Research Article
BibTex RIS Cite

Effects of metformin in an experimental chronic unpredictable mild stress model

Year 2026, Volume: 30 Issue: 1, 171 - 185, 11.01.2026
https://doi.org/10.12991/jrespharm.1690442

Abstract

Prolonged interaction with challenging life situations is a well-recognised risk factor for depression, anxiety, and cognitive decline, particularly among menopausal women. This research aimed to assess the effects of metformin (MF) on anxiety-like behavioural changes, cognitive impairment, brain neuroplasticity, and apoptosis induced by chronic unpredictable mild stress (CUMS) in menopausal rats. To achieve this, we conducted the open field test (OFT) to measure anxiety- like behaviours and locomotor activity, the elevated plus- maze (EPM) to assess anxiety-like behaviour, and the novel object recognition test (NORT) to evaluate recognition memory. Additionally, we measured the levels of BDNF, SIRT 1, synaptophysin, and caspase-9 by ELISA in the hippocampus, prefrontal cortex (PFC), and amygdala. Our experimental groups were categorised into five groups, with six rats in each group, as follows: Control, ovariectomized (OVX), OVX+CUMS, OVX+MF, and OVX+CUMS+MF. Four weeks after the OVX, the CUMS protocol was implemented, and MF treatment commenced following CUMS and continued for 14 days. Chronic administration of MF improved recognition memory and anxiety levels in rats subjected to CUMS, as assessed by the NORT, OFT, and EPM. MF increased brain-derived neurotrophic factor, synaptophysin, and sirtuin1, key markers of neuroplasticity in specific brain regions. We also found that MF treatment reduced pro-apoptotic caspase-9 levels. Histopathological analysis of the hippocampal DG and prefrontal cortex indicated neurodegenerative changes such as pyknotic nuclei, cytoplasmic sparseness, widespread vacuolization, and perivascular and pericellular oedema in the OVX and OVX+CUMS groups. However, these pathological features were significantly diminished in the MF groups, resulting in better preservation of neuronal integrity, fewer pyknotic cells, and reduced vacuolization. In conclusion, metformin appears to be a beneficial therapeutic agent that enhances neural plasticity, decreases apoptosis, and improves recognition memory and anxiety- like behaviours induced by OVX+CUMS

Supporting Institution

This study has been supported by Marmara University Scientific Research Projects Coordination Unit (BABKO) under grant number: 11465.

Project Number

TYL-2024-11465

References

  • [1] Kuck MJ, Hogervorst E. Stress, depression, and anxiety: psychological complaints across menopausal stages. Front Psychiatry. 2024; 15:1323743. https://doi.org/10.3389/fpsyt.2024.1323743.
  • [2] Soares CN, Zitek B. Reproductive hormone sensitivity and risk for depression across the female life cycle: a continuum of vulnerability? J Psychiatry Neurosci. 2008; 33(4):331-343.
  • [3] Azarfarin M, Moradikor N, Salatin S, Sarailoo M, Dadkhah M. Stress-related neurodegenerative diseases: Molecular mechanisms implicated in neurodegeneration and therapeutic strategies. Prog Brain Res. 2025; 291:253-288. https://doi.org/10.1016/bs.pbr.2025.01.011.
  • [4] Kline SA, Mega MS. Stress-Induced Neurodegeneration: The Potential for Coping as Neuroprotective Therapy. Am J Alzheimers Dis Other Demen. 2020;35:1533317520960873. https://doi.org/10.1177/1533317520960873
  • [5] Lupien SJ, Juster RP, Raymond C, Marin MF. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front Neuroendocrinol. 2018; 49:91-105. https://doi.org/10.1016/j.yfrne.2018.02.001.
  • [6] Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 2008; 33(2):320-331. https://doi.org/10.1038/sj.npp.1301410.
  • [7] Perna G, Alciati A, Sangiorgio E, Caldirola D, Nemeroff CB. Personalized Clinical Approaches to Anxiety Disorders. Adv Exp Med Biol. 2020; 1191:489-521. https://doi.org/10.1007/978-981-32-9705-0_25.
  • [8] Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis. 2024; 39(8):1523-1541. https://doi.org/10.1007/s11011-024-01416-6.
  • [9] McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007; 87(3):873-904. https://doi.org/10.1152/physrev.00041.2006
  • [10] Sharma HR, Thakur MK. Correlation of ERα/ERβ expression with dendritic and behavioural changes in CUMS mice. Physiol Behav. 2015; 145:71-83. https://doi.org/10.1016/j.physbeh.2015.03.041.
  • [11] Bachis A, Cruz MI, Nosheny RL, Mocchetti I. Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex. Neurosci Lett. 2008; 442(2):104-108. https://doi.org/10.1016/j.neulet.2008.06.081.
  • [12] Chen M, Li M, Ma L, Hou H, Tang M, Li Q. Saikosaponins alleviate depression-like behaviors of chronic unpredictable mild stress exposed mice through ERK signaling pathway. Exp Brain Res. 2025; 243(3):63. https://doi.org/10.1007/s00221-025-07011-0.
  • [13] Wang G, An T, Lei C, Zhu X, Yang L, Zhang L, Zhang R. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression. J Ginseng Res. 2022; 46(3):376-386. https://doi.org/10.1016/j.jgr.2021.03.005.
  • [14] Liu T, Ma Y, Zhang R, Zhong H, Wang L, Zhao J, Yang L, Fan X. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl). 2019; 236(4):1385-1399. https://doi.org/10.1007/s00213-018-5148-5.
  • [15] Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS, Henn FA. Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry. 2001; 50(10):809-812. https://doi.org/10.1016/s0006-3223(01)01229-x.
  • [16] Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res. 2025;476:115280. https://doi.org/10.1016/j.bbr.2024.115280.
  • [17] Taheri M, Roghani M, Sedaghat R. Metformin Mitigates Trimethyltin-Induced Cognition Impairment and Hippocampal Neurodegeneration. Cell Mol Neurobiol. 2024; 44(1):70. https://doi.org/10.1007/s10571-024-01502-4.
  • [18] Keshavarzi S, Kermanshahi S, Karami L, Motaghinejad M, Motevalian M, Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology. 2019; 72:74-84. https://doi.org/10.1016/j.neuro.2019.02.004
  • [19] Zhao M, Cheng, X, Lin X, Han Y, Zhou, Y, Zhao T, He Y, Wu L, Zhao Y, Fan M, Zhu L. Metformin administration prevents memory impairment induced by hypobaric hypoxia in rats. Behav Brain Res. 2019; 363: 30–37. https://doi.org/10.1038/s41380-023-02283-w.
  • [20] Li GF, Zhao M, Zhao T, Cheng X, Fan M, Zhu LL. [Effects of metformin on depressive behavior in chronic stress rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2019; 35(3):245-249. https://doi.org/10.12047/j.cjap.5775.2019.052.
  • [21] Muñoz-Arenas G, Pulido G, Treviño S, Vázquez-Roque R, Flores G, Moran C, Handal-Silva A, Guevara J, Venegas B, Díaz A. Effects of metformin on recognition memory and hippocampal neuroplasticity in rats with metabolic syndrome. Synapse. 2020 Sep;74(9):e22153. doi: 10.1002/syn.22153. Epub 2020 Apr 6. Erratum in: Synapse. 2021; 75(5):e22198.https://doi.org/10.1002/syn.22198.
  • [22] Turan I, Sayan Özaçmak H, Erdem S, Ergenc M, Ozacmak VH. Protective effect of metformin against ovariectomy induced depressive- and anxiety-like behaviours in rats: role of oxidative stress. Neuroreport. 2021; 32(8):666-671. https://doi.org/10.1097/WNR.0000000000001634
  • [23] Liu D, Zhang Q, Gu J, Wang X, Xie K, Xian X, Wang J, Jiang H, Wang Z. Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 49:21-9. https://doi.org/10.1016/j.pnpbp.2013.10.017.
  • [24] Liu SZ, Yang J, Chen LL, Wang P, Lin L. Tanshinone IIA ameliorates chronic unpredictable mild stress-induced depression-like behavior and cognitive impairment in rats through the BDNF/TrkB/GAT1 signaling pathway. Eur J Pharmacol. 2023; 938:175385. https://doi.org/10.1016/j.ejphar.2022.175385.
  • [25] Pałucha-Poniewiera A, Bobula B, Rafało-Ulińska A. The Antidepressant-like Activity and Cognitive Enhancing Effects of the Combined Administration of (R)-Ketamine and LY341495 in the CUMS Model of Depression in Mice Are Related to the Modulation of Excitatory Synaptic Transmission and LTP in the PFC. Pharmaceuticals. 2023; 16(2):288. https://doi.org/10.3390/ph16020288
  • [26] Sritawan N, Prajit R, Chaisawang P, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Metformin alleviates memory and hippocampal neurogenesis decline induced by methotrexate chemotherapy in a rat model. Biomed Pharmacother. 2020; 131:110651. https://doi.org/10.1016/j.biopha.2020.110651.
  • [27] Alharbi I, Alharbi H, Almogbel Y, Alalwan A, Alhowail A. Effect of Metformin on Doxorubicin-Induced Memory Dysfunction. Brain Sci. 2020; 10(3):152. https://doi.org/10.3390/brainsci10030152
  • [28] Janthakhin, Y., Kingtong, S., Aphibanthammakit, C., & Juntapremjit, S. Metformin mitigates memory impairment of diabetic mice through modulation of plasma pro-inflammatory cytokines and Aβ1-42 levels. Nat Life Sci Commun. 2023; 22: e2023001. https://doi.org/10.12982/NLSC.2023.001
  • [29] Fatemi I, Khaluoi A, Kaeidi A, Shamsizadeh A, Heydari S, Allahtavakoli MA. Protective effect of metformin on D-galactose-induced aging model in mice. Iran J Basic Med Sci. 2018; 21(1):19-25. https://doi.org/10.22038/IJBMS.2017.24331.6071.
  • [30] Zhang YM, Zong HC, Qi YB, Chang LL, Gao YN, Zhou T, Yin T, Liu M, Pan KJ, Chen WG, Guo HR, Guo F, Peng YM, Wang M, Feng LY, Zang Y, Li Y, Li J. Anxiolytic effect of antidiabetic metformin is mediated by AMPK activation in mPFC inhibitory neurons. Mol Psychiatry. 2023;28(9):3955-3965. https://doi.org/10.1016/j.bbr.2019.01.048.
  • [31] Liu W, Liu J, Huang Z, Cui Z, Li L, Liu W, Qi Z. Possible role of GLP-1 in antidepressant effects of metformin and exercise in CUMS mice. J Affect Disord. 2019; 246:486-497. https://doi.org/10.1016/j.jad.2018.12.112.
  • [32] Poggini S, Golia MT, Alboni S, Milior G, Sciarria LP, Viglione A, Matte Bon G, Brunello N, Puglisi-Allegra S, Limatola C, Maggi L, Branchi I. Combined Fluoxetine and Metformin Treatment Potentiates Antidepressant Efficacy Increasing IGF2 Expression in the Dorsal Hippocampus. Neural Plast. 2019; 2019:4651031. https://doi.org/10.1155/2019/4651031.
  • [33] Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun. 2024; 724:150218. https://doi.org/10.1016/j.bbrc.2024.150218
  • [34] Ai H, Fang W, Hu H, Hu X, Lu W. Antidiabetic Drug Metformin Ameliorates Depressive-Like Behavior in Mice with Chronic Restraint Stress via Activation of AMP-Activated Protein Kinase. Aging Dis. 2020; 11(1):31-43. https://doi.org/10.14336/AD.2019.0403.
  • [35] Kakhki FSH, Asghari A, Bardaghi Z, Anaeigoudari A, Beheshti F, Salmani H, Hosseini M. The Antidiabetic Drug Metformin Attenuated Depressive and Anxiety-like Behaviors and Oxidative Stress in the Brain in a Rodent Model of Inflammation Induced by Lipopolysaccharide in Male Rats. Endocr Metab Immune Disord Drug Targets. 2024;24(13):1525-1537. https://doi.org/10.2174/0118715303275039231228065050.
  • [36] Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci. 2019; 7(13):363. https://doi.org/10.3389/fncel.2019.00363
  • [37] Lee SH, Kim YJ, Lee KM, Ryu S, Yoon BW. Ischemic preconditioning enhances neurogenesis in the subventricular zone. Neuroscience. 2007; 146(3):1020-1031. https://doi.org/10.1016/j.neuroscience.2007.02.058.
  • [38] Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006; 15;59(12):1116-1127. https://doi.org/10.1016/j.biopsych.2006.02.013
  • [39] Fang W, Zhang J, Hong L, Huang W, Dai X, Ye Q, Chen X. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord. 2020; 260: 302-313. https://doi.org/10.1016/j.jad.2019.09.013
  • [40] Wu T, Li X, Li T, Cai M, Yu Z, Zhang J, Zhang Z, Zhang W, Xiang J, Cai D. Apocynum venetum Leaf Extract Exerts Antidepressant-Like Effects and Inhibits Hippocampal and Cortical Apoptosis of Rats Exposed to Chronic Unpredictable Mild Stress. Evid Based Complement Alternat Med. 2018; 2018:5916451. https://doi.org/10.1155/2018/5916451.
  • [41] Kumar S, Hultman R, Hughes D, Michel N, Katz BM, Dzirasa K. Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat Commun. 2014;29(5):4537. https://doi.org/10.1038/ncomms5537.
  • [42] Colyn L, Venzala E, Marco S, Perez-Otaño I, Tordera RM. Chronic social defeat stress induces sustained synaptic structural changes in the prefrontal cortex and amygdala. Behav Brain Res. 2019; 373:112079. https://doi.org/ 10.1016/j.bbr.2019.112079.
  • [43] Yu H, Fan C, Yang L, Yu S, Song Q, Wang P, Mao X. Ginsenoside Rg1 Prevents Chronic Stress-Induced Depression-Like Behaviors and Neuronal Structural Plasticity in Rats. Cell Physiol Biochem. 2018; 48(6):2470-2482. https://doi.org/10.1159/000492684
  • [44] Liu Z, Qi Y, Cheng Z, Zhu X, Fan C, Yu SY. The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. Neuroscience. 2016; 322:358-369. https://doi.org/10.1016/j.neuroscience.2016.02.050
  • [45] Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, Kobayashi A, Watanabe Y. Hippocampal Sirtuin1 Signaling Mediates Depression-like Behavior. Biol Psychiatry. 2016; 80(11):815-826. https://doi.org/10.1016/j.biopsych.2016.01.009.
  • [46] Bahi A. Hippocampal microRNA-181a overexpression participates in anxiety and ethanol related behaviors via regulating the expression of SIRT-1. Physiol Behav. 2025; 292:114839. https://doi.org/10.1016/j.physbeh.2025.114839.
  • [47] Wang Y, Zhang R, Jiang Y, Liao J, Mu L, Hu M. Hippocampal SIRT1 signaling mediates the ameliorative effect of treadmill exercise on anxiety- and depression-like behavior in APP/PS1 mice. Front Aging Neurosci. 2024;16:1489214. https://doi.org/10.3389/fnagi.2024.1489214.
  • [48] Reddy BR, Maitra S, Jhelum P, Kumar KP, Bagul PK, Kaur G, Banerjee SK, Kumar A, Chakravarty S. Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats. J Biosci. 2016; 41(3):407-417. https://doi.org/10.1007/s12038-016-9627-8.
  • [49] Li M, Yang Y, Xu G, Gu J, Zhang Y, Maes M, Liu H. SEP-363856 attenuates CUMS-induced depression-like behaviours and reverses hippocampal neuronal injuries. World J Biol Psychiatry. 2024; 25(10):604-621. https://doi.org/10.1080/15622975.2024.2429507.
  • [50] Hei M, Chen P, Wang S, Li X, Xu M, Zhu X, Wang Y, Duan J, Huang Y, Zhao S. Effects of chronic mild stress induced depression on synaptic plasticity in mouse hippocampus. Behav Brain Res. 2019; 365:26-35. https://doi.org/10.1016/j.bbr.2019.02.044.
  • [51] Kovačević S, Pavković Ž, Brkljačić J, Elaković I, Vojnović Milutinović D, Djordjevic A, Pešić V. High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other's Neurobehavioral Effects in Female Rats. Int J Mol Sci. 2024; 25(21):11721. https://doi.org/10.3390/ijms252111721.
  • [52] Ameen O, Samaka RM, Abo-Elsoud RAA. Metformin alleviates neurocognitive impairment in aging via activation of AMPK/BDNF/PI3K pathway. Sci Rep. 2022; 12(1):17084. https://doi.org/10.1038/s41598-022-20945-7
  • [53] Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep. 2023; 11(22):10.14814. https://doi.org/10.14814/phy2.15852.
  • [54] Parul, Mishra A, Singh S, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Palit G, Shukla S. Chronic unpredictable stress negatively regulates hippocampal neurogenesis and promote anxious depression-like behavior via upregulating apoptosis and inflammatory signals in adult rats. Brain Res Bull. 2021; 172:164-179. https://doi.org/10.1016/j.brainresbull.2021.04.017.
  • [55] Ding J, Han F, Shi Y. Single-prolonged stress induces apoptosis in the amygdala in a rat model of post-traumatic stress disorder. J Psychiatr Res. 2010; 44(1):48-55. https://doi.org/10.1016/j.jpsychires.2009.06.001.
  • [56] Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behavioural brain research. 2019; 369:111900. https://doi.org/10.1016/j.bbr.2019.111900
  • [57] Dong L, Wang S, Li Y, Zhao Z, Shen Y, Liu L, Xu G, Ma C, Li S, Zhang X, Cong B. RU486 Reverses Emotional Disorders by Influencing Astrocytes and Endoplasmic Reticulum Stress in Chronic Restraint Stress Challenged Rats. Cell Physiol Biochem. 2017;42(3):1098-1108. https://doi.org/10.1159/000478764.
  • [58] Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008; 9(3):231-41. https://doi.org/10.1038/nrm2312.
  • [59] Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479-489. https://doi.org/10.1016/s0092-8674(00)80434-1.
  • [60] Avci O, Ozdemir E, Taskiran AS, Inan ZDS, Gursoy S. Metformin prevents morphine-induced apoptosis in rats with diabetic neuropathy: a possible mechanism for attenuating morphine tolerance. Naunyn Schmiedebergs Arch Pharmacol. 2022; 395(11):1449-1462. https://doi.org/10.1007/s00210-022-02283-7.
  • [61] Gabryel B, Liber S. Metformin limits apoptosis in primary rat cortical astrocytes subjected to oxygen and glucose deprivation. Folia Neuropathol. 2018;56(4):328-336. https://doi.org/10.5114/fn.2018.80866.
  • [62] Guo H, Zheng L, Xu H, Pang Q, Ren Z, Gao Y, Wang T. Neurobiological Links between Stress, Brain Injury, and Disease. Oxid Med Cell Longev. 2022; 2022:8111022. https://doi.org/10.1155/2022/8111022.
  • [63] Darbandi N, Moghadasi S, Momeni HR, Ramezani M. Comparing the acute and chronic effects of metformin and antioxidant protective effects of N-acetyl cysteine on memory retrieval and oxidative stress in rats with Alzheimer's disease. Pak J Pharm Sci. 2023; 36(3):731-739.
  • [64] Özbeyli D, Sarı G, Özkan N, Karademir B, Yüksel M, Çilingir Kaya ÖT, Kasımay Çakır Ö. Protective effects of different exercise modalities in an Alzheimer's disease-like model. Behav Brain Res. 2017; 328:159-177. https://doi.org/10.1016/j.bbr.2017.03.044.
  • [65] Zhu S, Wang J, Zhang Y, Li V, Kong J, He J, Li XM. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res. 2014;1576:81-90. https://doi.org/10.1016/j.brainres.2014.06.002
  • [66] Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc. 2006;1(3):1306-1311. https://doi.org/10.1038/nprot.2006.205.
  • [67] Sahin Z, Solak H, Koc A, Ozen Koca R, Ozkurkculer A, Cakan P, Solak Gormus ZI, Kutlu S, Kelestimur H. Long-term metabolic cage housing increases anxiety/depression-related behaviours in adult male rats. Arch Physiol Biochem. 2019; 125(2):122-127. https://doi.org/10.1080/13813455.2018.1441314.
  • [68] Ozbeyli D, Aykac A, Alaca N, Hazar-Yavuz AN, Ozkan N, Sener G. Protective effects of vortioxetine in predator scent stress model of post-traumatic stress disorder in rats: role on neuroplasticity and apoptosis. J Physiol Pharmacol. 2019; 70(4). https://doi.org/10.26402/jpp.2019.4.07.
  • [69] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. London: Academic Press; 1986.

Year 2026, Volume: 30 Issue: 1, 171 - 185, 11.01.2026
https://doi.org/10.12991/jrespharm.1690442

Abstract

Project Number

TYL-2024-11465

References

  • [1] Kuck MJ, Hogervorst E. Stress, depression, and anxiety: psychological complaints across menopausal stages. Front Psychiatry. 2024; 15:1323743. https://doi.org/10.3389/fpsyt.2024.1323743.
  • [2] Soares CN, Zitek B. Reproductive hormone sensitivity and risk for depression across the female life cycle: a continuum of vulnerability? J Psychiatry Neurosci. 2008; 33(4):331-343.
  • [3] Azarfarin M, Moradikor N, Salatin S, Sarailoo M, Dadkhah M. Stress-related neurodegenerative diseases: Molecular mechanisms implicated in neurodegeneration and therapeutic strategies. Prog Brain Res. 2025; 291:253-288. https://doi.org/10.1016/bs.pbr.2025.01.011.
  • [4] Kline SA, Mega MS. Stress-Induced Neurodegeneration: The Potential for Coping as Neuroprotective Therapy. Am J Alzheimers Dis Other Demen. 2020;35:1533317520960873. https://doi.org/10.1177/1533317520960873
  • [5] Lupien SJ, Juster RP, Raymond C, Marin MF. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front Neuroendocrinol. 2018; 49:91-105. https://doi.org/10.1016/j.yfrne.2018.02.001.
  • [6] Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 2008; 33(2):320-331. https://doi.org/10.1038/sj.npp.1301410.
  • [7] Perna G, Alciati A, Sangiorgio E, Caldirola D, Nemeroff CB. Personalized Clinical Approaches to Anxiety Disorders. Adv Exp Med Biol. 2020; 1191:489-521. https://doi.org/10.1007/978-981-32-9705-0_25.
  • [8] Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis. 2024; 39(8):1523-1541. https://doi.org/10.1007/s11011-024-01416-6.
  • [9] McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007; 87(3):873-904. https://doi.org/10.1152/physrev.00041.2006
  • [10] Sharma HR, Thakur MK. Correlation of ERα/ERβ expression with dendritic and behavioural changes in CUMS mice. Physiol Behav. 2015; 145:71-83. https://doi.org/10.1016/j.physbeh.2015.03.041.
  • [11] Bachis A, Cruz MI, Nosheny RL, Mocchetti I. Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex. Neurosci Lett. 2008; 442(2):104-108. https://doi.org/10.1016/j.neulet.2008.06.081.
  • [12] Chen M, Li M, Ma L, Hou H, Tang M, Li Q. Saikosaponins alleviate depression-like behaviors of chronic unpredictable mild stress exposed mice through ERK signaling pathway. Exp Brain Res. 2025; 243(3):63. https://doi.org/10.1007/s00221-025-07011-0.
  • [13] Wang G, An T, Lei C, Zhu X, Yang L, Zhang L, Zhang R. Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression. J Ginseng Res. 2022; 46(3):376-386. https://doi.org/10.1016/j.jgr.2021.03.005.
  • [14] Liu T, Ma Y, Zhang R, Zhong H, Wang L, Zhao J, Yang L, Fan X. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl). 2019; 236(4):1385-1399. https://doi.org/10.1007/s00213-018-5148-5.
  • [15] Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS, Henn FA. Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry. 2001; 50(10):809-812. https://doi.org/10.1016/s0006-3223(01)01229-x.
  • [16] Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res. 2025;476:115280. https://doi.org/10.1016/j.bbr.2024.115280.
  • [17] Taheri M, Roghani M, Sedaghat R. Metformin Mitigates Trimethyltin-Induced Cognition Impairment and Hippocampal Neurodegeneration. Cell Mol Neurobiol. 2024; 44(1):70. https://doi.org/10.1007/s10571-024-01502-4.
  • [18] Keshavarzi S, Kermanshahi S, Karami L, Motaghinejad M, Motevalian M, Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology. 2019; 72:74-84. https://doi.org/10.1016/j.neuro.2019.02.004
  • [19] Zhao M, Cheng, X, Lin X, Han Y, Zhou, Y, Zhao T, He Y, Wu L, Zhao Y, Fan M, Zhu L. Metformin administration prevents memory impairment induced by hypobaric hypoxia in rats. Behav Brain Res. 2019; 363: 30–37. https://doi.org/10.1038/s41380-023-02283-w.
  • [20] Li GF, Zhao M, Zhao T, Cheng X, Fan M, Zhu LL. [Effects of metformin on depressive behavior in chronic stress rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2019; 35(3):245-249. https://doi.org/10.12047/j.cjap.5775.2019.052.
  • [21] Muñoz-Arenas G, Pulido G, Treviño S, Vázquez-Roque R, Flores G, Moran C, Handal-Silva A, Guevara J, Venegas B, Díaz A. Effects of metformin on recognition memory and hippocampal neuroplasticity in rats with metabolic syndrome. Synapse. 2020 Sep;74(9):e22153. doi: 10.1002/syn.22153. Epub 2020 Apr 6. Erratum in: Synapse. 2021; 75(5):e22198.https://doi.org/10.1002/syn.22198.
  • [22] Turan I, Sayan Özaçmak H, Erdem S, Ergenc M, Ozacmak VH. Protective effect of metformin against ovariectomy induced depressive- and anxiety-like behaviours in rats: role of oxidative stress. Neuroreport. 2021; 32(8):666-671. https://doi.org/10.1097/WNR.0000000000001634
  • [23] Liu D, Zhang Q, Gu J, Wang X, Xie K, Xian X, Wang J, Jiang H, Wang Z. Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 49:21-9. https://doi.org/10.1016/j.pnpbp.2013.10.017.
  • [24] Liu SZ, Yang J, Chen LL, Wang P, Lin L. Tanshinone IIA ameliorates chronic unpredictable mild stress-induced depression-like behavior and cognitive impairment in rats through the BDNF/TrkB/GAT1 signaling pathway. Eur J Pharmacol. 2023; 938:175385. https://doi.org/10.1016/j.ejphar.2022.175385.
  • [25] Pałucha-Poniewiera A, Bobula B, Rafało-Ulińska A. The Antidepressant-like Activity and Cognitive Enhancing Effects of the Combined Administration of (R)-Ketamine and LY341495 in the CUMS Model of Depression in Mice Are Related to the Modulation of Excitatory Synaptic Transmission and LTP in the PFC. Pharmaceuticals. 2023; 16(2):288. https://doi.org/10.3390/ph16020288
  • [26] Sritawan N, Prajit R, Chaisawang P, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Metformin alleviates memory and hippocampal neurogenesis decline induced by methotrexate chemotherapy in a rat model. Biomed Pharmacother. 2020; 131:110651. https://doi.org/10.1016/j.biopha.2020.110651.
  • [27] Alharbi I, Alharbi H, Almogbel Y, Alalwan A, Alhowail A. Effect of Metformin on Doxorubicin-Induced Memory Dysfunction. Brain Sci. 2020; 10(3):152. https://doi.org/10.3390/brainsci10030152
  • [28] Janthakhin, Y., Kingtong, S., Aphibanthammakit, C., & Juntapremjit, S. Metformin mitigates memory impairment of diabetic mice through modulation of plasma pro-inflammatory cytokines and Aβ1-42 levels. Nat Life Sci Commun. 2023; 22: e2023001. https://doi.org/10.12982/NLSC.2023.001
  • [29] Fatemi I, Khaluoi A, Kaeidi A, Shamsizadeh A, Heydari S, Allahtavakoli MA. Protective effect of metformin on D-galactose-induced aging model in mice. Iran J Basic Med Sci. 2018; 21(1):19-25. https://doi.org/10.22038/IJBMS.2017.24331.6071.
  • [30] Zhang YM, Zong HC, Qi YB, Chang LL, Gao YN, Zhou T, Yin T, Liu M, Pan KJ, Chen WG, Guo HR, Guo F, Peng YM, Wang M, Feng LY, Zang Y, Li Y, Li J. Anxiolytic effect of antidiabetic metformin is mediated by AMPK activation in mPFC inhibitory neurons. Mol Psychiatry. 2023;28(9):3955-3965. https://doi.org/10.1016/j.bbr.2019.01.048.
  • [31] Liu W, Liu J, Huang Z, Cui Z, Li L, Liu W, Qi Z. Possible role of GLP-1 in antidepressant effects of metformin and exercise in CUMS mice. J Affect Disord. 2019; 246:486-497. https://doi.org/10.1016/j.jad.2018.12.112.
  • [32] Poggini S, Golia MT, Alboni S, Milior G, Sciarria LP, Viglione A, Matte Bon G, Brunello N, Puglisi-Allegra S, Limatola C, Maggi L, Branchi I. Combined Fluoxetine and Metformin Treatment Potentiates Antidepressant Efficacy Increasing IGF2 Expression in the Dorsal Hippocampus. Neural Plast. 2019; 2019:4651031. https://doi.org/10.1155/2019/4651031.
  • [33] Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun. 2024; 724:150218. https://doi.org/10.1016/j.bbrc.2024.150218
  • [34] Ai H, Fang W, Hu H, Hu X, Lu W. Antidiabetic Drug Metformin Ameliorates Depressive-Like Behavior in Mice with Chronic Restraint Stress via Activation of AMP-Activated Protein Kinase. Aging Dis. 2020; 11(1):31-43. https://doi.org/10.14336/AD.2019.0403.
  • [35] Kakhki FSH, Asghari A, Bardaghi Z, Anaeigoudari A, Beheshti F, Salmani H, Hosseini M. The Antidiabetic Drug Metformin Attenuated Depressive and Anxiety-like Behaviors and Oxidative Stress in the Brain in a Rodent Model of Inflammation Induced by Lipopolysaccharide in Male Rats. Endocr Metab Immune Disord Drug Targets. 2024;24(13):1525-1537. https://doi.org/10.2174/0118715303275039231228065050.
  • [36] Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci. 2019; 7(13):363. https://doi.org/10.3389/fncel.2019.00363
  • [37] Lee SH, Kim YJ, Lee KM, Ryu S, Yoon BW. Ischemic preconditioning enhances neurogenesis in the subventricular zone. Neuroscience. 2007; 146(3):1020-1031. https://doi.org/10.1016/j.neuroscience.2007.02.058.
  • [38] Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006; 15;59(12):1116-1127. https://doi.org/10.1016/j.biopsych.2006.02.013
  • [39] Fang W, Zhang J, Hong L, Huang W, Dai X, Ye Q, Chen X. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord. 2020; 260: 302-313. https://doi.org/10.1016/j.jad.2019.09.013
  • [40] Wu T, Li X, Li T, Cai M, Yu Z, Zhang J, Zhang Z, Zhang W, Xiang J, Cai D. Apocynum venetum Leaf Extract Exerts Antidepressant-Like Effects and Inhibits Hippocampal and Cortical Apoptosis of Rats Exposed to Chronic Unpredictable Mild Stress. Evid Based Complement Alternat Med. 2018; 2018:5916451. https://doi.org/10.1155/2018/5916451.
  • [41] Kumar S, Hultman R, Hughes D, Michel N, Katz BM, Dzirasa K. Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat Commun. 2014;29(5):4537. https://doi.org/10.1038/ncomms5537.
  • [42] Colyn L, Venzala E, Marco S, Perez-Otaño I, Tordera RM. Chronic social defeat stress induces sustained synaptic structural changes in the prefrontal cortex and amygdala. Behav Brain Res. 2019; 373:112079. https://doi.org/ 10.1016/j.bbr.2019.112079.
  • [43] Yu H, Fan C, Yang L, Yu S, Song Q, Wang P, Mao X. Ginsenoside Rg1 Prevents Chronic Stress-Induced Depression-Like Behaviors and Neuronal Structural Plasticity in Rats. Cell Physiol Biochem. 2018; 48(6):2470-2482. https://doi.org/10.1159/000492684
  • [44] Liu Z, Qi Y, Cheng Z, Zhu X, Fan C, Yu SY. The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. Neuroscience. 2016; 322:358-369. https://doi.org/10.1016/j.neuroscience.2016.02.050
  • [45] Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, Kobayashi A, Watanabe Y. Hippocampal Sirtuin1 Signaling Mediates Depression-like Behavior. Biol Psychiatry. 2016; 80(11):815-826. https://doi.org/10.1016/j.biopsych.2016.01.009.
  • [46] Bahi A. Hippocampal microRNA-181a overexpression participates in anxiety and ethanol related behaviors via regulating the expression of SIRT-1. Physiol Behav. 2025; 292:114839. https://doi.org/10.1016/j.physbeh.2025.114839.
  • [47] Wang Y, Zhang R, Jiang Y, Liao J, Mu L, Hu M. Hippocampal SIRT1 signaling mediates the ameliorative effect of treadmill exercise on anxiety- and depression-like behavior in APP/PS1 mice. Front Aging Neurosci. 2024;16:1489214. https://doi.org/10.3389/fnagi.2024.1489214.
  • [48] Reddy BR, Maitra S, Jhelum P, Kumar KP, Bagul PK, Kaur G, Banerjee SK, Kumar A, Chakravarty S. Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats. J Biosci. 2016; 41(3):407-417. https://doi.org/10.1007/s12038-016-9627-8.
  • [49] Li M, Yang Y, Xu G, Gu J, Zhang Y, Maes M, Liu H. SEP-363856 attenuates CUMS-induced depression-like behaviours and reverses hippocampal neuronal injuries. World J Biol Psychiatry. 2024; 25(10):604-621. https://doi.org/10.1080/15622975.2024.2429507.
  • [50] Hei M, Chen P, Wang S, Li X, Xu M, Zhu X, Wang Y, Duan J, Huang Y, Zhao S. Effects of chronic mild stress induced depression on synaptic plasticity in mouse hippocampus. Behav Brain Res. 2019; 365:26-35. https://doi.org/10.1016/j.bbr.2019.02.044.
  • [51] Kovačević S, Pavković Ž, Brkljačić J, Elaković I, Vojnović Milutinović D, Djordjevic A, Pešić V. High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other's Neurobehavioral Effects in Female Rats. Int J Mol Sci. 2024; 25(21):11721. https://doi.org/10.3390/ijms252111721.
  • [52] Ameen O, Samaka RM, Abo-Elsoud RAA. Metformin alleviates neurocognitive impairment in aging via activation of AMPK/BDNF/PI3K pathway. Sci Rep. 2022; 12(1):17084. https://doi.org/10.1038/s41598-022-20945-7
  • [53] Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep. 2023; 11(22):10.14814. https://doi.org/10.14814/phy2.15852.
  • [54] Parul, Mishra A, Singh S, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Palit G, Shukla S. Chronic unpredictable stress negatively regulates hippocampal neurogenesis and promote anxious depression-like behavior via upregulating apoptosis and inflammatory signals in adult rats. Brain Res Bull. 2021; 172:164-179. https://doi.org/10.1016/j.brainresbull.2021.04.017.
  • [55] Ding J, Han F, Shi Y. Single-prolonged stress induces apoptosis in the amygdala in a rat model of post-traumatic stress disorder. J Psychiatr Res. 2010; 44(1):48-55. https://doi.org/10.1016/j.jpsychires.2009.06.001.
  • [56] Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behavioural brain research. 2019; 369:111900. https://doi.org/10.1016/j.bbr.2019.111900
  • [57] Dong L, Wang S, Li Y, Zhao Z, Shen Y, Liu L, Xu G, Ma C, Li S, Zhang X, Cong B. RU486 Reverses Emotional Disorders by Influencing Astrocytes and Endoplasmic Reticulum Stress in Chronic Restraint Stress Challenged Rats. Cell Physiol Biochem. 2017;42(3):1098-1108. https://doi.org/10.1159/000478764.
  • [58] Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008; 9(3):231-41. https://doi.org/10.1038/nrm2312.
  • [59] Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479-489. https://doi.org/10.1016/s0092-8674(00)80434-1.
  • [60] Avci O, Ozdemir E, Taskiran AS, Inan ZDS, Gursoy S. Metformin prevents morphine-induced apoptosis in rats with diabetic neuropathy: a possible mechanism for attenuating morphine tolerance. Naunyn Schmiedebergs Arch Pharmacol. 2022; 395(11):1449-1462. https://doi.org/10.1007/s00210-022-02283-7.
  • [61] Gabryel B, Liber S. Metformin limits apoptosis in primary rat cortical astrocytes subjected to oxygen and glucose deprivation. Folia Neuropathol. 2018;56(4):328-336. https://doi.org/10.5114/fn.2018.80866.
  • [62] Guo H, Zheng L, Xu H, Pang Q, Ren Z, Gao Y, Wang T. Neurobiological Links between Stress, Brain Injury, and Disease. Oxid Med Cell Longev. 2022; 2022:8111022. https://doi.org/10.1155/2022/8111022.
  • [63] Darbandi N, Moghadasi S, Momeni HR, Ramezani M. Comparing the acute and chronic effects of metformin and antioxidant protective effects of N-acetyl cysteine on memory retrieval and oxidative stress in rats with Alzheimer's disease. Pak J Pharm Sci. 2023; 36(3):731-739.
  • [64] Özbeyli D, Sarı G, Özkan N, Karademir B, Yüksel M, Çilingir Kaya ÖT, Kasımay Çakır Ö. Protective effects of different exercise modalities in an Alzheimer's disease-like model. Behav Brain Res. 2017; 328:159-177. https://doi.org/10.1016/j.bbr.2017.03.044.
  • [65] Zhu S, Wang J, Zhang Y, Li V, Kong J, He J, Li XM. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res. 2014;1576:81-90. https://doi.org/10.1016/j.brainres.2014.06.002
  • [66] Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc. 2006;1(3):1306-1311. https://doi.org/10.1038/nprot.2006.205.
  • [67] Sahin Z, Solak H, Koc A, Ozen Koca R, Ozkurkculer A, Cakan P, Solak Gormus ZI, Kutlu S, Kelestimur H. Long-term metabolic cage housing increases anxiety/depression-related behaviours in adult male rats. Arch Physiol Biochem. 2019; 125(2):122-127. https://doi.org/10.1080/13813455.2018.1441314.
  • [68] Ozbeyli D, Aykac A, Alaca N, Hazar-Yavuz AN, Ozkan N, Sener G. Protective effects of vortioxetine in predator scent stress model of post-traumatic stress disorder in rats: role on neuroplasticity and apoptosis. J Physiol Pharmacol. 2019; 70(4). https://doi.org/10.26402/jpp.2019.4.07.
  • [69] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. London: Academic Press; 1986.
There are 69 citations in total.

Details

Primary Language English
Subjects Clinical Pharmacology and Therapeutics
Journal Section Research Article
Authors

Mehmet Haktan Ozsagır 0009-0006-7255-2375

Elif Beyzanur Polat 0000-0002-3093-3595

Özlem Tuğçe Çilingir Kaya 0000-0002-2591-9174

Aslı Aykaç 0000-0002-4885-5070

Dilek Özbeyli 0000-0002-4141-6913

Project Number TYL-2024-11465
Submission Date May 3, 2025
Acceptance Date May 30, 2025
Publication Date January 11, 2026
Published in Issue Year 2026 Volume: 30 Issue: 1

Cite

APA Ozsagır, M. H., Polat, E. B., Çilingir Kaya, Ö. T., … Aykaç, A. (2026). Effects of metformin in an experimental chronic unpredictable mild stress model. Journal of Research in Pharmacy, 30(1), 171-185. https://doi.org/10.12991/jrespharm.1690442
AMA Ozsagır MH, Polat EB, Çilingir Kaya ÖT, Aykaç A, Özbeyli D. Effects of metformin in an experimental chronic unpredictable mild stress model. J. Res. Pharm. January 2026;30(1):171-185. doi:10.12991/jrespharm.1690442
Chicago Ozsagır, Mehmet Haktan, Elif Beyzanur Polat, Özlem Tuğçe Çilingir Kaya, Aslı Aykaç, and Dilek Özbeyli. “Effects of Metformin in an Experimental Chronic Unpredictable Mild Stress Model”. Journal of Research in Pharmacy 30, no. 1 (January 2026): 171-85. https://doi.org/10.12991/jrespharm.1690442.
EndNote Ozsagır MH, Polat EB, Çilingir Kaya ÖT, Aykaç A, Özbeyli D (January 1, 2026) Effects of metformin in an experimental chronic unpredictable mild stress model. Journal of Research in Pharmacy 30 1 171–185.
IEEE M. H. Ozsagır, E. B. Polat, Ö. T. Çilingir Kaya, A. Aykaç, and D. Özbeyli, “Effects of metformin in an experimental chronic unpredictable mild stress model”, J. Res. Pharm., vol. 30, no. 1, pp. 171–185, 2026, doi: 10.12991/jrespharm.1690442.
ISNAD Ozsagır, Mehmet Haktan et al. “Effects of Metformin in an Experimental Chronic Unpredictable Mild Stress Model”. Journal of Research in Pharmacy 30/1 (January2026), 171-185. https://doi.org/10.12991/jrespharm.1690442.
JAMA Ozsagır MH, Polat EB, Çilingir Kaya ÖT, Aykaç A, Özbeyli D. Effects of metformin in an experimental chronic unpredictable mild stress model. J. Res. Pharm. 2026;30:171–185.
MLA Ozsagır, Mehmet Haktan et al. “Effects of Metformin in an Experimental Chronic Unpredictable Mild Stress Model”. Journal of Research in Pharmacy, vol. 30, no. 1, 2026, pp. 171-85, doi:10.12991/jrespharm.1690442.
Vancouver Ozsagır MH, Polat EB, Çilingir Kaya ÖT, Aykaç A, Özbeyli D. Effects of metformin in an experimental chronic unpredictable mild stress model. J. Res. Pharm. 2026;30(1):171-85.