Research Article
BibTex RIS Cite

Synthesis, antiproliferative activity and plasmid DNA interaction studies of [Pt(1-substituted-1H-1,3-diazole)2Cl2] and [Pt(1-substituted-1H-1,3-diazole)2I2] analogs

Year 2026, Volume: 30 Issue: 1, 28 - 38, 11.01.2026
https://doi.org/10.12991/jrespharm.1633032

Abstract

Researchers have accelerated subject their research on platinum complexes since the serendipitous discovery of cisplatin's anticancer properties. Their goal is to synthesize more potent platinum complexes by replacing the carrier ammonia ligands in the structure of cisplatin with biologically active heterocyclic compounds. 1H-1,3-Diazoles are heterocyclic compounds with a five-member ring structure well-known to biological systems. Their exceptional pharmacological activities have led to a remarkable place in recent years. Their exceptional pharmacological activities have led to a remarkable place in the past few decades. This approach is a key strategy for increasing the efficacy of cancer treatments and better-targeting cancer types that develop resistance to current therapies. In this study, six novel platinum(II) complexes with the structures of [Pt(L1)2Cl2] (1a), [Pt(L2)2Cl2] (1b), [Pt(L3)2Cl2] (1c), [Pt(L1)2I2] (2a), [Pt(L2)2I2] (2b), and [Pt(L3)2I2] (2c) (L1= 1-(4-methoxyphenyl)-1H-1,3-diazole, L2= 1-phenyl-1H-1,3-diazole and L3= 1-benzyl-1H-1,3-diazole) were synthesized for cisplatin analogues. The chemical structures of 1a-1c and 2a-2c were elucidated by Fourier Transform Infrared (FT-IR), Proton Nuclear Magnetic Resonance (1H-NMR), Electrospray Ionization Mass Spectrometry (ESI-MS), and elemental analysis. The interactions of the complexes with pBR322 plasmid DNA and BamHI and HindIII restriction endonuclease enzymes were investigated by agarose gel electrophoresis. The cytotoxic effects of 1a-1c and 2a-2c against human non-small cell lung cancer (A549), human colon adenocarcinoma (CaCo-2), and mouse fibroblast cells (L929) cells were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Compound 2c was as effective as cisplatin against the CaCo-2 cell line with 17.27 IC50 values.

Supporting Institution

Mersin University Scientific Research Projects Coordination Unit

Project Number

2016-2-TP2-1524

References

  • [1] Li L, Shan T, Zhang D, Ma F. Nowcasting and forecasting global aging and cancer burden: analysis of data from the GLOBOCAN and Global Burden of Disease Study. J Natl Cancer Cent. 2024; 4(3): 223-232. https://doi.org/10.1016/j.jncc.2024.05.002
  • [2] Global cancer burden growing amidst the mounting need for services. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed on 18 December 2024).
  • [3] Prathima TS, Choudhury B, Ahmad MG, Chanda K, Balamurali MM. Recent developments on other platinum metal complexes as target-specific anticancer therapeutics. Coord Chem Rev. 2023; 490: 215231. https://doi.org/10.1016/j.ccr.2023.215231
  • [4] Segapelo TV, Guzei IA, Spencer LC, Zyl Van WE, Darkwa, J. (Pyrazolylmethyl) pyridineplatinum(II) and gold(III) complexes: Synthesis, structures and evaluation as anticancer agents. Inorg Chim Acta. 2009; 362(9): 3314-3324. https://doi.org/10.1016/j.ica.2009.02.046,
  • [5] Kumar Singh A, Kumar A, Singh H, Sonawane P, Pathak P, Grishina M, Pal Yadav J, Verma A, Kumar P. Metal complexes in cancer treatment: Journey so far. Chem Biodivers. 2023; 20(4): e202300061. https://doi.org/10.1002/cbdv.202300061
  • [6] Wongsuwan S, Chatwichien J, Pinchaipat B, Kumphune S, Harding DJ, Harding P, Boonmak J, Youngme S, Chotima R. Synthesis, characterization and anticancer activity of Fe(II) and Fe(III) complexes containing N-(8-quinolyl)salicylaldimine Schiff base ligands. J Biol Inorg Chem. 2021; 26: 327-339. https://doi.org/10.1007/s00775-021-01857-9
  • [7] Nunes P, Yildizhan Y, Adiguzel Z, Marques F, Costa Pessoa J, Acilan C, Correia I. Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. J Biol Inorg Chem. 2022; 27: 89-109. https://doi.org/10.1007/s00775-021-01913-4
  • [8] Peyrone M. Ueber die einwirkung des ammoniaks Auf platinchlorür. Justus Liebigs Ann Chem. 1844; 51(1): 1-29. https://doi.org/10.1002/jlac.18440510102
  • [9] Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965; 205: 698-699. https://doi.org/10.1038/205698a0
  • [10] Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019; 88: 102925. https://doi.org/10.1016/j.bioorg.2019.102925
  • [11] Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007; 7(8): 573-584. https://doi.org/10.1038/nrc2167
  • [12] Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021; 21(1): 37-50. https://doi.org/10.1038/s41568-020-00308-y
  • [13] Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016; 106: 27-36. https://doi.org/10.1016/j.phrs.2016.01.001
  • [14] Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018; 47(19): 6645-6653. https://doi.org/10.1039/C8DT00838H
  • [15] Facchetti G, Rimoldi I. Anticancer platinum(II) complexes bearing N-heterocycle rings. Biooorg Med Chem Lett. 2019; 29(11): 1257-1263. https://doi.org/10.1016/j.bmcl.2019.03.045
  • [16] Suárez Moreno GV, Hernández Romero D, García Barradas Ó, Vázquez Vera Ó, Rosete Luna S, Cruz Cruz CA, López Monteon A, Carrillo Ahumada J, Morales Morales D, Colorado Peralta R. Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev. 2022; 47: 214790. https://doi.org/10.1016/j.ccr.2022.214790
  • [17] Zhao D, Zhen H, Xue J, Tang Z, Han X, Chen Z. A novel benzothiazole-based mononuclear platinum(II) complex displaying potent antiproliferative activity in HepG-2 cells via mitochondrial-mediated apoptosis. J Inorg Biochem. 2024; 251: 112437. https://doi.org/10.1016/j.jinorgbio.2023.112437
  • [18] Sundberg RJ, Bruce Martin R. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem Rev. 1974;74: 471-517. https://doi.org/10.1021/CR60290A003
  • [19] Narasimhan B, Sharma D, Kumar P. Biological importance of imidazole nucleus in the new millennium. Med Chem Res. 2011;20: 1119-1140. https://doi.org/10.1007/s00044-010-9472-5
  • [20] Shalini K, Sharma PK, Kumar N. Imidazole and its biological activities: A review. Der Chem Sin. 2010; 1:36-47.
  • [21] Patel G, Dewangan DK, Bhakat N, Banerjee S. Green approaches for the synthesis of poly-functionalized imidazole derivatives: A comprehensive review. Curr Res Green Sustain Chem. 2021; 4: 100175. https://doi.org/10.1016/j.crgsc.2021.100175
  • [22] Talman EG, Brüning W, Reedijk J, Spek AL, Veldman N. Crystal and molecular structures of asymmetric cis-and trans-platinum (II/IV) compounds and their reactions with DNA fragments. Inorg Chem. 1997; 36(5): 854-861. https://doi.org/10.1021/ic960983u
  • [23] Cleare MJ, Hoeschele JD. Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorg Chem. 1973; 2(3): 187-210. https://doi.org/10.1016/S0006-3061(00)80249-5
  • [24] Messori L, Casini A, Gabbiani C, Michelucci E, Cubo L, Rios Luci C, Padrónet JM, Navarro Ranninger C, Quirogaal, AG. Cytotoxic profile and peculiar reactivity with biomolecules of a novel “rule-breaker” iodidoplatinum (II) complex. ACS Med Chem Lett. 2010; 1(8): 381-385. https://doi.org/10.1021/ml100081e
  • [25] Vančo J, Trávníček Z, Křikavová R, Gáliková J, Dvořák Z, Chalupová M. Molecular, cellular and pharmacological effects of platinum(II) diiodido complexes containing 9-deazahypoxanthine derivatives: A group of broad-spectrum anticancer active agents. J Photochem Photobiol B-Biol. 2017; 173: 423-433. https://doi.org/10.1016/j.jphotobiol.2017.06.017
  • [26] Kratochwil NA, Bednarski PJ. Relationships between reduction properties and cancer cell growth inhibitory activities of cis‐dichloro‐and cis‐diiodo‐Pt (IV)‐ethylenediamines. Arch Pharm Pharm Med Chem. 1999; 332(8): 279-285. https://doi.org/10.1002/(SICI)1521-4184(19998)332:8<279::AID-ARDP279>3.0.CO;2-1
  • [27] Kratochwil NA, Ivanov AI, Patriarca M, Parkinson JA, Gouldsworthy AM, Murdoch PS, Sadler PJ. Surprising reactions of iodo Pt(IV) and Pt(II) complexes with human albumin: Detection of cys34 sulfenic acid. J Am Chem Soc. 1999; 121(36): 8193-8203. https://doi.org/10.1021/ja990768n
  • [28] Marzo T, Pillozzi S, Hrabina O, Kasparkova J, Brabec V, Arcangeli A, Bartoli G, Severi M, Lunghi A, Totti F, Gabbiani C, Quiroga AG, Messori L. cis-Pt I2(NH3)2: A reappraisal. Dalton Trans. 2015; 44(33): 14896-14905. https://doi.org/10.1039/C5DT01196E
  • [29] Messori L, Cubo L, Gabbiani C, Álvarez Valdés A, Michelucci E, Pieraccini G, Ríos Luci C, León LG, Padrón JM, Navarro Ranninge C, Casini A, Quiroga AG. Reactivity and biological properties of a series of cytotoxic PtI2(amine)2 complexes, either cis or trans configured. Inorg Chem. 2012; 51(3): 1717–1726. https://doi.org/10.1021/ic202036c
  • [30] Savić A, Filipović L, Aranđelović S, Dojčinović B, Radulović S, Sabo TJ, Grgurić-Šipka S. Synthesis, characterization and cytotoxic activity of novel platinum(II) iodido complexes. Eur J Med Chem. 2014; 82: 372-384. https://doi.org/10.1016/j.ejmech.2014.05.060
  • [31] Masaryk L, Zoufalý P, Słoczyńska K, Zahradniková E, Milde D, Koczurkiewicz Adamczyket P, Štarha P. New Pt(II) diiodido complexes containing bidentate 1,3,4-thiadiazole-based ligands: Synthesis, characterization, cytotoxicity. Inorg Chim Acta. 2022; 536, 120891. https://doi.org/10.1016/j.ica.2022.120891
  • [32] Nzeyimana A, Utku S, Açık L, Çelebi KA. Synthesis, characterization and DNA ınteraction of novel platinum(II) complexes containing substituted benzimidazole ligands. Rev Roum Chim. 2017; 62(3): 227–236.
  • [33] Quiroga AG, Cama M, Pajuelo Lozano N, Álvarez Valdés A, Perez IS. New findings in the signaling pathways of cis and trans platinum iodido complexes’ interaction with DNA of cancer cells. ACS Omega. 2019; 4(26): 21855-21861. https://doi.org/10.1021/acsomega.9b02831
  • [34] Štarha P, Vančo J, Trávníček Z. Platinum iodido complexes: A comprehensive overview of anticancer activity and mechanisms of action. Coord Chem Rev. 2019; 380: 103-135. https://doi.org/10.1016/j.ccr.2018.09.017
  • [35] Utku S, Topal M, Döğen A, Serin MS. Synthesis, characterization, antibacterial and antifungal evaluation of some new platinum(II) complexes of 2-phenylbenzimidazole ligands. Turk J Chem. 2010; 34(3): 427-436. https://doi.org/10.3906/kim-1002-5
  • [36] Boğatarkan Ç, Utku S, Açik L. Synthesis, characterization and Pbr322 plasmid DNA interaction of platinum(II) complexes with imidazole and 2-phenylimidazole as carrier ligands. Rev Roum Chim. 2015; 60(1): 59-64.
  • [37] Ertuğrul E, Özçelik A, Çerçi N, Açık L, Utku S. Synthesis, characterization and in vitro cytotoxic activity of platinum(II) oxalato complexes involving 2-substitutedimidazole or 2-substitutedbenzimidazole derivatives as carrier ligands. Istanbul J Pharm. 2023; 53(3): 308-313. https://doi.org/10.26650/IstanbulJPharm.2023.12661188
  • [38] ISO 10993-5(2009). Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity: ISO Geneva. https://nhiso.com/wp-content/uploads/2018/05/ISO-10993-5-2009.pdf (accessed on 8 August 2024).
  • [39] Wang H, Wang F, Tao X, Cheng H. Ammonia-containing dimethyl sulfoxide: An improved solvent for the dissolution of formazan crystals in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Anal Biochem. 2012; 421(1): 324-326. https://doi.org/10.1016/j.ab.2011.10.043
  • [40] Utku S, Gumus F, Tezcan S, Serin MS, Ozkul A. Synthesis, characterization, cytotoxicity, and DNA binding of some new platinum(II) and platinum(IV) complexes with benzimidazole ligands. J Enzyme Inhib Med Chem. 2010; 25(4): 502-508. https://doi.org/10.3109/14756360903282858
  • [41] Utku S, Ozçelik AB, Gümüş F, Yılmaz Ş, Arsoy T, Açık L, Celebi Keskin A. Synthesis, in-vitro cytotoxic activity and DNA interactions of new dicarboxylatoplatinum(II) complexes with 2-hydroxymethylbenzimidazole as carrier ligands. J Pharm Pharmacol. 2014; 66(11): 1593-1605. https://doi.org/10.1111/jphp.12290
  • [42] Shiju C, Arish D, Bhuvanesh N, Kumaresan S. Synthesis, characterization, and biological evaluation of Schiff base–platinum(II) complexes. Spectrochimic Acta A Mol Biomol Spectrosc. 2015; 145: 213-222. https://doi.org/10.1016/j.saa.2015.02.030
  • [43] Doğan U, Ozcan O, Alaca G, Arı A, Günnaz S, Yalcın HT, Sahin O, Irıslı S. Novel benzimidazole- platinum(II) complexes: Synthesis, characterization, antimicrobial and anticancer activity. J Mol Struct. 2021; 1229: 129785. https://doi.org/10.1016/j.molstruc.2020.129785
  • [44] Gümüş F, Pamuk I, Ozden T, Yıldız S, Diril N, Oksüzoǧlu E, Gür S, Ozkul A. Synthesis, characterization and in vitro cytotoxic, mutagenic and antimicrobial activity of platinum (II) complexes with substituted benzimidazole ligands. J Inorg Biochem. 2023; 94(3): 255-262. https://doi.org/10.1016/S0162-0134(03)00005-9
  • [45] Kim Y, Lee J, Son YH, Choi SU, Alam M, Park S. Novel nickel(II), palladium(II), and platinum(II) complexes having a pyrrolyl-iminophosphine (PNN) pincer: Synthesis, crystal structures, and cytotoxic activity. J Inorg Biochem. 2020; 205: 111015. https://doi.org/10.1016/j.jinorgbio.2020.111015
  • [46] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press, 1989, pp. 1546.
There are 46 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Research Article
Authors

Özge Eryiğit 0009-0004-0366-7801

Elif Ergin 0000-0001-5014-9143

Nebahat Aytuna Çerçi 0000-0002-7864-7213

Leyla Açık 0000-0002-3672-8429

Semra Utku 0000-0003-3181-9134

Project Number 2016-2-TP2-1524
Submission Date February 5, 2025
Acceptance Date March 14, 2025
Publication Date January 11, 2026
Published in Issue Year 2026 Volume: 30 Issue: 1

Cite

APA Eryiğit, Ö., Ergin, E., Çerçi, N. A., Açık, L., & Utku, S. (2026). Synthesis, antiproliferative activity and plasmid DNA interaction studies of [Pt(1-substituted-1H-1,3-diazole)2Cl2] and [Pt(1-substituted-1H-1,3-diazole)2I2] analogs. Journal of Research in Pharmacy, 30(1), 28-38. https://doi.org/10.12991/jrespharm.1633032
AMA 1.Eryiğit Ö, Ergin E, Çerçi NA, Açık L, Utku S. Synthesis, antiproliferative activity and plasmid DNA interaction studies of [Pt(1-substituted-1H-1,3-diazole)2Cl2] and [Pt(1-substituted-1H-1,3-diazole)2I2] analogs. J. Res. Pharm. 2026;30(1):28-38. doi:10.12991/jrespharm.1633032
Chicago Eryiğit, Özge, Elif Ergin, Nebahat Aytuna Çerçi, Leyla Açık, and Semra Utku. 2026. “Synthesis, Antiproliferative Activity and Plasmid DNA Interaction Studies of [Pt(1-Substituted-1H-1,3-Diazole)2Cl2] and [Pt(1-Substituted-1H-1,3-Diazole)2I2] Analogs”. Journal of Research in Pharmacy 30 (1): 28-38. https://doi.org/10.12991/jrespharm.1633032.
EndNote Eryiğit Ö, Ergin E, Çerçi NA, Açık L, Utku S (January 1, 2026) Synthesis, antiproliferative activity and plasmid DNA interaction studies of [Pt(1-substituted-1H-1,3-diazole)2Cl2] and [Pt(1-substituted-1H-1,3-diazole)2I2] analogs. Journal of Research in Pharmacy 30 1 28–38.
IEEE [1]Ö. Eryiğit, E. Ergin, N. A. Çerçi, L. Açık, and S. Utku, “Synthesis, antiproliferative activity and plasmid DNA interaction studies of [Pt(1-substituted-1H-1,3-diazole)2Cl2] and [Pt(1-substituted-1H-1,3-diazole)2I2] analogs”, J. Res. Pharm., vol. 30, no. 1, pp. 28–38, Jan. 2026, doi: 10.12991/jrespharm.1633032.
ISNAD Eryiğit, Özge - Ergin, Elif - Çerçi, Nebahat Aytuna - Açık, Leyla - Utku, Semra. “Synthesis, Antiproliferative Activity and Plasmid DNA Interaction Studies of [Pt(1-Substituted-1H-1,3-Diazole)2Cl2] and [Pt(1-Substituted-1H-1,3-Diazole)2I2] Analogs”. Journal of Research in Pharmacy 30/1 (January 1, 2026): 28-38. https://doi.org/10.12991/jrespharm.1633032.
JAMA 1.Eryiğit Ö, Ergin E, Çerçi NA, Açık L, Utku S. Synthesis, antiproliferative activity and plasmid DNA interaction studies of [Pt(1-substituted-1H-1,3-diazole)2Cl2] and [Pt(1-substituted-1H-1,3-diazole)2I2] analogs. J. Res. Pharm. 2026;30:28–38.
MLA Eryiğit, Özge, et al. “Synthesis, Antiproliferative Activity and Plasmid DNA Interaction Studies of [Pt(1-Substituted-1H-1,3-Diazole)2Cl2] and [Pt(1-Substituted-1H-1,3-Diazole)2I2] Analogs”. Journal of Research in Pharmacy, vol. 30, no. 1, Jan. 2026, pp. 28-38, doi:10.12991/jrespharm.1633032.
Vancouver 1.Eryiğit Ö, Ergin E, Çerçi NA, Açık L, Utku S. Synthesis, antiproliferative activity and plasmid DNA interaction studies of [Pt(1-substituted-1H-1,3-diazole)2Cl2] and [Pt(1-substituted-1H-1,3-diazole)2I2] analogs. J. Res. Pharm. [Internet]. 2026 Jan. 1;30(1):28-3. Available from: https://izlik.org/JA49NU29KG