Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 3, 903 - 917, 04.06.2025
https://doi.org/10.12991/jrespharm.1693737

Abstract

References

  • [1] Sands P, Mundaca-Shah C, Dzau VJ. The Neglected Dimension of Global Security. N Engl J Med. 2016; (374):1281-1287. https://doi.org/10.1056/nejmsr1600236.
  • [2] Roser M, Ritchie H, Spooner F. Burden of disease ınteractive charts on burden of disease premature death and ill health – the global burden of disease. OurWorldInData.org. 2021. https://ourworldindata.org/burden-of-disease (accessed October 27, 2023).
  • [3] Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. 2019; (105): 329–338. https://doi.org/10.1002/JLB.MR0318-104R.
  • [4] Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology, Eight ed., Elsevier Saunders, Philadelphia, USA, 2016.
  • [5] Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, Zarena D, Lushnikova T, Wang X. Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37. Adv Exp Med Biol. 2019;1117:215-240. https://doi.org/10.1007/978-981-13-3588-4_12
  • [6] Natoli G, Otsuni R. Adaptation and Memory in Immune Responses. Nat. Immunol. Vol 20. Jul. 783-792. 2019. https://doi.org/10.1038/s41590-019-0399-9
  • [7] Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol. 2021;12:637553. https://doi.org/10.3389/fimmu.2021.637553.
  • [8] von Rintelen K, Arida E, Häuser C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res Ideas Outcomes. 2017; 3: e20860. https://doi.org/10.3897/rio.3.e20860.
  • [9] Kusaka S, Nishida A, Takahashi K, Bamba S, Yasui H, Kawahara M, Inatomi O, Sugimoto M, Andoh A. Expression of human cathelicidin peptide LL-37 in inflammatory bowel disease. Clin Exp Immunol. 2018; 191(1): 96–106. https://doi.org/10.1111/cei.13047.
  • [10] Nakamura Y, Mochamad Afendi F, Kawsar Parvin A, Ono N, Tanaka K, Hirai Morita A. KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 2014; 55(1):e7. https://doi.org/10.1093/pcp/pct176.
  • [11] Xia M, Ai N, Pang J. Preliminary exploration of clinical efficacy and pharmacological mechanism of modified Danggui-Shaoyao San in the treatment of depression in patients with chronic kidney disease. Drug Des Devel Ther. 2022; 16(11): 3975–3989. https://doi.org/10.2147/DDDT.S387677.
  • [12] Alseekh S, Perez SL, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry. 2020; (174): 112347. https://doi.org/10.1016/j.phytochem.2020.112347.
  • [13] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717. https://doi.org/10.1038/srep42717.
  • [14] Druzhilovskiy DS, Rudik A V., Filimonov DA, Gloriozova TA, Lagunin AA, Dmitriev AV, Pogodin PV, Dubovskaya VI, Ivanov SM, Tarasova OA, Bezhentsev VM, Murtazalieva KA, Semin MI, Maiorov MI, Gaur AS, Sastry GN, Poroikov VV. Computational platform Way2Drug: from the prediction of biological activity to drug repurposing. Russ Chem Bull. 2017; 66(10):1832–1841. https://doi.org/10.1007/s11172-017-1954-x.
  • [15] Alsuhaibani S, Khan MA. Immune-stimulatory and therapeutic activity of Tinospora cordifolia: Double-edged sword against salmonellosis. J Immunol Res. 2017; 2017: 1-9. https://doi.org/10.1155/2017/1787803.
  • [16] Chen J, Zhai Z, Long H, Yang G, Deng B, Deng J. Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides. 2020;123:170177.https://doi.org/10.1016/j.peptides.2019.170177.
  • [17] Abdulrahman HL, Uzairu A, Uba S. Computational pharmacokinetic analysis on some newly designed 2-anilinopyrimidine derivative compounds as anti-triple-negative breast cancer drug compounds. Bull Natl Res Cent. 2020; 44:63. https://doi.org/10.1186/s42269-020-00321-z.
  • [18] Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
  • [19] Hartanti D, Budipramana K. Traditional antidiabetic plants from indonesia. Ethnobot Res Appl. 2020; 19: 1–24. https://doi.org/10.32859/era.19.34.1-24.
  • [20] Pandiangan D, Silalahi M, Dapas F, Kandou F. Diversity of medicinal plants and their uses by the Sanger tribe of Sangihe Islands, North Sulawesi, Indonesia. Biodiversitas. 2019; 20(3): 621–631. https://doi.org/10.13057/biodiv/d200301
  • [21] Jacob J, Babu BM, Mohan MC, Abhimannue AP, Kumar BP. Inhibition of proinflammatory pathways by bioactive fraction of Tinospora cordifolia. Inflammopharmacology. 2018; 26(2) :531–538. https://doi.org/10.1007/s10787-017-0319-2
  • [22] Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:61. https://doi.org/10.1186/s13321-016-0174-y.
  • [23] Azwari Z, Juwita DA, Susanty A, Putri N, Hefni D, Dachriyanus, Wahyuni SR. The Immunomodulatory Activities of Alkaloid (Vf-1) Isolated from Stem Bark of Tampa Badak (Voacanga Foetida (Bl) Rolfe) on Raw 264.7 Cells. Proc 2nd Int Conf Contemp Sci Clin Pharm 2021 (ICCSCP 2021). 2022; 40(Iccscp). https://doi.org/10.2991/ahsr.k.211105.039.
  • [24] Peñaloza EMC, Costa SS, Herrera-Calderon O. Medicinal Plants in Peru as a source of ımmunomodulatory drugs potentially useful against COVID-19. Rev Bras Farmacogn. 2023; 33(2): 237–258. https://doi.org/10.1007/s43450-023-00367-w.
  • [25] Li S, Wang N, Tan HY, Chueng F, Zhang ZJ, Yuen MF, Feng Y. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease. Clin Transl Med. 2020 ;10(4):e112. https://doi.org/10.1002/ctm2.112.
  • [26] Ni H, Martínez Y, Guan G, Rodríguez R, Más D, Peng H, Valdivié Navarro M, Liu G. Analysis of the Impact of Isoquinoline Alkaloids, Derived from Macleaya cordata Extract, on the Development and Innate Immune Response in Swine and Poultry. Biomed Res Int. 2016;2016:1352146. https://doi.org/10.1155/2016/1352146.
  • [27] Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol. 2021;12:704197. https://doi.org/10.3389/fphar.2021.704197.
  • [28] Sudan R, Bhagat M, Gupta S, Singh J, Koul A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). Biomed Res Int. 2014;2014:179865. https://doi.org/10.1155/2014/179865
  • [29] Doseff AI, Parihar A, Jin X. Caspase-3 regulation in apoptosis , immune function and beyond. In: Bennett LL, (Eds). Caspase-3 : structure, functions and interactions. Nova Science Publishers Inc. New York, 2021, 39–93 p.
  • [30] McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2015;7(4):a026716. doi: 10.1101/cshperspect.a026716. Erratum for: Cold Spring Harb Perspect Biol. 2013;5(4):a008656. https://doi.org/10.1101/cshperspect.a008656.
  • [31] Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011; 21(2): 223–244. https://doi.org/10.1038/cr.2011.13.
  • [32] Hayden MS, West AP, Ghosh S. NF-κB and the immune response. Oncogene. 2006; 25(51): 6758–6780. https://doi.org/10.1038/sj.onc.1209943.
  • [33] Lee HS, Kim WJ. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci. 2022;23(18):10546. https://doi.org/10.3390/ijms231810546.
  • [34] Hopkins AL. Network Pharmacology. Nat Biotechnol. 2007; 25(10): 1110–1111. https://doi.org/10.1016/B978-0-12-801814-9.00005-2.
  • [35] Shan Z, Jia J, Wang Q, Cui Y. Network pharmacology-based analysis on geniposide, a component of gardenia jasminoides, beneficial effects to alleviate LPS-induced immune stress in piglets. Int Immunopharmacol. 2023; 117:109894. https://doi.org/10.1016/j.intimp.2023.109894.
  • [36] Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019; 47(W1):W357–3664. https://doi.org/10.1093/nar/gkz382.
  • [37] Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D. Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa, I., Kasukawa, T. (eds) Practical Guide to Life Science Databases. Springer, Singapore. 2022. pp 27–56.
  • [38] Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics. 2016;54:1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5
  • [39] Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel). 2020;8(3):468. https://doi.org/10.3390/vaccines8030468
  • [40] Mancardi D, Daëron M. Fc Receptors in Immune Responses. Reference Module in Biomedical Sciences. 2014:B978-0-12-801238-3.00119-7. http://doi.org/10.1016/b978-0-12-801238-3.00119-7
  • [41] Bannert C, Bidmon-Fliegenschnee B, Stary G, Hotzy F, Stift J, Nurko S, Szépfalusi Z, Fiebiger E, Dehlink E. Fc-epsilon-RI, the high affinity IgE-receptor, is robustly expressed in the upper gastrointestinal tract and modulated by mucosal inflammation. PLoS One. 2012;7(7):e42066. http://doi.org/10.1371/journal.pone.0042066 .
  • [42] Kondratyev M, Rudnev VR, Nikolsky KS, Stepanov AA, Petrovsky DV, Kulikova LI, Kopylov AT, Malsagova K A, Kaysheva AL. Atomic Simulation of the Binding of JAK1 and JAK2 with the Selective Inhibitor Ruxolitinib. Int J Mol Sci. 2022; 23(18):10466. https://doi.org/10.3390/ijms231810466.
  • [43] Ji L, Song T, Ge C, Wu Q, Ma L, Chen X, Chen T, Chen Q, Chen Z, Chen W. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed Pharmacother. 2023; 165: 115210. https://doi.org/10.1016/j.biopha.2023.115210.
  • [44] Chen T, Li S, Lian D, Hu Q, Hou H, Niu D, Li H, Song L, Gao Y, Chen, Y, Hu X, Li J, Ye Z, Peng B, Zhang G. Integrated Network Pharmacology and Experimental Approach to Investigate the Protective Effect of Jin Gu Lian Capsule on Rheumatoid Arthritis by Inhibiting Inflammation via IL-17/NF-κB Pathway. Drug Des Dev Ther. 2023; 2023(17): 3723–3748. https://doi.org/10.2147/DDDT.S423022.
  • [45] Li H, Xu J, Li X, Hu Y, Liao Y, Zhou W, Song Z. Anti-inflammatory activity of psoralen in human periodontal ligament cells via estrogen receptor signaling pathway. Sci Rep. 2021;11(1):8754.https://doi.org/10.1038/s41598-021-85145-1.
  • [46] Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099-4105. doi: 10.1021/ci300367a. Erratum in: J Chem Inf Model. 2019;59(11):4959. https://doi.org/10.1021/ci300367a.
  • [47] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1):D607-D613. https://doi.org/10.1093/nar/gky1131.

The pharmacological network of Tinospora cordifolia: Its role in regulating ınflammation and cathelicidin production

Year 2025, Volume: 29 Issue: 3, 903 - 917, 04.06.2025
https://doi.org/10.12991/jrespharm.1693737

Abstract

This study aims to promote a pharmacological network strategy to investigate the potential antiinflammatory activity and molecular mechanisms of the bioactive compounds in Tinospora cordifolia (TC) for controlling inflammation and regulating the production of the antimicrobial peptide cathelicidin. Using the Knapsack database and several recent research findings, SwissADME, PubChem, and PASS Online, we screened the drug-likeness of various TC compounds. Utilizing the SwissTargetPrediction, String-DB, GeneCards, and Venny Diagram, we identified 468 potential targets related to inflammation target protein and cathelicidin production. Further refinement using Cytoscape with CytoHubba highlighted 15 core targets, including BCL2, JUN, STAT3, HSP90AA1, MTOR, AKT1, ESR1, SRC, BCL2L1, TNF, MDM2, PTGS2, HSP90AB1, MMP9, and MMP2. GO and KEGG pathway analysis revealed that the core targets for inflammation control and cathelicidin production are predominantly enriched in TLR, NOD, MAPK, and NFKB inflammatory pathways. Molecular docking conducted with Autodock confirmed strong binding between TC ligands and several proteins in these pathways, such as JAK1, AKT1, IKBKB, and IRAK4. Overall, these findings suggest that TC is predicted to inhibit inflammation by inhibiting the activity of these four target proteins in the inflammatory pathways. This research provides a theoretical basis for understanding the molecular mechanisms of TC in inhibiting inflammation and controlling the production of the antimicrobial peptide cathelicidin.

References

  • [1] Sands P, Mundaca-Shah C, Dzau VJ. The Neglected Dimension of Global Security. N Engl J Med. 2016; (374):1281-1287. https://doi.org/10.1056/nejmsr1600236.
  • [2] Roser M, Ritchie H, Spooner F. Burden of disease ınteractive charts on burden of disease premature death and ill health – the global burden of disease. OurWorldInData.org. 2021. https://ourworldindata.org/burden-of-disease (accessed October 27, 2023).
  • [3] Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. 2019; (105): 329–338. https://doi.org/10.1002/JLB.MR0318-104R.
  • [4] Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology, Eight ed., Elsevier Saunders, Philadelphia, USA, 2016.
  • [5] Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, Zarena D, Lushnikova T, Wang X. Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37. Adv Exp Med Biol. 2019;1117:215-240. https://doi.org/10.1007/978-981-13-3588-4_12
  • [6] Natoli G, Otsuni R. Adaptation and Memory in Immune Responses. Nat. Immunol. Vol 20. Jul. 783-792. 2019. https://doi.org/10.1038/s41590-019-0399-9
  • [7] Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol. 2021;12:637553. https://doi.org/10.3389/fimmu.2021.637553.
  • [8] von Rintelen K, Arida E, Häuser C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res Ideas Outcomes. 2017; 3: e20860. https://doi.org/10.3897/rio.3.e20860.
  • [9] Kusaka S, Nishida A, Takahashi K, Bamba S, Yasui H, Kawahara M, Inatomi O, Sugimoto M, Andoh A. Expression of human cathelicidin peptide LL-37 in inflammatory bowel disease. Clin Exp Immunol. 2018; 191(1): 96–106. https://doi.org/10.1111/cei.13047.
  • [10] Nakamura Y, Mochamad Afendi F, Kawsar Parvin A, Ono N, Tanaka K, Hirai Morita A. KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 2014; 55(1):e7. https://doi.org/10.1093/pcp/pct176.
  • [11] Xia M, Ai N, Pang J. Preliminary exploration of clinical efficacy and pharmacological mechanism of modified Danggui-Shaoyao San in the treatment of depression in patients with chronic kidney disease. Drug Des Devel Ther. 2022; 16(11): 3975–3989. https://doi.org/10.2147/DDDT.S387677.
  • [12] Alseekh S, Perez SL, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry. 2020; (174): 112347. https://doi.org/10.1016/j.phytochem.2020.112347.
  • [13] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717. https://doi.org/10.1038/srep42717.
  • [14] Druzhilovskiy DS, Rudik A V., Filimonov DA, Gloriozova TA, Lagunin AA, Dmitriev AV, Pogodin PV, Dubovskaya VI, Ivanov SM, Tarasova OA, Bezhentsev VM, Murtazalieva KA, Semin MI, Maiorov MI, Gaur AS, Sastry GN, Poroikov VV. Computational platform Way2Drug: from the prediction of biological activity to drug repurposing. Russ Chem Bull. 2017; 66(10):1832–1841. https://doi.org/10.1007/s11172-017-1954-x.
  • [15] Alsuhaibani S, Khan MA. Immune-stimulatory and therapeutic activity of Tinospora cordifolia: Double-edged sword against salmonellosis. J Immunol Res. 2017; 2017: 1-9. https://doi.org/10.1155/2017/1787803.
  • [16] Chen J, Zhai Z, Long H, Yang G, Deng B, Deng J. Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides. 2020;123:170177.https://doi.org/10.1016/j.peptides.2019.170177.
  • [17] Abdulrahman HL, Uzairu A, Uba S. Computational pharmacokinetic analysis on some newly designed 2-anilinopyrimidine derivative compounds as anti-triple-negative breast cancer drug compounds. Bull Natl Res Cent. 2020; 44:63. https://doi.org/10.1186/s42269-020-00321-z.
  • [18] Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
  • [19] Hartanti D, Budipramana K. Traditional antidiabetic plants from indonesia. Ethnobot Res Appl. 2020; 19: 1–24. https://doi.org/10.32859/era.19.34.1-24.
  • [20] Pandiangan D, Silalahi M, Dapas F, Kandou F. Diversity of medicinal plants and their uses by the Sanger tribe of Sangihe Islands, North Sulawesi, Indonesia. Biodiversitas. 2019; 20(3): 621–631. https://doi.org/10.13057/biodiv/d200301
  • [21] Jacob J, Babu BM, Mohan MC, Abhimannue AP, Kumar BP. Inhibition of proinflammatory pathways by bioactive fraction of Tinospora cordifolia. Inflammopharmacology. 2018; 26(2) :531–538. https://doi.org/10.1007/s10787-017-0319-2
  • [22] Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:61. https://doi.org/10.1186/s13321-016-0174-y.
  • [23] Azwari Z, Juwita DA, Susanty A, Putri N, Hefni D, Dachriyanus, Wahyuni SR. The Immunomodulatory Activities of Alkaloid (Vf-1) Isolated from Stem Bark of Tampa Badak (Voacanga Foetida (Bl) Rolfe) on Raw 264.7 Cells. Proc 2nd Int Conf Contemp Sci Clin Pharm 2021 (ICCSCP 2021). 2022; 40(Iccscp). https://doi.org/10.2991/ahsr.k.211105.039.
  • [24] Peñaloza EMC, Costa SS, Herrera-Calderon O. Medicinal Plants in Peru as a source of ımmunomodulatory drugs potentially useful against COVID-19. Rev Bras Farmacogn. 2023; 33(2): 237–258. https://doi.org/10.1007/s43450-023-00367-w.
  • [25] Li S, Wang N, Tan HY, Chueng F, Zhang ZJ, Yuen MF, Feng Y. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease. Clin Transl Med. 2020 ;10(4):e112. https://doi.org/10.1002/ctm2.112.
  • [26] Ni H, Martínez Y, Guan G, Rodríguez R, Más D, Peng H, Valdivié Navarro M, Liu G. Analysis of the Impact of Isoquinoline Alkaloids, Derived from Macleaya cordata Extract, on the Development and Innate Immune Response in Swine and Poultry. Biomed Res Int. 2016;2016:1352146. https://doi.org/10.1155/2016/1352146.
  • [27] Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol. 2021;12:704197. https://doi.org/10.3389/fphar.2021.704197.
  • [28] Sudan R, Bhagat M, Gupta S, Singh J, Koul A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). Biomed Res Int. 2014;2014:179865. https://doi.org/10.1155/2014/179865
  • [29] Doseff AI, Parihar A, Jin X. Caspase-3 regulation in apoptosis , immune function and beyond. In: Bennett LL, (Eds). Caspase-3 : structure, functions and interactions. Nova Science Publishers Inc. New York, 2021, 39–93 p.
  • [30] McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2015;7(4):a026716. doi: 10.1101/cshperspect.a026716. Erratum for: Cold Spring Harb Perspect Biol. 2013;5(4):a008656. https://doi.org/10.1101/cshperspect.a008656.
  • [31] Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011; 21(2): 223–244. https://doi.org/10.1038/cr.2011.13.
  • [32] Hayden MS, West AP, Ghosh S. NF-κB and the immune response. Oncogene. 2006; 25(51): 6758–6780. https://doi.org/10.1038/sj.onc.1209943.
  • [33] Lee HS, Kim WJ. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci. 2022;23(18):10546. https://doi.org/10.3390/ijms231810546.
  • [34] Hopkins AL. Network Pharmacology. Nat Biotechnol. 2007; 25(10): 1110–1111. https://doi.org/10.1016/B978-0-12-801814-9.00005-2.
  • [35] Shan Z, Jia J, Wang Q, Cui Y. Network pharmacology-based analysis on geniposide, a component of gardenia jasminoides, beneficial effects to alleviate LPS-induced immune stress in piglets. Int Immunopharmacol. 2023; 117:109894. https://doi.org/10.1016/j.intimp.2023.109894.
  • [36] Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019; 47(W1):W357–3664. https://doi.org/10.1093/nar/gkz382.
  • [37] Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D. Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa, I., Kasukawa, T. (eds) Practical Guide to Life Science Databases. Springer, Singapore. 2022. pp 27–56.
  • [38] Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics. 2016;54:1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5
  • [39] Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel). 2020;8(3):468. https://doi.org/10.3390/vaccines8030468
  • [40] Mancardi D, Daëron M. Fc Receptors in Immune Responses. Reference Module in Biomedical Sciences. 2014:B978-0-12-801238-3.00119-7. http://doi.org/10.1016/b978-0-12-801238-3.00119-7
  • [41] Bannert C, Bidmon-Fliegenschnee B, Stary G, Hotzy F, Stift J, Nurko S, Szépfalusi Z, Fiebiger E, Dehlink E. Fc-epsilon-RI, the high affinity IgE-receptor, is robustly expressed in the upper gastrointestinal tract and modulated by mucosal inflammation. PLoS One. 2012;7(7):e42066. http://doi.org/10.1371/journal.pone.0042066 .
  • [42] Kondratyev M, Rudnev VR, Nikolsky KS, Stepanov AA, Petrovsky DV, Kulikova LI, Kopylov AT, Malsagova K A, Kaysheva AL. Atomic Simulation of the Binding of JAK1 and JAK2 with the Selective Inhibitor Ruxolitinib. Int J Mol Sci. 2022; 23(18):10466. https://doi.org/10.3390/ijms231810466.
  • [43] Ji L, Song T, Ge C, Wu Q, Ma L, Chen X, Chen T, Chen Q, Chen Z, Chen W. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed Pharmacother. 2023; 165: 115210. https://doi.org/10.1016/j.biopha.2023.115210.
  • [44] Chen T, Li S, Lian D, Hu Q, Hou H, Niu D, Li H, Song L, Gao Y, Chen, Y, Hu X, Li J, Ye Z, Peng B, Zhang G. Integrated Network Pharmacology and Experimental Approach to Investigate the Protective Effect of Jin Gu Lian Capsule on Rheumatoid Arthritis by Inhibiting Inflammation via IL-17/NF-κB Pathway. Drug Des Dev Ther. 2023; 2023(17): 3723–3748. https://doi.org/10.2147/DDDT.S423022.
  • [45] Li H, Xu J, Li X, Hu Y, Liao Y, Zhou W, Song Z. Anti-inflammatory activity of psoralen in human periodontal ligament cells via estrogen receptor signaling pathway. Sci Rep. 2021;11(1):8754.https://doi.org/10.1038/s41598-021-85145-1.
  • [46] Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099-4105. doi: 10.1021/ci300367a. Erratum in: J Chem Inf Model. 2019;59(11):4959. https://doi.org/10.1021/ci300367a.
  • [47] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1):D607-D613. https://doi.org/10.1093/nar/gky1131.
There are 47 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Ahmad Shobrun Jamil

Sri Widyarti This is me

Meddy Setiawan This is me

Muhaimin Rifa’i This is me

Submission Date November 9, 2023
Acceptance Date September 1, 2024
Publication Date June 4, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Jamil, A. S., Widyarti, S., Setiawan, M., & Rifa’i, M. (2025). The pharmacological network of Tinospora cordifolia: Its role in regulating ınflammation and cathelicidin production. Journal of Research in Pharmacy, 29(3), 903-917. https://doi.org/10.12991/jrespharm.1693737
AMA 1.Jamil AS, Widyarti S, Setiawan M, Rifa’i M. The pharmacological network of Tinospora cordifolia: Its role in regulating ınflammation and cathelicidin production. J. Res. Pharm. 2025;29(3):903-917. doi:10.12991/jrespharm.1693737
Chicago Jamil, Ahmad Shobrun, Sri Widyarti, Meddy Setiawan, and Muhaimin Rifa’i. 2025. “The Pharmacological Network of Tinospora Cordifolia: Its Role in Regulating ınflammation and Cathelicidin Production”. Journal of Research in Pharmacy 29 (3): 903-17. https://doi.org/10.12991/jrespharm.1693737.
EndNote Jamil AS, Widyarti S, Setiawan M, Rifa’i M (June 1, 2025) The pharmacological network of Tinospora cordifolia: Its role in regulating ınflammation and cathelicidin production. Journal of Research in Pharmacy 29 3 903–917.
IEEE [1]A. S. Jamil, S. Widyarti, M. Setiawan, and M. Rifa’i, “The pharmacological network of Tinospora cordifolia: Its role in regulating ınflammation and cathelicidin production”, J. Res. Pharm., vol. 29, no. 3, pp. 903–917, June 2025, doi: 10.12991/jrespharm.1693737.
ISNAD Jamil, Ahmad Shobrun - Widyarti, Sri - Setiawan, Meddy - Rifa’i, Muhaimin. “The Pharmacological Network of Tinospora Cordifolia: Its Role in Regulating ınflammation and Cathelicidin Production”. Journal of Research in Pharmacy 29/3 (June 1, 2025): 903-917. https://doi.org/10.12991/jrespharm.1693737.
JAMA 1.Jamil AS, Widyarti S, Setiawan M, Rifa’i M. The pharmacological network of Tinospora cordifolia: Its role in regulating ınflammation and cathelicidin production. J. Res. Pharm. 2025;29:903–917.
MLA Jamil, Ahmad Shobrun, et al. “The Pharmacological Network of Tinospora Cordifolia: Its Role in Regulating ınflammation and Cathelicidin Production”. Journal of Research in Pharmacy, vol. 29, no. 3, June 2025, pp. 903-17, doi:10.12991/jrespharm.1693737.
Vancouver 1.Jamil AS, Widyarti S, Setiawan M, Rifa’i M. The pharmacological network of Tinospora cordifolia: Its role in regulating ınflammation and cathelicidin production. J. Res. Pharm. [Internet]. 2025 June 1;29(3):903-17. Available from: https://izlik.org/JA83KR52RS