Research Article
BibTex RIS Cite

Year 2026, Volume: 30 Issue: 1, 145 - 159, 11.01.2026
https://doi.org/10.12991/jrespharm.1642875

Abstract

References

  • [1] Hurt RT, Kulisek C, Buchanan LA, McClave SA. The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol Hepatol. 2010;6(12):780–792.
  • [2] Noureddin M, Rinella ME. Nonalcoholic Fatty liver disease, diabetes, obesity, and hepatocellular carcinoma. Clin Liver Dis. 2015;19(2):361–379. https://doi.org/10.1016/j.cld.2015.01.012
  • [3] Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, Ryan DH, Still CD. Pharmacological management of obesity: An endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342-362. https://doi.org/10.1210/jc.2014-3415
  • [4] Tuhin RH, Begum M, Rahman S, Karim R, Begum T, Ahmed SU, Mostofa R, Hossain A, Abdel-Daim M, Begum R. Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement Med Ther. 2017;17(1): 423. https://doi.org/10.1186/s12906-017-1930-x
  • [5] Sco M, Ab O, Ts O, Ts A. An ethnomedical and ethnobotanical survey of plants herbal therapy used for obesity, asthma, diabetes and fertility by the badagry people of lagos state, nigeria. J Med Plants Stud. 2015;3(5).
  • [6] Bai X, Lijun L, Wu Y, Jie B. Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways. Cell Biochem Biophys. 2025;83(1):1167–1183. https://doi.org/10.1007/s12013-024-01551-y
  • [7] Ahmad SF, Bani S, Sultan P, Ali SA, Bakheet SA, Attia SM, Abd-Allah AR. TNF-α inhibitory effect of Euphorbia hirta in rats. Pharm Biol. 2013;51(4):411-417. https://doi: 10.3109/13880209.2012.734315
  • [8] Ramachandran R, Parthasarathy R, Dhayalan S. Silver nanoparticles synthesized by Euphorbia hirta exhibited antibacterial activity and induced apoptosis through downregulation of PI3Kγ mediated PI3K/Akt/mTOR/p70S6K in human lung adenocarcinoma A549 cells. Environ Toxicol. 2022;37(12):2865-2876. https://doi: 10.1002/tox.23643
  • [9] Praveen G, Krishnamoorthy K, Veeraraghavan VP, Jayaraman S. Antioxidant and anti-ınflammatory activity of the ethanolic extract of Euphorbia Hirta leaf extract: An ın vitro and ın silico study. J Pharm Bioallied Sci. 2024;16:S1304-S1307. https://doi: 10.4103/jpbs.jpbs_591_23
  • [10] Sharma N, Samarakoon KW, Gyawali R, Park Y-H, Lee S-J, Oh SJ, Lee T-H, Jeong DK. Evaluation of the antioxidant, anti-inflammatory, and anticancer activities of Euphorbia hirta ethanolic extract. Molecules. 2014; 19(9):14567-14581. https://doi.org/10.3390/molecules190914567
  • [11] Landgraf K, Schuster S, Meusel A, Garten A, Riemer T, Schleinitz D, Kiess W, Körner A. Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiol. 2017;17(1):4. https://doi.org/10.1186/s12899-017-0031-x
  • [12] Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 2010;10(1):21. https://doi.org/10.1186/1472-6793-10-21
  • [13] Khanal P, Patil BM, Unger BS. Zebrafish shares common metabolic pathways with mammalian olanzapine-induced obesity. Futur J Pharm Sci. 2020;6:36. https://doi.org/10.1186/s43094-020-00049-7
  • [14] Lee SW, Na HY, Seol MH, Kim M, Lee BC. Euphorbia kansui attenuates ınsulin resistance in obese human subjects and high-fat diet-ınduced obese mice. Evid Based Complement Alternat Med. 2017:9058956. https://doi: 10.1155/2017/9058956
  • [15] Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int J Mol Sci. 2021;22(22):12455. https://doi: 10.3390/ijms222212455
  • [16] Mao Z, Zhang W. Role of mTOR in glucose and lipid metabolism. Int J Mol Sci. 2018;19(7):2043. https://doi.org/10.3390/ijms19072043
  • [17] Yu J, Cheng S, Ye Z, Zhang M, Zhao X. Exploring Beta-sitosterol’s role in breast cancer treatment via ıntegrated network pharmacological analysis and ın vitro validation. Pharmacogn Mag. 2024. https://doi: 10.1177/09731296241294143
  • [18] Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 2021;18(1):1-13. https://doi.org/10.1186/s12986-021-00569-w
  • [19] Dong J, Li M, Peng R, Zhang Y, Qiao Z, Sun N. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis. J Transl Med. 2024;22(1):196. https://doi.org/10.1186/s12967-024-04942-0
  • [20] Molteni M, Bosi A, Rossetti C. Natural Products with Toll-Like Receptor 4 Antagonist Activity. Int J Inflam. 2018:2859135. https://doi: 10.1155/2018/2859135
  • [21] Jialal I, Kaur H, Devaraj S. Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab. 2014;99(1):39-48. https://doi.org/10.1210/jc.2013-3092
  • [22] Heck AM, Yanovski JA, Calis KA. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy. 2000;20(3):270-290. https://doi.org/10.1592/phco.20.4.270.34882
  • [23] Escorcia W, Ruter DL, Nhan J, Curran SP. Quantification of Lipid Abundance and Evaluation of Lipid Distribution in Caenorhabditis elegans by Nile Red and Oil Red O Staining. J Vis Exp. 2018;(133):57352. https://doi.org/10.3791/57352.
  • [24] Guillaume Y, Arsene AM, Constantin O, Koffi D, Martin K, Bognan A, Joseph DA. Effect of Euphorbia hirta on certain metabolic and cardiovascular diseases. Ann Int Med Dent Res. 2020;6(3):1-4.
  • [25] Khandige PS, Fernandes Z, Nayak P, Shubhangi S, Singh P. Evaluation of anti-hyperlipidemic activity of Euphorbia hirta bark against triton ® WR 1339 induced hyperlipidemia. Int J Health Sci. 2022;6(S8):3045–3055. https://doi.org/10.53730/ijhs.v6nS8.12759
  • [26] Sudha T, Padmini R, Evaluatıon of bioactıve compounds in Euphorbia hirta linn. leaves extract using gas chromatographic and mass spectroscopic techniques. J Pharm Negat Results. 2023;14(02):1988-1995. https://doi.org/10.47750/pnr.2023.14.S02.238
  • [27] Renquist BJ, Zhang C, Williams SY, Cone RD. Development of an assay for high-throughput energy expenditure monitoring in the zebrafish. Zebrafish. 2013;10(3):343-352. https://doi.org/10.1089/zeb.2012.0841
  • [28] Williams SY, Renquist BJ. High Throughput Danio Rerio Energy Expenditure Assay. J Vis Exp. 2016;(107):e53297. https://doi.org/10.3791/53297.
  • [29] Reid RM, D’Aquila AL, Biga PR. The validation of a sensitive, non-toxic in vivo metabolic assay applicable across zebrafish life stages. Comp Biochem Physiol C Toxicol Pharmac. 2018;208:29-37. https://doi.org/10.1016/j.cbpc.2017.11.004
  • [30] Nyeem MA, Haque MS, Akramuzzaman M, Siddika R, Sultana S, Islam BR. Euphorbia hirta Linn. A wonderful miracle plant of mediterranean region: a review. J Med Plants Stud. 2017;5(3):170-175.
  • [31] Sharma P. Pharmacological Potentials and Formulation Strategies of Euphorbia hirta. Eur J Med Plants. 2024;35(6):63-71. https://doi.org/10.9734/ejmp/2024/v35i61208
  • [32] Kumar S, Singh S, Goyal M, Sharma S. Aspect of Euphorbia Hirta in the Intendance of Obesity: A Review. Int J Innov Sci Res Technol. 2022;7(4):147-151. https://doi.org/10.5281/zenodo.6476746
  • [33] Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Bharath Chand RP, Aparna SR, Mangalapandi P, Samal A. IMPPAT: A curated database of Indian Medicinal plants, phytochemistry and therapeutics. Sci Rep. 2018;8(1):1-17. https://doi.org/10.1038/s41598-018-22631-z
  • [34] Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373-D1380. https://doi.org/10.1093/nar/gkac956
  • [35] Almalki FA, Abdalla AN, Shawky AM, El Hassab MA, Gouda AM. In silico approach using free software to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based schiff bases. Molecules. 2021;26(13):4002. https://doi.org/10.3390/molecules26134002
  • [36] Ivanov SM, Lagunin AA, Rudik A V, Filimonov DA, Poroikov VV. ADVERPred-Web service for prediction of adverse effects of drugs. J Chem Inf Model. 2018;58(1):8-11. https://doi.org/10.1021/acs.jcim.7b00568
  • [37] Nickel J, Gohlke BO, Erehman J, Banerjee P, Rong WW, Goede A, Dunkel M, Preissner R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res. 2014;42(W1):W26-31. https://doi.org/10.1093/nar/gku477
  • [38] Ali A, Mir GJ, Ayaz A, Maqbool I, Ahmad SB, Mushtaq S, Khan A, Mir TM, Rehman MU. In silico analysis and molecular docking studies of natural compounds of Withania somnifera against bovine NLRP9. J Mol Model. 2023;29(6):171. https://doi.org/10.1007/s00894-023-05570-z
  • [39] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. https://doi.org/10.1101/gr.1239303
  • [40] Mun CS, Hui LY, Sing LC, Karunakaran R, Ravichandran V. Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of coumarin based compounds targeting proteins involved in development of COVID-19. Saudi J Biol Sci. 2022;29(12):103458. https://doi.org/10.1016/j.sjbs.2022.103458
  • [41] Sarkar N, Venkategowda Kodihally AK, Shamnewadi A. Exploring the anticonvulsant potential of Daucus carota L.: A combined in silico and in vivo study for epilepsy therapy development. Pharmacol Res Mod Chin Med. 2025;15:100610. https://doi.org/10.1016/J.PRMCM.2025.100610
  • [42] Ayodele PF, Bamigbade A, Bamigbade OO, Adeniyi IA, Tachin ES, Seweje AJ, Farohunbi ST. Illustrated procedure to perform molecular docking using PyRx and Biovia Discovery Studio Visualizer: a case study of 10kt With Atropine. Prog Drug Discov Biomed Sci. 2023;6(1):1-32. http://dx.doi.org/10.36877/pddbs.a0000424
  • [43] Upadhyay B, Singh KP, Kumar A. Pharmacognostical and antibacterial studies of different extracts of Euphorbia hirta L. J Phytol. 2010;2(6):55-60.
  • [44] Lee YJ, Choi HS, Seo MJ, Jeon HJ, Kim KJ, Lee BY. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish. Food Funct. 2015;6(8):2824-2833. https://doi.org/10.1039/C5FO00481K
  • [45] OECD TN. 236: Fish embryo acute toxicity (FET) test. OECD Guidelines for the Testing of Chemicals, Section. 2013;2:1-22. https://doi.org/10.1787/9789264203709-en
  • [46] Zhou J, Xu YQ, Guo SY, Li CQ. Rapid analysis of hypolipidemic drugs in a live zebrafish assay. J Pharmacol Toxicol Methods. 2015;72:47-52. https://doi.org/10.1016/j.vascn.2014.12.002
  • [47] Schlombs K, Wagner T, Scheel J. Site-1 protease is required for cartilage development in zebrafish. Proc Natl Acad Sci U S A. 2003;100(24):14024-14029. https://doi.org/10.1073/pnas.2331794100
  • [48] Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F. Synthesis, characterization, and toxicity assessment of Pluronic F127-Functionalized Graphene Oxide on the embryonic development of Zebrafish (Danio rerio). Int J Nanomedicine. 2020;15:8311-8329. https://doi.org/10.2147/IJN.S271159
  • [49] Balamurugan K, Medishetti R, Rao P, Varma R, Chatti K, Parsa KV. Protocol to evaluate hyperlipidemia in zebrafish larvae. STAR protoc. 2022;3(4):101819. https://doi.org/10.1016/j.xpro.2022.101819

Lipid metabolism modulatory effect of Euphorbia hirta L: an experimental study in high-fat diet fed zebrafish larvae

Year 2026, Volume: 30 Issue: 1, 145 - 159, 11.01.2026
https://doi.org/10.12991/jrespharm.1642875

Abstract

Obesity is a global health challenge associated with diabetes, cardiovascular diseases, and certain cancers. Although FDA-approved anti-obesity drugs are available, they often cause adverse effects and weight regain upon discontinuation, highlighting the need for safer alternatives. Medicinal plants such as Euphorbia hirta L., traditionally used for various therapeutic purposes and may aid in obesity management. This study evaluated the effects of Euphorbia hirta L. on metabolic rate regulation and lipid accumulation in high-fat diet (HFD)–fed zebrafish larvae. The potential mechanisms of action and key phytoconstituents were predicted through in silico network pharmacology and molecular docking studies. Zebrafish larvae at 4 days postfertilization were divided into three groups (n = 30 each): a naive control group (standard diet), an HFD control group (0.1% egg yolk-supplemented diet), and treatment groups receiving three concentrations of Euphorbia hirta ethanolic extract and its fractions from day 4 to day 6. In vivo studies assessed lipid accumulation via Oil Red O staining and metabolic rate via resazurin assay. Among 42 identified phytoconstituents, kaempferol-3-O-rhamnoside, beta-sitosterol, trans-5-O-(4-coumaroyl)-D-quinic acid, and 1-(2-piperidin-4-ylethyl) pyrrolidin-2-one, showed strong binding to obesity-related targets (mTOR, STAT3, ACACA, ESR1, and TLR4) with binding energies ranging from −6.1 to −8.9 kcal/mol. LC–MS confirmed their presence in the ethanolic extract and ethyl acetate fraction. In vivo study revealed treatment with Euphorbia hirta L. ethanolic extract and ethyl acetate fraction significantly reduced lipid accumulation (***p < 0.001 vs. HFD control) and improved metabolic rate in a time- and dose-dependent manner (***p < 0.001), compared to HFD-control. These findings suggest that Euphorbia hirta L. exerts anti-obesity effects by modulating lipid metabolism and enhancing energy expenditure, providing a scientific basis for its potential development as a multi-targeted therapeutic agent.

Ethical Statement

The study involving experiments on animals was conducted as per CCSEA guidelines, and the study protocol was reviewed and approved by the Institutional Animal Ethics Committee of the ICMR-National Institute of Traditional Medicine, Belagavi (Proposal No. IAEC/06/2024/SA-05).

References

  • [1] Hurt RT, Kulisek C, Buchanan LA, McClave SA. The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterol Hepatol. 2010;6(12):780–792.
  • [2] Noureddin M, Rinella ME. Nonalcoholic Fatty liver disease, diabetes, obesity, and hepatocellular carcinoma. Clin Liver Dis. 2015;19(2):361–379. https://doi.org/10.1016/j.cld.2015.01.012
  • [3] Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, Ryan DH, Still CD. Pharmacological management of obesity: An endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342-362. https://doi.org/10.1210/jc.2014-3415
  • [4] Tuhin RH, Begum M, Rahman S, Karim R, Begum T, Ahmed SU, Mostofa R, Hossain A, Abdel-Daim M, Begum R. Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement Med Ther. 2017;17(1): 423. https://doi.org/10.1186/s12906-017-1930-x
  • [5] Sco M, Ab O, Ts O, Ts A. An ethnomedical and ethnobotanical survey of plants herbal therapy used for obesity, asthma, diabetes and fertility by the badagry people of lagos state, nigeria. J Med Plants Stud. 2015;3(5).
  • [6] Bai X, Lijun L, Wu Y, Jie B. Flavonoids of Euphorbia hirta inhibit inflammatory mechanisms via Nrf2 and NF-κB pathways. Cell Biochem Biophys. 2025;83(1):1167–1183. https://doi.org/10.1007/s12013-024-01551-y
  • [7] Ahmad SF, Bani S, Sultan P, Ali SA, Bakheet SA, Attia SM, Abd-Allah AR. TNF-α inhibitory effect of Euphorbia hirta in rats. Pharm Biol. 2013;51(4):411-417. https://doi: 10.3109/13880209.2012.734315
  • [8] Ramachandran R, Parthasarathy R, Dhayalan S. Silver nanoparticles synthesized by Euphorbia hirta exhibited antibacterial activity and induced apoptosis through downregulation of PI3Kγ mediated PI3K/Akt/mTOR/p70S6K in human lung adenocarcinoma A549 cells. Environ Toxicol. 2022;37(12):2865-2876. https://doi: 10.1002/tox.23643
  • [9] Praveen G, Krishnamoorthy K, Veeraraghavan VP, Jayaraman S. Antioxidant and anti-ınflammatory activity of the ethanolic extract of Euphorbia Hirta leaf extract: An ın vitro and ın silico study. J Pharm Bioallied Sci. 2024;16:S1304-S1307. https://doi: 10.4103/jpbs.jpbs_591_23
  • [10] Sharma N, Samarakoon KW, Gyawali R, Park Y-H, Lee S-J, Oh SJ, Lee T-H, Jeong DK. Evaluation of the antioxidant, anti-inflammatory, and anticancer activities of Euphorbia hirta ethanolic extract. Molecules. 2014; 19(9):14567-14581. https://doi.org/10.3390/molecules190914567
  • [11] Landgraf K, Schuster S, Meusel A, Garten A, Riemer T, Schleinitz D, Kiess W, Körner A. Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiol. 2017;17(1):4. https://doi.org/10.1186/s12899-017-0031-x
  • [12] Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 2010;10(1):21. https://doi.org/10.1186/1472-6793-10-21
  • [13] Khanal P, Patil BM, Unger BS. Zebrafish shares common metabolic pathways with mammalian olanzapine-induced obesity. Futur J Pharm Sci. 2020;6:36. https://doi.org/10.1186/s43094-020-00049-7
  • [14] Lee SW, Na HY, Seol MH, Kim M, Lee BC. Euphorbia kansui attenuates ınsulin resistance in obese human subjects and high-fat diet-ınduced obese mice. Evid Based Complement Alternat Med. 2017:9058956. https://doi: 10.1155/2017/9058956
  • [15] Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int J Mol Sci. 2021;22(22):12455. https://doi: 10.3390/ijms222212455
  • [16] Mao Z, Zhang W. Role of mTOR in glucose and lipid metabolism. Int J Mol Sci. 2018;19(7):2043. https://doi.org/10.3390/ijms19072043
  • [17] Yu J, Cheng S, Ye Z, Zhang M, Zhao X. Exploring Beta-sitosterol’s role in breast cancer treatment via ıntegrated network pharmacological analysis and ın vitro validation. Pharmacogn Mag. 2024. https://doi: 10.1177/09731296241294143
  • [18] Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 2021;18(1):1-13. https://doi.org/10.1186/s12986-021-00569-w
  • [19] Dong J, Li M, Peng R, Zhang Y, Qiao Z, Sun N. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis. J Transl Med. 2024;22(1):196. https://doi.org/10.1186/s12967-024-04942-0
  • [20] Molteni M, Bosi A, Rossetti C. Natural Products with Toll-Like Receptor 4 Antagonist Activity. Int J Inflam. 2018:2859135. https://doi: 10.1155/2018/2859135
  • [21] Jialal I, Kaur H, Devaraj S. Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab. 2014;99(1):39-48. https://doi.org/10.1210/jc.2013-3092
  • [22] Heck AM, Yanovski JA, Calis KA. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy. 2000;20(3):270-290. https://doi.org/10.1592/phco.20.4.270.34882
  • [23] Escorcia W, Ruter DL, Nhan J, Curran SP. Quantification of Lipid Abundance and Evaluation of Lipid Distribution in Caenorhabditis elegans by Nile Red and Oil Red O Staining. J Vis Exp. 2018;(133):57352. https://doi.org/10.3791/57352.
  • [24] Guillaume Y, Arsene AM, Constantin O, Koffi D, Martin K, Bognan A, Joseph DA. Effect of Euphorbia hirta on certain metabolic and cardiovascular diseases. Ann Int Med Dent Res. 2020;6(3):1-4.
  • [25] Khandige PS, Fernandes Z, Nayak P, Shubhangi S, Singh P. Evaluation of anti-hyperlipidemic activity of Euphorbia hirta bark against triton ® WR 1339 induced hyperlipidemia. Int J Health Sci. 2022;6(S8):3045–3055. https://doi.org/10.53730/ijhs.v6nS8.12759
  • [26] Sudha T, Padmini R, Evaluatıon of bioactıve compounds in Euphorbia hirta linn. leaves extract using gas chromatographic and mass spectroscopic techniques. J Pharm Negat Results. 2023;14(02):1988-1995. https://doi.org/10.47750/pnr.2023.14.S02.238
  • [27] Renquist BJ, Zhang C, Williams SY, Cone RD. Development of an assay for high-throughput energy expenditure monitoring in the zebrafish. Zebrafish. 2013;10(3):343-352. https://doi.org/10.1089/zeb.2012.0841
  • [28] Williams SY, Renquist BJ. High Throughput Danio Rerio Energy Expenditure Assay. J Vis Exp. 2016;(107):e53297. https://doi.org/10.3791/53297.
  • [29] Reid RM, D’Aquila AL, Biga PR. The validation of a sensitive, non-toxic in vivo metabolic assay applicable across zebrafish life stages. Comp Biochem Physiol C Toxicol Pharmac. 2018;208:29-37. https://doi.org/10.1016/j.cbpc.2017.11.004
  • [30] Nyeem MA, Haque MS, Akramuzzaman M, Siddika R, Sultana S, Islam BR. Euphorbia hirta Linn. A wonderful miracle plant of mediterranean region: a review. J Med Plants Stud. 2017;5(3):170-175.
  • [31] Sharma P. Pharmacological Potentials and Formulation Strategies of Euphorbia hirta. Eur J Med Plants. 2024;35(6):63-71. https://doi.org/10.9734/ejmp/2024/v35i61208
  • [32] Kumar S, Singh S, Goyal M, Sharma S. Aspect of Euphorbia Hirta in the Intendance of Obesity: A Review. Int J Innov Sci Res Technol. 2022;7(4):147-151. https://doi.org/10.5281/zenodo.6476746
  • [33] Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Bharath Chand RP, Aparna SR, Mangalapandi P, Samal A. IMPPAT: A curated database of Indian Medicinal plants, phytochemistry and therapeutics. Sci Rep. 2018;8(1):1-17. https://doi.org/10.1038/s41598-018-22631-z
  • [34] Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373-D1380. https://doi.org/10.1093/nar/gkac956
  • [35] Almalki FA, Abdalla AN, Shawky AM, El Hassab MA, Gouda AM. In silico approach using free software to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based schiff bases. Molecules. 2021;26(13):4002. https://doi.org/10.3390/molecules26134002
  • [36] Ivanov SM, Lagunin AA, Rudik A V, Filimonov DA, Poroikov VV. ADVERPred-Web service for prediction of adverse effects of drugs. J Chem Inf Model. 2018;58(1):8-11. https://doi.org/10.1021/acs.jcim.7b00568
  • [37] Nickel J, Gohlke BO, Erehman J, Banerjee P, Rong WW, Goede A, Dunkel M, Preissner R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res. 2014;42(W1):W26-31. https://doi.org/10.1093/nar/gku477
  • [38] Ali A, Mir GJ, Ayaz A, Maqbool I, Ahmad SB, Mushtaq S, Khan A, Mir TM, Rehman MU. In silico analysis and molecular docking studies of natural compounds of Withania somnifera against bovine NLRP9. J Mol Model. 2023;29(6):171. https://doi.org/10.1007/s00894-023-05570-z
  • [39] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. https://doi.org/10.1101/gr.1239303
  • [40] Mun CS, Hui LY, Sing LC, Karunakaran R, Ravichandran V. Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of coumarin based compounds targeting proteins involved in development of COVID-19. Saudi J Biol Sci. 2022;29(12):103458. https://doi.org/10.1016/j.sjbs.2022.103458
  • [41] Sarkar N, Venkategowda Kodihally AK, Shamnewadi A. Exploring the anticonvulsant potential of Daucus carota L.: A combined in silico and in vivo study for epilepsy therapy development. Pharmacol Res Mod Chin Med. 2025;15:100610. https://doi.org/10.1016/J.PRMCM.2025.100610
  • [42] Ayodele PF, Bamigbade A, Bamigbade OO, Adeniyi IA, Tachin ES, Seweje AJ, Farohunbi ST. Illustrated procedure to perform molecular docking using PyRx and Biovia Discovery Studio Visualizer: a case study of 10kt With Atropine. Prog Drug Discov Biomed Sci. 2023;6(1):1-32. http://dx.doi.org/10.36877/pddbs.a0000424
  • [43] Upadhyay B, Singh KP, Kumar A. Pharmacognostical and antibacterial studies of different extracts of Euphorbia hirta L. J Phytol. 2010;2(6):55-60.
  • [44] Lee YJ, Choi HS, Seo MJ, Jeon HJ, Kim KJ, Lee BY. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish. Food Funct. 2015;6(8):2824-2833. https://doi.org/10.1039/C5FO00481K
  • [45] OECD TN. 236: Fish embryo acute toxicity (FET) test. OECD Guidelines for the Testing of Chemicals, Section. 2013;2:1-22. https://doi.org/10.1787/9789264203709-en
  • [46] Zhou J, Xu YQ, Guo SY, Li CQ. Rapid analysis of hypolipidemic drugs in a live zebrafish assay. J Pharmacol Toxicol Methods. 2015;72:47-52. https://doi.org/10.1016/j.vascn.2014.12.002
  • [47] Schlombs K, Wagner T, Scheel J. Site-1 protease is required for cartilage development in zebrafish. Proc Natl Acad Sci U S A. 2003;100(24):14024-14029. https://doi.org/10.1073/pnas.2331794100
  • [48] Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F. Synthesis, characterization, and toxicity assessment of Pluronic F127-Functionalized Graphene Oxide on the embryonic development of Zebrafish (Danio rerio). Int J Nanomedicine. 2020;15:8311-8329. https://doi.org/10.2147/IJN.S271159
  • [49] Balamurugan K, Medishetti R, Rao P, Varma R, Chatti K, Parsa KV. Protocol to evaluate hyperlipidemia in zebrafish larvae. STAR protoc. 2022;3(4):101819. https://doi.org/10.1016/j.xpro.2022.101819
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Manoj A B 0009-0007-5455-0568

Anil Kumar Venkategowda Kodihally 0000-0001-9949-7325

Banappa S Unger 0000-0001-5765-0424

Sudeep K S 0009-0001-2324-6658

Akshay Shamnewadi 0009-0003-2315-6606

Shamanand Mallapur 0009-0000-0755-1428

Submission Date February 19, 2025
Acceptance Date May 16, 2025
Publication Date January 11, 2026
Published in Issue Year 2026 Volume: 30 Issue: 1

Cite

APA A B, M., Venkategowda Kodihally, A. K., Unger, B. S., … K S, S. (2026). Lipid metabolism modulatory effect of Euphorbia hirta L: an experimental study in high-fat diet fed zebrafish larvae. Journal of Research in Pharmacy, 30(1), 145-159. https://doi.org/10.12991/jrespharm.1642875
AMA A B M, Venkategowda Kodihally AK, Unger BS, K S S, Shamnewadi A, Mallapur S. Lipid metabolism modulatory effect of Euphorbia hirta L: an experimental study in high-fat diet fed zebrafish larvae. J. Res. Pharm. January 2026;30(1):145-159. doi:10.12991/jrespharm.1642875
Chicago A B, Manoj, Anil Kumar Venkategowda Kodihally, Banappa S Unger, Sudeep K S, Akshay Shamnewadi, and Shamanand Mallapur. “Lipid Metabolism Modulatory Effect of Euphorbia Hirta L: An Experimental Study in High-Fat Diet Fed Zebrafish Larvae”. Journal of Research in Pharmacy 30, no. 1 (January 2026): 145-59. https://doi.org/10.12991/jrespharm.1642875.
EndNote A B M, Venkategowda Kodihally AK, Unger BS, K S S, Shamnewadi A, Mallapur S (January 1, 2026) Lipid metabolism modulatory effect of Euphorbia hirta L: an experimental study in high-fat diet fed zebrafish larvae. Journal of Research in Pharmacy 30 1 145–159.
IEEE M. A B, A. K. Venkategowda Kodihally, B. S. Unger, S. K S, A. Shamnewadi, and S. Mallapur, “Lipid metabolism modulatory effect of Euphorbia hirta L: an experimental study in high-fat diet fed zebrafish larvae”, J. Res. Pharm., vol. 30, no. 1, pp. 145–159, 2026, doi: 10.12991/jrespharm.1642875.
ISNAD A B, Manoj et al. “Lipid Metabolism Modulatory Effect of Euphorbia Hirta L: An Experimental Study in High-Fat Diet Fed Zebrafish Larvae”. Journal of Research in Pharmacy 30/1 (January2026), 145-159. https://doi.org/10.12991/jrespharm.1642875.
JAMA A B M, Venkategowda Kodihally AK, Unger BS, K S S, Shamnewadi A, Mallapur S. Lipid metabolism modulatory effect of Euphorbia hirta L: an experimental study in high-fat diet fed zebrafish larvae. J. Res. Pharm. 2026;30:145–159.
MLA A B, Manoj et al. “Lipid Metabolism Modulatory Effect of Euphorbia Hirta L: An Experimental Study in High-Fat Diet Fed Zebrafish Larvae”. Journal of Research in Pharmacy, vol. 30, no. 1, 2026, pp. 145-59, doi:10.12991/jrespharm.1642875.
Vancouver A B M, Venkategowda Kodihally AK, Unger BS, K S S, Shamnewadi A, Mallapur S. Lipid metabolism modulatory effect of Euphorbia hirta L: an experimental study in high-fat diet fed zebrafish larvae. J. Res. Pharm. 2026;30(1):145-59.