Research Article
BibTex RIS Cite

Bioactivity potential and chemical profile of endophytic Stutzerimonas stutzeri strain D2 isolated from Myristica fatua Houtt

Year 2024, Volume: 28 Issue: 1, 51 - 62, 28.06.2025

Abstract

Endophytic bacteria isolated from medicinal plants are recognized as a source of valuable secondary metabolites. The present study aimed to isolate and evaluate the potential antibacterial, antioxidant, and cytotoxic properties of endophytic bacteria associated with Myristica fatua Houtt, along with molecular identification and chemical composition analysis of the most potential isolate. A total of 25 isolates were obtained from the root, leaf, and stem bark of M. fatua. 16 isolates (64%) exhibited antibacterial activity against at least one target strain. Preliminary screening showed that the D2 isolate displayed remarkable antibacterial activity against four targeted strains. D2- derived metabolite extract possessed moderate antibacterial activity with minimum inhibitory concentration (MIC) of 1,875 µg/mL for E. coli, P. aeruginosa, and S. aureus, and 3,750 µg/mL for B. subtilis, and minimum bactericidal concentration (MBC) of > 3,750 µg/mL. Furthermore, D2 extract exhibited weak antioxidant activity against DPPH (IC50: 242.61±3.2 µg/mL) and ABTS (IC50: 317.32±9.3 µg/mL). In the concentration of 100 µg/mL, the extract was able to decrease the viability of MCF-7 and HepG2 cells, with inhibition percentages of 52.6±9.7 and 41.5±9.36%, respectively. 16S rRNA-based identification confirmed D2 isolate was very similar (99.92%) to Stutzerimonas stutzeri strain SM12. The total phenolic content (TPC) and total flavonoid content (TFC) of the D2 extract were 21.11±2.3 mg GAE/g extract and 8.12±1.2 mg QE/g extract, respectively. At least fifteen volatile compounds were found in the D2 extract, as identified using GC-MS analysis. Four out of 15 compounds are well known responsible for antimicrobial, antioxidant, and cytotoxic properties, such as 2,4-di-tert-butyl phenol, pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), and bis(2-ethylhexyl) phthalate. The present study suggests that endophytic S. stutzeri strain D2 isolated from M. fatua Houtt could be a good source of active compounds valuable for pharmaceutical purposes.

References

  • [1] Megawati, Darmawan A. Resorcinol compounds isolated form the bark of Myristica fatua Houtt. Indones J Pharm. 2017;28(2):82-90. https://doi.org/10.14499/indonesianjpharm28iss2pp82.
  • [2] Lim TK. Myristica fatua, In: Edible Medicinal and Non-Medicinal Plants, 2012: 572-574. https://doi.org/10.1007/978-94-007-2534-8_79.
  • [3] Ashokkumar K, Simal-Gandara J, Murugan M, Dhanya MK, Pandian A. Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. Pytotherapy Res. 2022;36(7):2839-2851. https://doi.org/10.1002/ptr.7491.
  • [4] Muchtaridi, Subarnas A, Apriyantono A, Mustarichie R. Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibits locomotor activity in mice. Int J Mol Sci. 2010;11(11):4771-4781. https://doi.org/10.3390/ijms11114771.
  • [5] Fajriah S, Darmawan A, Megawati, Hudiyono S, Kosela S. Hanafi M. New cytotoxic compounds from Myristica fatua Houtt leaves against MCF-7 cell lines. Phytocem Lett. 2017;20(92017):36-39. http://dx.doi.org/10.1016/j.phytol.2017.03.013.
  • [6] Vivekar MR, Chandrashekar KR. Antioxidant and antibacterial activities of Myristica fatua var. Magnifica (Beddome) Sinclair. Asian J Pharm Clin Res. 2016;9(4): 235-239
  • [7] Prabha B, Sini S, Sherin DR, Neethu S, Rameshkumar KB, Manojkumar TK, Jayamurthy P, Radhakrishnan KV. Promalabaricone B from Myristica fatua Houtt. seeds demonstrate antidiabetic potential by modulating glucose uptake via the upregulation of AMPK in L6 myotubes. Nat Prod Res. 2019;35(5):1-6. https://doi.org/10.1080/14786419.2019.1607852
  • [8] Padmaja V, Srinivas NA, Eswaraiah CM. Evaluation of pharmacological activities of leaves and bark of Myristica fatua var. magnifica extracts. Iranian J Pharm Sci. 2019;15(1):39-50. https://doi.org/10.22037/ijps.v15.40596
  • [9] Strobel G. The emergence of endophytic microbes and their biological promise. J Fungi. 2018;4(2):1-19. https://doi.org/10.3390/jof4020057
  • [10] Christina A, Christapher V, Bhore SJ. Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacognosy Rev. 2013;7(13):11-16. https://dx.doi.org/10.4103/0973-7847.112833
  • [11] Tavarideh F, Pourahmad F, Nemati M. Diversity, and antibacterial activity of endophytic bacteria associated with medicinal plant, Scrophularia striata. Vet Res Forum. 2022;13(3):409-415. https://doi.org/10.30466%2Fvrf.2021.529714.3174
  • [12] Urumbil SK, Jesy EJ, Anilkumar M. Antimicrobial and antioxidant potential of endophytic bacteria isolated from Emilia sonchifolia. Biosci Biotechnol Res Comm. 2020;13(2):620-626. http://dx.doi.org/10.21786/bbrc/13.2/39.
  • [13] Stelmasiewicz M, Świątek Ł, Ludwiczuk A. Phytochemical profile and anticancer potential of endophytic microorganisms from liverwort species, Marchantia polymorpha L. Molecules. 2022;27(1):153. https://doi.org/10.3390/molecules27010153
  • [14] Munakata Y, Spina R, Slezack-Deschaumes S, Genestier J, Hehn A, Laurain-Mattar D. Screening of endophytic bacteria of Leucojum aestivum ‘gravety giant’ as a potential source of alkaloids and as antagonist to some plant fungal pathogens. Microorganisms. 2022;10(10):2089. https://doi.org/10.3390/microorganisms10102089.
  • [15] Trung DQ, Hang NTT, Van DM, Ngoc PB, Anh LT. Screening of endophytic bacteria isolated from weed plant to biocontrol stem rot disease on pitaya (Hylocereus undatus). Brazilian Archives Biol Technol. 2022;65:1-12. https://doi.org/10.1590/1678-4324-2022200749.
  • [16] Munif A, Nursalim M, Pradana AP. The potential of endophytic bacteria isolated from Tagetes sp.to control Meloidogyne spp. infection on tomato plants. Biodiversitas. 2021; 22(96):3229-3236. https://doi.org/10.13057/biodiv/d220626
  • [17] Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36-49. https://doi.org/10.1016/j.micres.2019.02.001.
  • [18] Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens. 2021;10(2):165. https://doi.org/10.3390/pathogens10020165
  • [19] Irawan C, Putri ID, Sukiman M, Utami A, Ismail, Putri RK, Lisandi A, Pratama AN. Antioxidant activity of DPPH, CUPRAC, and FRAP methods, as well as activity of alpha-glucosidase inhibiting enzymes from Tinospora crispa (L.) stem ultrasonic extract. Pharmacog J. 2022;14(5):511-520. https://doi.org/10.5530/pj.2022.14.128.
  • [20] Nordin ML, Kadir AA, Zakaria ZA, Abdullah R, Abdullah MNH. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispa against breast cancer cell lines, MCF-7 and MDA-MB-231. BMC Compl Alt Med. 2018;18(1):87. https://doi.org/10.1186/s12906-018-2153-5
  • [21] Gomila M, Mulet M, Garcia-Valdes E, Lalucat J. Genome-based taxonomy of the genus Stutzerimonas and proposal of S. frequens sp. nov. and S. degradans sp. nov. and emended descriptions of S. perfectomarina and S. chloritidismutans. Microorganisms. 2022;10(7):1363. https://doi.org/10.3390/microorganisms10071363.
  • [22] Kumar A, Kumar SPJ, Chintagunta AD, Agarwal DK, Pal G, Singh AN, Shimal-Gandara J. Biocontrol potential of Pseudomonas stutzeri endophyte from Withania somnifera (Ashwagandha) seed extract against pathogenic Fusarium oxysporum and Rhizoctonia solani. Arch Phytopathol Plant Protect. 2022;55(1):1-18. https://doi.org/10.1080/03235408.2021.1983384.
  • [23] Szymanska S, Lis MI, Piernik A, Hrynkiewicz K. Pseudomonas stutzeri and Kushneria marisflavi alleviate salinity stress-asssociated damages in barley, lettuce, and sunflower. Front Microbiol. 2022;13:788893. https://doi.org/10.3389/fmicb.2022.788893
  • [24] Dhanya KI, Swati VI, Venka KS, Osborne WJ. Antimicrobial activity of Ulva reticulata and its endophytes. J Ocean Univ China. 2016;15:363-369. http://dx.doi.org/10.1007/s11802-016-2803-7
  • [25] Rojas-Solis D, Zetter-Salmon E, Contreras-Perez M, Rocha-Granados MdC, Macias-Rodriguez L, Santoyo G. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol. 2018;13: 46-52. https://doi.org/10.1016/j.bcab.2017.11.007.
  • [26] Uzair B, Ahmed N, Ahmad VU, Mohammad FV, Edward DH. The isolation, puri¢cation and biological activity of a novel antibacterial compound produced by Pseudomonas stutzeri. FEMS Microbiol Lett. 2008;279:243-250. https://doi.org/10.1111/j.1574-6968.2007.01036.x
  • [27] Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel). 2018;5(3):93. https://doi.org/10.3390%2Fmedicines5030093
  • [28] Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. The Sci World J. 2013; 2013: 1-16. http://dx.doi.org/10.1155/2013/162750.
  • [29] Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Pandey A, Nampoothiri KM. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol. 2015; 211:44-50. https://doi.org/10.1016/j.ijfoodmicro.2015.06.025.
  • [30] Chawawisit K, Bhoopong P, Phupong W, Lertcanawanichakul M. 2, 4-Di-tert-butylphenol, the bioactive compound produced by Streptomyces sp. KB1. J Appl Pharm Sci. 2015;5(3):7-12. https://dx.doi.org/10.7324/JAPS.2015.510.S2
  • [31] Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Sarma VV. 2,4-di-tert-butylphenol isolated from an endophytic fungus, Daldinia eschscholtzii, reduces virulence and quorum sensing in Pseudomonas aeruginosa. Front Microbiol. 2020;11:1668 https://doi.org/10.3389/fmicb.2020.01668.
  • [32] Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Advances. 2018;8:17837–17846. https://doi.org/10.1039/C8RA00820E
  • [33] Ser HL, Palanisamy UD, Yin WF, Malek SNA, Chan KG, Goh BH, Lee LH. Presence of antioxidative agent, Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol. 2015; 6:854. https://doi.org/10.3389/fmicb.2015.00854
  • [34] Rajivgandhi G, Vijayan R, Maruthupandy M, Vaseeharan B, Manoharan N. Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs. Microb Pathog. 2018;118:190-198. https://doi.org/10.1016/j.micpath.2018.03.011.
  • [35] Prastya ME, Astuti RI, Batubara I, Takagi H, Wahyudi AT. Chemical screening identifes an extract from marine Pseudomonas sp.-PTR-08 as an anti-aging agent that promotes fssion yeast longevity by modulating the Pap1–ctt1+ pathway and the cell cycle. Mol Biol Rep. 2020;47:33-43. https://doi.org/10.1007/s11033-019-05102-0.
  • [36] Javed MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, Shahid M, Ijaz A, Ali H. The antibacterial and larvicidal potential of bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum. Molecules. 2022;27(21):1-15. https://doi.org/10.3390/molecules27217220.
  • [37] Habib MR, Karim MR. Antimicrobial, and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) Flower. Mycobiology. 2009;37(1):7220. https://doi.org/10.4489/myco.2009.37.1.031
  • [38] Cruz-Ramirez SG, Lopez-Saiz CM, Rosas-Burgos EC, Cinco-Moroyoqui FJ, Velazquez C, Hernandez J, Burgos-Hernandez A. Antimutagenic bis (2-ethylhexyl) phthalate isolated from octopus (Paraoctopus vulgaris). Food Sci Technol. 2021;41(2):314-320. https://doi.org/10.1590/fst.26119.
  • [39] Singh R, Pandey KD, Singh M, Singh SK, Hasem A, Al-Arjani ABF, Abd_Allah EF, Singh PK, Kumar A. Isolation, and characterization of endophytes bacterial strains of Momordica charantia L. and their possible approach in stress management. Microorganisms. 2021;10(2):290. https://doi.org/10.3390/microorganisms10020290.
  • [40] Priyanto JA, Prastya ME, Sinarawadi GS, Datu’salamah W, Avelina TY, Yanuar AIA, Azizah E, Tachrim ZP, Mozef T. The antibacterial and antibiofilm potential of Paederia foetida Linn. leaves extract. J Appl Pharm Sci. 2022;12(10):117-124. http://dx.doi.org/10.7324/JAPS.2022.121012.
  • [41] Prastya ME, Astuti RI, Batubara I, Wahyudi AT. Antioxidant, antiglycation and in vivo antiaging efects of metabolite extracts from marine sponge-associated bacteria. Ind J Pharm Sci. 2019;81:344-353. http://dx.doi.org/10.36468/pharmaceutical-sciences.516
  • [42] Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol. 1998;64(2):795-799. https://doi.org/10.1128/aem.64.2.795-799.1998
There are 42 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Microbiology
Journal Section Research Article
Authors

Jepri Agung Priyanto 0000-0003-2227-5040

Gian Primahana This is me 0000-0001-8176-3859

Muhammad Eka Prastya This is me 0000-0003-2500-1264

Desi Satiyaningsih This is me 0009-0008-8280-8199

Ricson Pemimpin Hutagaol This is me 0009-0005-7034-6861

Vera Permatasari This is me 0000-0001-8460-6285

Megawati Megawati This is me 0000-0002-6698-0668

Akhmad Darmawan This is me 0000-0001-9352-5233

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 1

Cite

APA Priyanto, J. A., Primahana, G., Prastya, M. E., Satiyaningsih, D., Hutagaol, R. P., Permatasari, V., Megawati, M., & Darmawan, A. (2025). Bioactivity potential and chemical profile of endophytic Stutzerimonas stutzeri strain D2 isolated from Myristica fatua Houtt. Journal of Research in Pharmacy, 28(1), 51-62. https://izlik.org/JA85YJ49KX
AMA 1.Priyanto JA, Primahana G, Prastya ME, et al. Bioactivity potential and chemical profile of endophytic Stutzerimonas stutzeri strain D2 isolated from Myristica fatua Houtt. J. Res. Pharm. 2025;28(1):51-62. https://izlik.org/JA85YJ49KX
Chicago Priyanto, Jepri Agung, Gian Primahana, Muhammad Eka Prastya, et al. 2025. “Bioactivity Potential and Chemical Profile of Endophytic Stutzerimonas Stutzeri Strain D2 Isolated from Myristica Fatua Houtt”. Journal of Research in Pharmacy 28 (1): 51-62. https://izlik.org/JA85YJ49KX.
EndNote Priyanto JA, Primahana G, Prastya ME, Satiyaningsih D, Hutagaol RP, Permatasari V, Megawati M, Darmawan A (June 1, 2025) Bioactivity potential and chemical profile of endophytic Stutzerimonas stutzeri strain D2 isolated from Myristica fatua Houtt. Journal of Research in Pharmacy 28 1 51–62.
IEEE [1]J. A. Priyanto et al., “Bioactivity potential and chemical profile of endophytic Stutzerimonas stutzeri strain D2 isolated from Myristica fatua Houtt”, J. Res. Pharm., vol. 28, no. 1, pp. 51–62, June 2025, [Online]. Available: https://izlik.org/JA85YJ49KX
ISNAD Priyanto, Jepri Agung - Primahana, Gian - Prastya, Muhammad Eka - Satiyaningsih, Desi - Hutagaol, Ricson Pemimpin - Permatasari, Vera - Megawati, Megawati - Darmawan, Akhmad. “Bioactivity Potential and Chemical Profile of Endophytic Stutzerimonas Stutzeri Strain D2 Isolated from Myristica Fatua Houtt”. Journal of Research in Pharmacy 28/1 (June 1, 2025): 51-62. https://izlik.org/JA85YJ49KX.
JAMA 1.Priyanto JA, Primahana G, Prastya ME, Satiyaningsih D, Hutagaol RP, Permatasari V, Megawati M, Darmawan A. Bioactivity potential and chemical profile of endophytic Stutzerimonas stutzeri strain D2 isolated from Myristica fatua Houtt. J. Res. Pharm. 2025;28:51–62.
MLA Priyanto, Jepri Agung, et al. “Bioactivity Potential and Chemical Profile of Endophytic Stutzerimonas Stutzeri Strain D2 Isolated from Myristica Fatua Houtt”. Journal of Research in Pharmacy, vol. 28, no. 1, June 2025, pp. 51-62, https://izlik.org/JA85YJ49KX.
Vancouver 1.Priyanto JA, Primahana G, Prastya ME, Satiyaningsih D, Hutagaol RP, Permatasari V, et al. Bioactivity potential and chemical profile of endophytic Stutzerimonas stutzeri strain D2 isolated from Myristica fatua Houtt. J. Res. Pharm. [Internet]. 2025 June 1;28(1):51-62. Available from: https://izlik.org/JA85YJ49KX