9. https://doi.org/10.1371/journal.pone.0052104.
  • [28] Fanelli A, Duranti R, Gorini M, Spinelli A, Gigliotti F, Scano G. Histamine-induced changes in breathing pattern may precede bronchoconstriction in selected patients with bronchial asthma. Thorax. 1994; 49(7): 639-643. https://doi.org/10.1136/thx.49.7.639.
  • [29] Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020; 12(1): 1-10. https://doi.org/10.4103/jpbs.JPBS_175_19.
  • [30] Gopalasatheeskumar K. significant role of soxhlet extraction process in phytochemical research. Mintage J Pharm Med Sci. 2018; 7(1): 43-47.
  • [31] Trease GE, Evans WC. Textbook of pharmacognosy, Twelfth ed., Balliese Tindall and Company Publisher, London 1983.
  • [32] Sivakumar G, Gopalasatheeskumar K, Gowtham K, Sindhu E, Akash Raj K, Rajaguru B, Sriram K, Kalaichelvan VK. Phytochemical analysis, antioxidant and antiarthritic activities of different solvent extract of Aegle marmelos L. unripe fruit. Res J Pharm Technol. 2020; 13(6): 2759-2763. https://doi.org/10.5958/0974-360X.2020.00490.4.
  • [33] Bristy AT, Islam T, Ahmed R, Hossain J, Reza HM, Jain P. Evaluation of total phenolic content, HPLC analysis, and antioxidant potential of three local varieties of mushroom: A comparative study. Int J Food Sci. 2022; 2022: 3834936. https://doi.org/10.1155/2022/3834936.
  • [34] Blainski A, Lopes GC, de Mello JC. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules. 2013; 18(6): 6852-6865. https://doi.org/10.3390/molecules18066852.
  • [35] Sanchez-Rangel J, Benavides J, Heredia J, Cisneros-Zevallos L, Jacobo-Velazquez D. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods. 2013; 5(21): 5990 5999. https://doi.org/10.1039/C3AY41125G.
  • [36] Pekal A, Pyrzynska K. Evaluation of Aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014; 7: 1776-1782. https://doi.org/10.1007/s12161-014-9814-x.
  • [37] Chekroun E, Benariba N, Adida H, Bechiri A, Azzi R, Djaziri R. Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and Bryonia dioica roots. Asian Pac J Trop Med. 2015; 5(8): 632-637. https://doi.org/10.1016/S2222-1808(15)60903-3.
  • [38] Sridevi G, Srividya S, Sembulingam K, Sembulingam P. An evaluation of in vitro and in vivo free radical scavenging and antioxidant potential of ethanolic extract of Pergularia daemia. Biocatal Agric Biotechnol. 2018; 15: 131-137. https://doi.org/10.1016/j.bcab.2018.05.007. [39] Ayele DT, Akele ML, Melese AT. Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chem. 2022; 16: 30. https://doi.org/10.1186/s13065-022-00822 0.
  • [40] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181: 1199-1200.
  • [41] Shah MD, DSouza U, Iqbal M. The potential protective effect of Commelina nudiflora L. against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats, mediated by suppression of oxidative stress and inflammation. Environ Health Prev Med. 2017; 22(66): 1-19. https://doi.org/10.1186/s12199-017-0673-0.
  • [42] Jongrungraungchok S, Madaka F, Wunnakup T, Sudsai T, Pongphaew C, Songsak T, Pradubyat N. In vitro antioxidant, anti inflammatory, and anticancer activities of mixture Thai medicinal plants. BMC Complement Med Ther. 2023; 23(43): 1-12. https://doi.org/10.1186/s12906-023-03862-8.
  • [43] Atanu FO, Ikeojukwu A, Owolabi PA, Avwioroko OJ. Evaluation of chemical composition, in vitro antioxidant, and antidiabetic activities of solvent extracts of Irvingia gabonensis leaves. Heliyon. 2022; 8(7): 9922. https://doi.org/10.1016/j.heliyon.2022.e09922.
  • [44] Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006; 1(6): 3159-3165. https://doi.org/10.1038/nprot.2006.378.
  • [45] Costa A, Alves R, Vinha A, Costa E, Costa CSG, Antonia Nunes M, Almeida AA, Santos-Silva A, Oliveira MB. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018; 267: 28-35. https://doi.org/10.1016/j.foodchem.2017.03.106
  • [46] Nonglang FP, Khale A, Wankhar W, Bhane S. Pharmacognostic evaluation of Eranthemum indicum extracts for its in vitro antioxidant activity, acute toxicology, and investigation of potent bioactive phytocompounds using HPTLC and GCMS. Beni-Suef Univ J Basic Appl Sci. 2022; 11(129): 1-17. https://doi.org/10.1186/s43088-022-00311-2
  • [47] Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. 1996; 239: 70-76. https://doi.org/10.1006/abio.1996.0292.
  • [48] Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005; 53: 4290-4302. https://doi.org/10.1021/JF0502698.
  • [49] Djamila B, Eddine LS, Abderrhmane B, Nassiba A, Barhoum A. In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Conv Bioref. 2022. https://doi.org/10.1007/s13399-022-02743-3.
  • [50] Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999; 269(2): 337-341. https://doi.org/10.1006/abio.1999.4019.
  • [51] Chroho M, Bouymajane A, Aazza M, Oulad El Majdoub Y, Cacciola F, Mondello L, Zair T, Bouissane L. Determination of the phenolic profile, and evaluation of biological activities of hydroethanolic extract from aerial parts of Origanum compactum from Morocco. Molecules. 2022; 27(16): 5189. https://doi.org/10.3390/molecules27165189.
  • [52] Taur D, Patil R, Patil R. Antiasthmatic related properties of Abrus precatorius leaves on various models. J Tradit Complement Med. 2017; 7(4): 428-432. https://doi.org/10.1016%2Fj.jtcme.2016.12.007.
  • [53] Singh D, Tanwar H, Jayashankar B, Sharma J, Murthy S, Chanda S, Bala Singh S, Ganju L. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice. Biomed Pharmacother. 2017; 90: 354-360. https://doi.org/10.1016/j.biopha.2017.03.067.
  • [54] Xue Z, Zhang X, Wu J, Xu W, Li L, Liu F, Yu J. Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice. Ann Allergy Asthma Immunol. 2016; 116(6): 506-513. https://doi.org/10.1016/j.anai.2016.03.029.
  • [55] Vaithiyanathan V, Mirunalini S. Assessment of antioxidant potential and acute toxicity studies of whole plant extract of Pergularia daemia (Forsk). Toxicol Int. 2015; 22(1): 54-60. https://doi.org/10.4103/0971-6580.172257.
  • [56] Yang Y, Yang M, Cho K, Lee K, Kim YB, Kim JS, Kang MG, Song CW, Song CW. Study of a BALB/c mouse model for allergic asthma. Toxicol Res. 2008; 24(4): 253-261. https://doi.org/10.5487%2FTR.2008.24.4.253.
  • [57] Du Y, Luan J, Jiang RP, Liu J, Ma Y. Myrcene exerts anti-asthmatic activity in neonatal rats via modulating the matrix remodeling. Int J Immunopathol Pharmacol. 2020; 34: 1-10. https://doi.org/10.1177/2058738420954948.
  • [58] Li F, Li B, Liu J, Wei X, Qiang T, Mu X, Wang Y, Qi Y, Zhang B, Liu H, Xiao P. Anti-asthmatic fraction screening and mechanisms prediction of Schisandrae sphenantherae fructus based on a combined approach. Front Pharmacol. 2022; 13: 902324. https://doi.org/10.3389/fphar.2022.902324.
  • [59] Ingale S, Upadhye P, Ingale P. Evaluation anti-asthmatic activity of hydroalcoholic extract of Luffa cylindrica leaves. J Res Pharm. 2020; 24(6): 855-864. https://doi.org/10.35333/jrp.2020.244.
  • [60] Lee BW, Ha JH, Ji Y, Jeong SH, Kim JH, Lee J, Park JY, Kwon HJ, Jung K, Kim JC, Ryu YB, Lee IC. Alnus hirsuta (Spach) Rupr attenuates airway inflammation and mucus overproduction in a murine model of ovalbumin challenged asthma. Front Pharmacol. 2021; 12: 614442. https://doi.org/10.3389/fphar.2021.614442.
  • [61] Azman S, Sekar M, Bonam SR, Gan SH, Wahidin S, Lum PT, Dhadde SB. Traditional medicinal plants conferring protection against ovalbumin-induced asthma in experimental animals: A review. J Asthma Allergy. 2021; 14: 641 662. https://doi.org/10.2147/JAA.S296391.
  • [62] Yoo H, Kang M, Pyo S, Chae HS, Ryu KH, Kim J, Chin YW. SKI3301, a purified herbal extract from Sophora tonkinensis, inhibited airway inflammation and bronchospasm in allergic asthma animal models in vivo. J Ethnopharmacol. 2017; 206: 298-305. https://doi.org/10.1016/j.jep.2017.05.012.
  • [63] Nair P, Prabhavalkar K. Anti-asthmatic effects of saffron extract and salbutamol in an ovalbumin-induced airway model of allergic asthma. Sinusitis. 2021; 5(1): 17-31. https://doi.org/10.3390/sinusitis5010003.
  • [64] Hsu D, Liu C, Chu P, Li Y, Periasamy S, Liu M. Sesame oil attenuates ovalbumin-induced pulmonary edema and bronchial neutrophilic inflammation in mice. Biomed Res Int. 2013; 2013: 1-7. https://doi.org/10.1155/2013/905670.
  • [65] Thakur VR, Khuman V, Beladiya JV, Chaudagar KK, Mehta AA. An experimental model of asthma in rats using ovalbumin and lipopolysaccharide allergens. Heliyon. 2019; 5(11): 2864. https://doi.org/10.1016/j.heliyon.2019.e02864.
  • [66] Prajapati MS, Shah MB, Saluja AK, Shah UD, Shah SK. Antiasthmatic activity of methanolic extract of Sphaeranthus indicus. Int J Pharmacogn Phytochem Res. 2010; 2(3): 15-19.
  • [67] Marmiroli M, Mussi F, Gallo V, Gianoncelli A, Hartley W, Marmiroli N. Combination of biochemical, molecular, and synchrotron-radiation-based techniques to study the effects of silicon in tomato (Solanum lycopersicum L.). Int J Mol Sci. 2022; 23(24): 15837. https://doi.org/10.3390/ijms232415837.
  • [68] Yuvaraja KR, Santhiagu A, Jasemine S and Gopalasatheeskumar K. Hepatoprotective activity of Ehretia microphylla on paracetamol induced liver toxic rats. J Pharm Res. 2021; 25(1): 89-98. https://doi.org/10.35333/jrp.2021.286.
  • [69] Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015; 8(621): 1-9. https://doi.org/10.1186/s13104-015-1618-6.
  • [70] Paya M, Halliwell B, Hoult J. Interactions of a series of coumarins with reactive oxygen species. Biochem Pharmacol. 1992; 44(2): 205-214. https://doi.org/10.1016/0006-2952(92)90002-z.
  • [71] Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985; 113: 548-555. https://doi.org/10.1016/s0076-6879(85)13073-9.
  • [72] Salbitani G, Bottone C, Carfagna S. Determination of reduced and total glutathione content in extremophilic microalga Galdieria phlegrea. Bio Protoc. 2017; 7(13): 1-5. https://doi.org/10.21769/BioProtoc.2372.
  • [73] Novrizal Abdi Sahid M, Nugroho A, Susidarti R, Maeyama K. Effects of 8- Hydroxyisocapnolactone-2-3-diol and friedelin on mast cell degranulation. Asian Pac J Trop Med. 2017; 10(11): 1043-1046. https://doi.org/10.1016/j.apjtm.2017.10.006.
  • [74] Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr. 2013; 52(1): 9-16. https://doi.org/10.3164/jcbn.12-112.
  • [75] Martin-Fernandez M, Arroyo V, Carnicero C, Sigüenza R, Busta R, Mora N, Antolín B, Tamayo E, Aspichueta P, Carnicero-Frutos I, Gonzalo-Benito H, Aller R. Role of oxidative stress and lipid peroxidation in the pathophysiology of NAFLD. Antioxidants. 2022; 11: 2217. https://doi.org/10.3390/antiox11112217.
  • [76] Al-Seeni MN, El Rabey HA, Zamzami MA, Alnefayee AM. The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats. BMC Complement Altern Med. 2016; 16: 438. https://doi.org/10.1186/s12906-016-1422-4.
  • [77] Zargar S, Wani TA, Alamro AA, Ganaie MA. Amelioration of thioacetamide-induced liver toxicity in Wistar rats by rutin. Int J Immunopathol Pharmacol. 2017; 30(3): 207-214. https://doi.org/10.1177/0394632017714175.
  • [78] Kandhare A, Aswar U, Mohan V, Thakurdesai P. Ameliorative effects of type-A procyanidins polyphenols from cinnamon bark in compound 48/80-induced mast cell degranulation. Anat Cell Biol. 2017; 50(4): 275-283. https://doi.org/10.5115/acb.2017.50.4.275.
  • [79] Patel P, Patel K, Gandhi T. Evaluation of effect of Taxus baccata leaves extract on bronchoconstriction and bronchial hyperreactivity in experimental animals. J Young Pharm. 2011; 3(1): 41-47. https://doi.org/10.4103%2F0975 1483.76418.
  • [80] Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, Grundy D. The mast cell degranulator compound 48/80 directly activates neurons. PLoS One. 2012; 7(12): 52104. https://doi.org/10.1371/journal.pone.0052104.
  • [81] Karmouty-Quintana H, Ble FX, Cannet C, Zurbruegg S, Fozard JR, Page CP, Beckmann N. In vivo pharmacological evaluation of compound 48/80-induced airways oedema by MRI. Br J Pharmacol. 2008; 154(5): 1063-1072. https://doi.org/10.1038/bjp.2008.174.
  • [82] Ahuja D, Bijjem K, Kalia A. Bronchospasm potentiating effect of methanolic extract of Ficus religiosa fruits in guinea pigs. J Ethnopharmacol. 2011; 133(2): 324-328. https://doi.org/10.1016/j.jep.2010.09.023.
  • [83] Delarcina S, Lima-Landman MT, Souccar C, Cysneiros RM, Tanae MM, Lapa AJ. Inhibition of histamine-induced bronchospasm in guinea pigs treated with Cecropia glaziovi sneth and correlation with the in vitro activity in tracheal muscles. Phytomedicine. 2007; 14(5): 328-332. https://doi.org/10.1016/j.phymed.2006.12.022.
  • [84] Liu J, Nie M, Dong C, Safholm J, Pejler G, Nilsson G, Adner M. Monensin inhibits mast cell mediated airway contractions in human and guinea pig asthma models. Sci Rep. 2022; 12(1): 18924. https://doi.org/10.1038/s41598 022-23486-1.
  • [85] Adner M, Canning BJ, Meurs H, Ford W, Ramos Ramírez P, van den Berg MPM, Birrell MA, Stoffels E, Lundblad LKA, Nilsson GP, Olsson HK, Belvisi MG, Dahlen SE. Back to the future: Re-establishing guinea pig in vivo asthma models. Clin Sci. 2020; 134: 1219-1242. https://doi.org/10.1042/cs20200394.
  • [86] Jung C, Lee J, Park J, Cho B, Sim S, Kim C. Flavonols attenuate the immediate and late-phase asthmatic responses to aerosolized-ovalbumin exposure in the conscious guinea pig. Fitoterapia. 2010; 81(7): 803-812. https://doi.org/10.1016/j.fitote.2010.04.011.
  • [87] Ninave PB, Patil SD. Pharmacological screening of Acalypha indica L.: Possible role in the treatment of asthma. J Ethnopharmacol. 2022; 290: 115093. https://doi.org/10.1016/j.jep.2022.115093.
There are 86 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Research Article
Authors

Gopalasatheeskumar K 0000-0003-0231-7645

Ganesan Ariharasivakumar This is me 0009-0008-6098-3762

Vasudevan Sanish Devan This is me 0000-0002-1264-9654

Natarajan Adhirajan This is me 0000-0003-2571-4846

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA K, G., Ariharasivakumar, G., Sanish Devan, V., Adhirajan, N. (2025). Anti-asthmatic effect of aerial parts of Pergularia daemia through broncho-relaxation, mast cell stabilization, and decreasing bronchial hyperreactivity in experimental animals. Journal of Research in Pharmacy, 28(6), 1869-1882. https://doi.org/10.29228/jrp.860
AMA K G, Ariharasivakumar G, Sanish Devan V, Adhirajan N. Anti-asthmatic effect of aerial parts of Pergularia daemia through broncho-relaxation, mast cell stabilization, and decreasing bronchial hyperreactivity in experimental animals. J. Res. Pharm. July 2025;28(6):1869-1882. doi:10.29228/jrp.860
Chicago K, Gopalasatheeskumar, Ganesan Ariharasivakumar, Vasudevan Sanish Devan, and Natarajan Adhirajan. “Anti-Asthmatic Effect of Aerial Parts of Pergularia Daemia through Broncho-Relaxation, Mast Cell Stabilization, and Decreasing Bronchial Hyperreactivity in Experimental Animals”. Journal of Research in Pharmacy 28, no. 6 (July 2025): 1869-82. https://doi.org/10.29228/jrp.860.
EndNote K G, Ariharasivakumar G, Sanish Devan V, Adhirajan N (July 1, 2025) Anti-asthmatic effect of aerial parts of Pergularia daemia through broncho-relaxation, mast cell stabilization, and decreasing bronchial hyperreactivity in experimental animals. Journal of Research in Pharmacy 28 6 1869–1882.
IEEE G. K, G. Ariharasivakumar, V. Sanish Devan, and N. Adhirajan, “Anti-asthmatic effect of aerial parts of Pergularia daemia through broncho-relaxation, mast cell stabilization, and decreasing bronchial hyperreactivity in experimental animals”, J. Res. Pharm., vol. 28, no. 6, pp. 1869–1882, 2025, doi: 10.29228/jrp.860.
ISNAD K, Gopalasatheeskumar et al. “Anti-Asthmatic Effect of Aerial Parts of Pergularia Daemia through Broncho-Relaxation, Mast Cell Stabilization, and Decreasing Bronchial Hyperreactivity in Experimental Animals”. Journal of Research in Pharmacy 28/6 (July2025), 1869-1882. https://doi.org/10.29228/jrp.860.
JAMA K G, Ariharasivakumar G, Sanish Devan V, Adhirajan N. Anti-asthmatic effect of aerial parts of Pergularia daemia through broncho-relaxation, mast cell stabilization, and decreasing bronchial hyperreactivity in experimental animals. J. Res. Pharm. 2025;28:1869–1882.
MLA K, Gopalasatheeskumar et al. “Anti-Asthmatic Effect of Aerial Parts of Pergularia Daemia through Broncho-Relaxation, Mast Cell Stabilization, and Decreasing Bronchial Hyperreactivity in Experimental Animals”. Journal of Research in Pharmacy, vol. 28, no. 6, 2025, pp. 1869-82, doi:10.29228/jrp.860.
Vancouver K G, Ariharasivakumar G, Sanish Devan V, Adhirajan N. Anti-asthmatic effect of aerial parts of Pergularia daemia through broncho-relaxation, mast cell stabilization, and decreasing bronchial hyperreactivity in experimental animals. J. Res. Pharm. 2025;28(6):1869-82.