Brain in metabolic syndrome model: The effect of exercises and caloric restriction
Year 2022,
Volume: 26 Issue: 5, 1352 - 1362, 28.06.2025
Burcin Alev
,
Nevin Genç Kahraman
,
Hazal İpekçi
,
Ünsal Veli Üstündağ
,
Tuğba Tunalı-akbay
,
Ebru Emekli Alturfan
,
Göksel Şener
,
Aysen Yarat
Abstract
Caloric restriction (CR) and exercise (EX) have impacts on improving metabolic risk factors. This study
aimed to investigate the changes in the brain after EX and/or CR in metabolic syndrome (MeS) induced by a high
fructose diet in rats. Sprague-Dawley male rats were divided into five groups. Drinking water including 10% fructose
solution was given to rats for 12 weeks to develop a MeS rat model. Animals with MeS were submitted to EX and/or
CR for 6 weeks. Blood glucose, and brain tissue damage and antioxidant parameters were measured. Brain lipid
peroxidation, sialic acid, mucin, fucose levels increased in the MeS group compared to the control (C) group. These
parameters reduced significantly in the metabolic syndrome with caloric restriction (MeS+CR) group, and more
significantly in the metabolic syndrome with exercise and caloric restriction group (MeS+EXCR), compared to the MeS
group. Glutathione levels, superoxide dismutase and catalase activities decreased in the MeS group compared to the C
group, increased both in the MeS+CR group, and MeS+EXCR group compared to the MeS group. High fructose diet
consumption can lead to brain tissue damage and decreased antioxidant levels were found to be improved best in the
MeS+EXCR group.
References
-
[1] Livingston JM, McDonald MW, Gagnon T, Jeffers MS, Gomez-Smith M, Antonescu S, Cron GO, Boisvert C, Lacoste B,
Corbett D. Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis. 2020; 137:104756.
[CrossRef]
-
[2] Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood–brain barrier. Front
Neurosci. 2018; 12:930. [CrossRef]
-
[3] Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;
6(2):109-120. [CrossRef]
-
[4] Arshad N, Lin TS, Yahaya MF. Metabolic syndrome and its effect on the brain: possible mechanism. CNS Neurol Disord
Drug Targets. 2018; 17(8):595-603. [CrossRef]
-
[5] Madani Z, Malaisse WJ, Ait‑Yahia D. A comparison between the impact of two types of dietary protein on brain glucose
concentrations and oxidative stress in high fructose-induced metabolic syndrome rats. Biomed Rep. 2015; 3(5):731-735.
[CrossRef]
-
[6] Spagnuolo MS, Iossa S, Cigliano L. Sweet but bitter: focus on fructose impact on brain function in rodent models.
Nutrients. 2021; 13(1):1-18. [CrossRef]
-
[7] Ahmed RF, El Awdan SA, Abdel Jaleel GA, Saleh DO, Ahmed Farid OAH. Correlation between brain neurotransmitters
and insulin sensitivity: Neuro-preservative role of resveratrol against high fat, high fructose-induced insulin resistance. J
Appl Pharm Sci. 2020; 10(02):026-036. [CrossRef]
-
[8] Crescenzo R, Spagnuolo MS, Cancelliere R, Iannotta L, Mazzoli A, Gatto C, Iossa S, Cigliano L. Effect of initial aging
and high-fat/high-fructose diet on mitochondrial bioenergetics and oxidative status in rat brain. Mol Neurobiol. 2019;
56(11):7651-7663. [CrossRef]
-
[9] Batandier C, Poyot T, Marissal-Arvy N, Couturier K, Canini F, Roussel AM, Hininger-Favier I. Acute emotional stress
and high fat/high fructose diet modulate brain oxidative damage through NrF2 and uric acid in rats. Nutr Res. 2020; 79:23-
34. [CrossRef]
-
[10] Hernández-Salinas R, Decap V, Leguina A, Cáceres P, Perez D, Urquiaga I, Iturriaga R, Velarde V. Antioxidant and
anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet. Biol Res. 2015; 48:53:1-9. [CrossRef]
-
[11] Cameron I, Alam MA, Wang J, Brown L. Endurance exercise in a rat model of metabolic syndrome. Can J Physiol
Pharmacol. 2012; 90(11):1490-1497. [CrossRef]
-
[12] Caponi PW, Lehnen AM, Pinto GH, Borges J, Markoski M, Machado UF, Schaan BDA. Aerobic exercise training
induces metabolic benefits in rats with metabolic syndrome independent of dietary changes. Clinics. 2013; 68(7):1010-1017.
[CrossRef]
-
[13] Kirchner H, Hofmann SM, Fischer-Rosinský A, Hembree J, Abplanalp W, Ottaway N, Donelan E, Krishna R, Woods
SC, Müller TD, Spranger J, Perez-Tilve D, Pfluger PT, Tschöp MH, Habegger KM. Caloric restriction chronically impairs
metabolic programming in mice. Diabetes. 2012; 61(11):2734-2742. [CrossRef]
-
[14] Ciobanu O, Elena Sandu R, Tudor Balseanu A, Zavaleanu A, Gresita A, Petcu EB, Uzoni A, Popa‐Wagner A. Caloric
restriction stabilizes body weight and accelerates behavioral recovery in aged rats after focal ischemia. Aging Cell. 2017;
16(6):1394-1403. [CrossRef]
-
[15] El-Mehi AES, Faried MA. Effect of high-fructose diet-induced metabolic syndrome on the pituitary-gonadal axis from
adolescence through adulthood in male albino rats and the possible protective role of ginger extract. A biochemical,
histological and immunohistochemical study. Folia Morphol. 2020; 79(4):690-708.[CrossRef]
-
[16] Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S. Animal models of metabolic syndrome: a review. Nutr
Metab. 2016; 13:65, 1-12. [CrossRef]
-
[17] Toop CR, Gentili S. Fructose beverage consumption induces a metabolic syndrome phenotype in the rat: a systematic
review and meta-analysis. Nutrients. 2016; 8(9): 577, 1-15. [CrossRef]
-
[18] Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa
T, Johnson RJ, Herrera-Acosta J, Franco M. Fructose-induced metabolic syndrome is associated with glomerular
hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol. 2007; 292(1):F423-F429. [CrossRef]
-
[19] Mahmoud AA, Elshazly SM. Ursodeoxycholic acid ameliorates fructose-induced metabolic syndrome in rats. PLoS
One. 2014; 9(9):e106993,1-8. [CrossRef]
-
[20] Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Mohd Yusof MR, Haji Suhaimi F. The establishment of metabolic
syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int. 2014; 2014:263897,1-8.
[CrossRef]
-
[21] Genc-Kahraman N, Alev Tuzuner B, Ipekci H, Ustundag UV, Tunalı-Akbay T, Emekli-Alturfan E, Sener G, Yarat A.
exercise and caloric restriction improves liver damage in metabolic syndrome model. Eur J Biol. 2021; 80(1):15-
21.[CrossRef]
-
[22] Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high
fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PloS One. 2013; 8(12):e83243,1-12.
[CrossRef]
-
[23] Nasoohi S, Parveen K, Ishrat T. Metabolic syndrome, brain insulin resistance, and Alzheimer’s disease: Thioredoxin
Interacting Protein (TXNIP) and inflammasome as core amplifiers. J Alzheimers Dis. 2018; 66(3):857-885. [CrossRef]
-
[24] Lustig RH. Fructose: it's “alcohol without the buzz”. Adv Nutr. 2013; 4(2):226-235. [CrossRef]
-
[25] Yin Q-Q, Pei J-J, Xu S, Luo D-Z, Dong S-Q, Sun M-H, You L, Sun Z-J, Liu X-P. Pioglitazone improves cognitive function
via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats.
Plos One. 2013; 8(3):e59313, 1-10. [CrossRef]
-
[26] Amri Z, Ghorbel A, Turki M, Akrout FM, Ayadi F, Elfeki A, Hammami M. Effect of pomegranate extracts on brain
antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model. BMC Complem
Med Ther. 2017; 17:339,1-9. [CrossRef]
-
[27] Crescenzo R, Bianco F, Falcone I, Coppola P, Liverini G, Iossa S. Increased hepatic de novo lipogenesis and
mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur J Nutr. 2013; 52(2):537-545. [CrossRef]
-
[28] Misrani A, Tabassum S, Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging
Neurosci. 2021; 13:617588,1-20. [CrossRef]
-
[29] Dupas J, Feray A, Guernec A, Pengam M, Inizan M, Guerrero F, Mansourati J, Goanvec C. Effect of personalized
moderate exercise training on Wistar rats fed with a fructose enriched water. Nutr Metab. 2018; 15:69,1-12. [CrossRef]
-
[30] Mazzola PN, Terra M, Rosa AP, Mescka CP, Moraes TB, Piccoli B, Jacques CE, Dalazen G, Cortes MX, Coelho J, Dutra-
Filho CS. Regular exercise prevents oxidative stress in the brain of hyperphenylalaninemic rats. Metab Brain Dis. 2011;
26(4):291-297. [CrossRef]
-
[31] Machado MV, Vieira AB, da Conceição FG, Nascimento AR, da Nóbrega ACL, Tibirica E. Exercise training dose
differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.
Exp Physiol. 2017; 102(12):1716-1728. [CrossRef]
-
[32] Alipour M, Salehi I, Soufi FG. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. Iran Red
Crescent Med J. 2012; 14(4):222-228.
-
[33] Anderson RM, Weindruch R. The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol.
2012; 24(2):101-106. [CrossRef]
-
[34] Hagopian K, Chen Y, Domer KS, Hoo RS, Bentley T, McDonald RB, Ramsey JJ. Caloric restriction influences hydrogen
peroxide generation in mitochondrial sub-populations from mouse liver. J Bioenerg Biomembr. 2011; 43(3):227-236.
[CrossRef]
-
[35] Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med. 2011; 32(3):159–221 [CrossRef]
-
[36] Xia E, Rao G, Van Remmen H, Heydari AR, Richardson A. Activities of antioxidant enzymes in various tissues of male
Fischer 344 rats are altered by food restriction. J Nutrit. 1995; 125(2):195-201.
-
[37] Ramkumar KM, Anuradha CV. Short-term dietary restriction modulates liver lipid peroxidation in carbon
tetrachloride-intoxicated rats. J Basic Clin Physiol Pharmacol. 2005; 16(4):245-256. [CrossRef]
-
[38] Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc
Biol. 2004; 24(6):1015-1022. [CrossRef]
-
[39] Nemerson Y. Tissue factor: then and now. Thromb Haemost. 1995; 74(07):180-184. [CrossRef]
-
[40] Emekli-Alturfan E, Basar I, Malali E, Elemek E, Oktay S, Ayan F, Emekli N, Noyan U. Plasma tissue factor levels and
salivary tissue factor activities of periodontitis patients with and without cardiovascular disease. Pathophysiol Haemos
Thromb. 2010; 37(2-4):77-81. [CrossRef]
-
[41] Yarat A, Tunali T, Pisiriciler R, Akyuz S, Ipbuker A, Emekli N. Salivary thromboplastic activity in diabetics and healthy
controls. Clin Oral Investig. 2004; 8(1):36-39. [CrossRef]
-
[42] Emekli‐Alturfan E, Kasikci E, Yarat A. Tissue factor activities of streptozotocin induced diabetic rat tissues and the
effect of peanut consumption. Diabetes Metab Res Rev. 2007; 23(8):653-658. [CrossRef]
-
[43] Ruf W, Samad F. Tissue factor pathways linking obesity and inflammation. Hämostaseologie. 2015; 35(03):279-283.
[CrossRef]
-
[44] Cadroy Y, Pillard F, Sakariassen KS, Thalamas C, Boneu B, Riviere D. Strenuous but not moderate exercise increases
the thrombotic tendency in healthy sedentary male volunteers. J Appl Physiol. 2002; 93(3), 829-833. [CrossRef]
-
[45] Emekli N, Yarat A, Akbay TT, Koç LÖ, Alturfan EI. Tükürük Biyokimyası. In: Emekli N, Yarat A (Eds) Tükürük
Histolojisi, Fizyolojisi, Mikrobiyolojisi ve Biyokimyası. İstanbul: Nobel Tip Kitapevleri Ltd. Şti, 2008, pp.328-31.
-
[46] Ünübol Aypak S, Uysal H. Glikoproteinlerin Yapısı ve Fonksiyonları. Fırat Univ Sağlık Bilim Vet Derg. 2010; 24(2):107-
114.
-
[47] Erdogan HM, Karapehlivan M, Citil M, Atakisi O, Uzlu E, Unver A. Serum sialic acid and oxidative stress parameters
changes in cattle with leptospirosis. Vet Res Commun. 2008; 32(4):333-339. [CrossRef]
-
[48] Crook MA, Tutt P, Pickup JC. Elevated serum sialic acid concentration in NIDDM and its relationship to blood
pressure and retinopathy. Diabetes care. 1993; 16(1):57-60. [CrossRef]
-
[49] Robinson LE, Buchholz AC, Mazurak VC. Inflammation, obesity, and fatty acid metabolism: influence of n-3
polyunsaturated fatty acids on factors contributing to metabolic syndrome. Applied Physiology, Nutr Metab. 2007;
32(6):1008-1024. [CrossRef]
-
[50] Naeem F, Khan SH. Evaluation of hypoglycemic and hypolipidemic activity of buteamonosperma fruit in diabetic
human subjects. Turk J Biol. 2010; 34(2):189-197. [CrossRef]
-
[51] Chandramohan R, Saravanan S, Pari L. Beneficial effects of tyrosol on altered glycoprotein components in
streptozotocin-induced diabetic rats. Pharm Biol. 2017; 55(1):1631-1637. [CrossRef]
-
[52] Beutler E. Glutathione. In: Red blood cell metabolism: A Manual of Biochemical Methods. 2nd ed. New York: Grune
and Stratton; 1975, p: 112-114.
-
[53] Ledwozyw A, Michalak J, Stepien A, Kadziolka A. The relationship between plasma triglycerides, cholesterol, total
lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta. 1986; 155(3): 275-83. [CrossRef]
-
[54] Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959; 234:1971-1975. [CrossRef]
-
[55] Dische Z, Shettles LB. A specific color reaction of methylpentoses and a spectrophotometric micromethod for their
determination. J Biol Chem. 1948; 175:595-603. [CrossRef]
-
[56] Winzler RJ. Determination of serum glycoproteins. Glick D, editors. Methods of Biochemical Analysis. New York:
Interscience Publishers Inc. 1955, pp 2:279-311. [CrossRef]
-
[57] Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105:121-126. [CrossRef]
-
[58] Habig WH, Jakoby WB. Assays for differentiation of glutathione-S-transferases. Methods in Enzymol. 1981; 77:398-
405. [CrossRef]
-
[59] Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper
status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986; 82(3):512-520. [CrossRef]
-
[60] Ingram GIC, Hills M (1976) Reference method for the one-stage prothrombin time test on human blood. Thromb
Haemost 36(1):237-238.