Review
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 5, 1978 - 1993, 01.09.2025
https://doi.org/10.12991/jrespharm.1764928

Abstract

References

  • [1] Bácskay I, Ujhelyi Z, Fehér P, Arany P. The evolution of the 3D-printed drug delivery systems: a review. Pharm. 2022; 14(7): 1312. https://doi.org/10.3390/pharmaceutics14071312.
  • [2] Suharyani I, Fouad Abdelwahab Mohammed A, Muchtaridi M, Wathoni N, Abdassah M. Evolution of drug delivery systems for recurrent aphthous stomatitis. Drug Des Devel Ther. 2021: 4071-4089. https://doi.org/10.2147/DDDT.S328371.
  • [3] Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021; 5(9): 951-967. https://doi.org/10.1038/s41551-021-00698-w
  • [4] Hrkach J, Langer R. From micro to nano: evolution and impact of drug delivery in treating disease. Drug Deliv Transl Res. 2020; 10(3): 567-570. https://doi.org/10.1007/s13346-020-00769-6
  • [5] Souza AC, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front Microbiol. 2017; 8: 244287. https://doi.org/10.3389/fmicb.2017.00336.
  • [6] Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018; 37(3): 209-230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009.
  • [7] Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014; 103(1): 29-52. https://doi.org/10.1002/jps.23773.
  • [8] Chamel S, Mishra A, Gull A. Transfer osomes as innovative drug delivery systems for enhanced antifungal therapy: A comprehensive review. J Drug Deliv Technol. 2024: 105545. https://doi.org/10.1002/jps.23773
  • [9] Szoka Jr F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the national academy of sciences. 1978; 75(9): 4194-4198. https://doi.org/10.1073/pnas.75.9.4194.
  • [10] Xu X, Khan MA, Burgess DJ. Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm. 2012; 423(2): 410-418. https://doi.org/10.1016/j.ijpharm.2011.12.019.
  • [11] Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carr Syst. 1996; 13(3-4):257-388. https://doi.org/10.1615/critrevtherdrugcarriersyst.v13.i3-4.30.
  • [12] Lymberopoulos A, Demopoulou C, Kyriazi M, Katsarou MS, Demertzis N, Hatziandoniou S, Maswadeh H, Papaioanou G, Demetzos C, Maibach H, Rallis M. Liposome percutaneous penetration in vivo. Toxicol Res. 2017; 1: 2397847317723196. https://doi.org/10.1177/2397847317723196.
  • [13] Pahwa R, Pal S, Saroha K, Waliyan P, Kumar M. Transferosomes: Unique vesicular carriers for effective transdermal delivery. J Appl Pharm Sci. 2021; 11(5): 001-8. https://dx.doi.org/10.7324/JAPS.2021.110501.
  • [14] Deng P, Masoud RE, Alamoudi WM, Zakaria MY. Employment of PEGylated ultra-deformable transferosomes for transdermal delivery of tapentadol with boosted bioavailability and analgesic activity in post-surgical pain. Int J Pharm. 2022; 628: 122274. https://doi.org/10.1016/j.ijpharm.2022.122274.
  • [15] Miatmoko A, Marufah NA, Nada Q, Rosita N, Erawati T, Susanto J, Purwantari KE, Nurkanto A, Purwati, Soeratri W. The effect of surfactant type on characteristics, skin penetration and anti-aging effectiveness of transfersomes containing amniotic mesenchymal stem cells metabolite products in UV-aging induced mice. Drug Deliv. 2022; 29(1): 3443-53. https://doi.org/10.1080/10717544.2022.2149895.
  • [16] Wu PS, Li YS, Kuo YC, Tsai SJ, Lin CC. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules. 2019; 24(3): 600. https://doi.org/10.3390/molecules24030600.
  • [17] Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006; 3(6): 727-737. https://doi.org/10.1517/17425247.3.6.727.
  • [18] Uwaezuoke O, Du Toit LC, Kumar P, Ally N, Choonara YE. Linoleic acid-based transferosomes for topical ocular delivery of cyclosporine A. Pharmaceutics. 2022;14(8):1695. https://doi.org/10.3390/pharmaceutics14081695.
  • [19] Lopalco A, Cutrignelli A, Denora N, Lopedota A, Franco M, Laquintana V. Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood–brain barrier. Nanomaterials (Basel). 2018;8(3):178. https://doi.org/10.3390/nano8030178.
  • [20] Raychaudhuri S, Prinz WA. Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum. Proceedings of the National Academy of Sciences. 2008; 105(41): 15785-15790. https://doi.org/10.1073/pnas.0808321105.
  • [21] Szczepańska P, Rychlicka M, Moroz P, Janek T, Gliszczyńska A, Lazar Z. Elevating phospholipids production Yarrowia lipolytica from crude glycerol. Int J Mol Sci. 2022; 23(18): 10737. https://doi.org/10.3390/ijms231810737.
  • [22] Bruni A, Bigon E. Interaction Between Phospholipids and Adenosine Triphosphatase Inhibitor. Biochem Soc Trans. 1974; 2(3): 515. https://doi.org/10.1042/bst0020515.
  • [23] Vögtle FN, Keller M, Taskin AA, Horvath SE, Guan XL, Prinz C, Opalińska M, Zorzin C, van der Laan M, Wenk MR, Schubert R, Wiedemann N, Holzer M, Meisinger C. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. J Cell Biol. 2015;210(6):951-960. https://doi.org/10.1083/jcb.201506085.
  • [24] Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: A distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res. 2023; 33(1): 1-33. https://doi.org/10.1080/08982104.2022.2069809.
  • [25] Vieira J, Castelo J, Martins M, Saraiva N, Rosado C, Pereira-Leite C. Mixed Edge Activators in Ibuprofen-Loaded Transfersomes: An Innovative Optimization Strategy Using Box-Behnken Factorial Design. Pharmaceutics. 2023;15(4):1209. https://doi.org/10.3390/pharmaceutics15041209.
  • [26] Gupta R, Kumar A. Transfersomes: the ultra-deformable carrier system for non-invasive delivery of drug. Curr Drug Deliv. 2021; 18(4): 408-420. https://doi.org/10.2174/1567201817666200804105416.
  • [27] Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Effect of edge activator on characteristic and in vitro skin permeation of meloxicam loaded in elastic liposomes. Adv Mater Res. 2011; 194: 537-540. https://doi.org/10.4028/www.scientific.net/AMR.194-196.537.
  • [28] Shi W, Yang Y, Zhao Y, Li Y. The solvent effect on the excited-state intramolecular proton transfer of cyanine derivative molecules. Org Chem Front. 2019; 6(10): 1674-1680. https://doi.org/10.1039/C9QO00230H.
  • [29] Webb C, Khadke S, Schmidt ST, Roces CB, Forbes N, Berrie G, Perrie Y. The Impact of Solvent Selection: Strategies to Guide the Manufacturing of Liposomes Using Microfluidics. Pharmaceutics. 2019;11(12):653. https://doi.org/10.3390/pharmaceutics11120653.
  • [30] Chauhan P, Tyagi BK. Herbal novel drug delivery systems and transfersomes. J Drug Deliv Ther. 2018; 8(3): 162-168. https://doi.org/10.22270/jddt.v8i3.1772.
  • [31] Trewby W, Livesey D, Voïtchovsky K. Buffering agents modify the hydration landscape at charged interfaces. J Soft Matter. 2016; 12(9): 2642-2651. https://doi.org/10.1039/C5SM02445E.
  • [32] Mitchell-Olds T, Knight CA. Chaperones as buffering agents? Science. 2002; 296(5577): 2348-2349. https://doi.org/10.1126/science.1073846.
  • [33] Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013; 352: 33-47. https://doi.org/10.1007/s00441-012-1428-2.
  • [34] Burtey A, Wagner M, Hodneland E, Skaftnesmo KO, Schoelermann J, Mondragon IR, Espedal H, Golebiewska A, Niclou SP, Bjerkvig R, Kögel T. Intercellular transfer of transferrin receptor by a contact‐, Rab8‐dependent mechanism involving tunneling nanotubes. FASEB J. 2015; 29(11): 4695-4712. https://doi.org/10.1096/fj.14-268615.
  • [35] Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake. Int J Mol Sci. 2023; 24(2): 1337. https://doi.org/10.3390/ijms24021337.
  • [36] Panigrahi A, O’Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 2021; 22(1): 108. https://doi.org/10.1186/s13059-021-02322-1.
  • [37] Bhokare B. Transfersomes: a novel drug delivery system. Int J Res Eng Appl Sci. 2017; 7(6): 189.
  • [38] Kumar RS, Pradhan M. Transferosomes: Vesicular carrier for both hydrophilic and lipophilic drugs. J Pharm Res Int. 2022: 106-120. https://doi.org/10.9734/jpri/2022/v34i27B36013.
  • [39] Chia PZ, Gunn P, Gleeson PA. Cargo trafficking between endosomes and the trans-Golgi network. Histochem Cell Biol. 2013; 140: 307-315. https://doi.org/10.1007/s00418-013-1125-6.
  • [40] Lieu ZZ, Gleeson PA. Endosome-to-Golgi transport pathways in physiological processes. Histol Histopathol. 2011; 26(3): 395-408. https://doi.org/10.14670/hh-26.395.
  • [41] Farquhar MG. Intracellular membrane traffic: Pathways, carriers, and sorting devices. In: Methods in Enzymology 1983; 98: 1-13. Academic Press. https://doi.org/10.1016/0076-6879(83)98134-X.
  • [42] Jones BE, Kelly EA, Cowieson N, Divitini G, Evans RC. Light-responsive molecular release from cubosomes using swell-squeeze lattice control. J Am Chem Soc. 2022; 144(42): 19532-19541. https://doi.org/1 0.1021/jacs.2c08583.
  • [43] Dumitriu Buzia O, Păduraru AM, Stefan CS, Dinu M, Cocoș DI, Nwabudike LC, Tatu AL. Strategies for Improving Transdermal Administration: New Approaches to Controlled Drug Release. Pharmaceutics. 2023;15(4):1183. https://doi.org/10.3390/pharmaceutics15041183.
  • [44] Lee Y, Thompson DH. Stimuli‐responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017; 9(5): e1450. https://doi.org/10.1002/wnan.1450.
  • [45] Koçer A. A remote controlled valve in liposomes for triggered liposomal release. J Liposome Res. 2007; 17(3-4): 219- 225. https://doi.org/10.1080/08982100701528203.
  • [46] Uwaezuoke O, Du Toit LC, Kumar P, Ally N, Choonara YE. Linoleic Acid-Based Transferosomes for Topical Ocular Delivery of Cyclosporine A. Pharmaceutics. 2022;14(8):1695. https://doi.org/10.3390/pharmaceutics14081695.
  • [47] Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, Bentley MV, Simões S. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015: 5837-5851. https://doi.org/10.2147/IJN.S86186.
  • [48] Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O'Neill F, Roberts M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J Pharm Pharmacol. 2019;71(10):1508-1519. https://doi.org/10.1111/jphp.13149.
  • [49] Jiang C, Ma R, Jiang X, Fang R, Ye J. A transfersomes hydrogel patch for cutaneous delivery of propranolol hydrochloride: formulation, in vitro, ex vivo and in vivo studies. J Liposome Res. 2023; 33(3): 258-267. https://doi.org/10.1080/08982104.2022.2162539.
  • [50] Opatha SA, Titapiwatanakun V, Boonpisutiinant K, Chutoprapat R. Preparation, characterization and permeation study of topical gel loaded with transfersomes containing asiatic acid. Molecules. 2022; 27(15): 4865. https://doi.org/10.3390/molecules27154865.
  • [51] Munir M, Zaman M, Waqar MA, Hameed H, Riaz T. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J Liposome Res. 2024; 34(1): 203-218. https://doi.org/10.1080/08982104.2023.2221354.
  • [52] Chen RP, Chavda VP, Patel AB, Chen ZS. Phytochemical delivery through transferosome (phytosome): an advanced transdermal drug delivery for complementary medicines. Front Pharmacol. 2022; 13: 850862. https://doi.org/10.3389/fphar.2022.850862.
  • [53] Surini S, Leonyza A, Suh CW. Formulation and in vitro penetration study of recombinant human epidermal growth factor-loaded transfersomal emulgel. Adv Pharm Bull. 2020; 10(4): 586. https://doi.org/10.34172%2Fapb.2020.070.
  • [54] Kodi SR, Reddy MS. Transferosomes: A Novel Topical Approach. J Drug Deliv Ther. 2023; 13(2): 126-131. https://doi.org/10.22270/jddt.v13i2.5952.
  • [55] Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan JZ, Zeb A. Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech. 2022; 23: 1-8. https://doi.org/10.1208/s12249-021-02166- 9.
  • [56] Sharma SO, Kumari DI, Khan SH, Pathak PR, Katiyar DE, Imam SS. An expedient approach to treat asthma through non-steroidal, natural transferosomes aerosol system. Innovare J Med Sci. 2022; 10: 7-11. http://dx.doi.org/10.22159/ijms.2022v10i6.46451.
  • [57] Imam SS. Topical formulation constituted with transferosomes for the treatment of non-melanoma skin cancer. Asian J Pharm Clin Res. 2023; 16: 27-32. http://dx.doi.org/10.22159/ajpcr.2023v16i5.47033.
  • [58] Chauhan N, Kumar K, Pant NC. An updated review on transfersomes: a novel vesicular system for transdermal drug delivery. Univers J Pharm Res. 2017. https://doi.org/10.22270/ujpr.v2i4.RW2.
  • [59] Nayak BS, Mohanty B, Mishra B, Roy H, Nandi S. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system. Chem Biol Drug Des. 2023; 102(3): 653-667. https://doi.org/10.1111/cbdd.14254.
  • [60] Solanki D, Kushwah L, Motiwale M, Chouhan V. Transferosomes-a review. World J Pharm Pharm Sci. 2016; 5(10): 435-449.
  • [61] Mirafzali Z, Thompson CS, Tallua K. Application of liposomes in the food industry. In: Microencapsulation in the food industry. 2023; 195-207. Academic Press. https://doi.org/10.1016/B978-0-12-821683-5.00028-5.
  • [62] Grit M, Crommelin DJ. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids. 1993; 64(1-3): 3-18. https://doi.org/10.1016/0009-3084(93)90053-6.
  • [63] Chabru AS, Salve PS, Ghumare GD, Dhamak RS, Tiwari DR, Waghmare DS. Comparative pharmacokinetic studies of transferosomes loaded gel and pressure sensitive adhesive based patch formulation for transdermal delivery of benztropine mesylate. J Drug Deliv Technol. 2024; 92: 105287. https://doi.org/10.1016/j.jddst.2023.105287.
  • [64] Malviya N, Prabakaran A, Alexander A. Comparative study on ethosomes and transferosomes for enhancing skin permeability of sinapic acid. J Mol Liq. 2023; 383: 122098. https://doi.org/10.1016/j.molliq.2023.122098.
  • [65] Dey S, Hasnain MS, Jha SK, Sahoo N, Nayak AK. Transferosomes: A novel nanotechnological approach for transdermal drug delivery. In Advanced and Modern Approaches for Drug Delivery. 2023; 199-221. Academic Press. https://doi.org/10.1016/B978-0-323-91668-4.00017-4.
  • [66] Das B, Nayak AK, Mallick S. Transferosomes: a novel nanovesicular approach for drug delivery. In: Systems of nanovesicular drug delivery. 2022; pp.103-114. Academic Press. https://doi.org/10.1016/B978-0-323-91864-0.00022- X.
  • [67] Allam AA, Fathalla D, Safwat MA, Soliman GM. Transferosomes versus transethosomes for the dermal delivery for minoxidil: preparation and in vitro/ex vivo appraisal. J Drug Deliv Technol. 2022; 76: 103790. https://doi.org/10.1016/j.jddst.2022.103790.
  • [68] Shende M, Bodele S, Ghode S, Baravkar A, Nalawade N. Transferosomes: A promising vesicular-based skin-oriented drug delivery system. World J Pharm Sci. 2021; 9(10):1-55. https://doi.org/10.54037/WJPS.2021.91009.
  • [69] Khamkat P, Ghosh A, Mukherjee S. Transfersomes: An innovative vesicular carrier for boosted transdermal delivery system. Res J Pharm Technol. 2022; 15(6): 2793-800. http://dx.doi.org/10.52711/0974-360X.2022.00467.
  • [70] Amin S, Sarfenejad A, Ahmad J, Kohli K, Mir SR. Nanovesicular transfersomes for enhanced systemic delivery of telmisartan. Adv Sci Eng Med. 2013; 5(4): 299-308. https://doi.org/10.1166/asem.2013.1288.
  • [71] Ali MF, Salem HF, Abdelmohsen HF, Attia SK. Preparation and clinical evaluation of nano-transferosomes for treatment of erectile dysfunction. Drug Des Devel Ther. 2015: 2431-2447. https://doi.org/10.2147/DDDT.S81236.
  • [72] Khatoon K, Rizwanullah MD, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: formulation optimization, in-vitro and in-vivo study. J Drug Deliv Technol. 2019; 54: 101303. https://doi.org/10.1016/j.jddst.2019.101303.
  • [73] Chaurasia L, Singh S, Arora K, Saxena C. Transferosome: A suitable delivery system for percutaneous administration. Curr Res Pharm Sci. 2019; 9(1):01-11. https://doi.org/10.24092/CRPS.2019.090101.
  • [74] Khan R, Jain PK, Khare B, Jain M, Thakur BS, Jain A, Jain AP. Formulation and characterization of novel transfersomes gel for enhance TDDS of losartan potassium. J Drug Deliv Ther. 2022; 12(4-S): 96-100. https://doi.org/10.22270/jddt.v12i4-S.5525.
  • [75] Guryev O, Middlebrook AJ, Sharkey M, inventors; Becton Dickinson and Co, assignee. Inverting device for liposome preparation by centrifugation. United States patent US 10,736,847. 2020.
  • [76] Massing U, Ingebrigtsen SG, Škalko-Basnet N, Holsæter AM. Dual centrifugation—a novel “in-vial” liposome processing technique. London, UK: IntechOpen; 2017.
  • [77] Zheng XH, Cui C, Zhou XX, Zeng YX, Jia WH. Centrifugation: an important pre-analytic procedure that influences plasma microRNA quantification during blood processing. Chin J Cancer. 2013; 32(12): 667. https://doi.org/10.5732%2Fcjc.012.10271.
  • [78] Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014; 3(1): 23111. https://doi.org/10.3402/jev.v3.23111.
  • [79] Battu S, Iswariya VT, Bindu EH, Pravalika R. Formulation and evaluation of transferosomes loaded with an anti- hyperlipidemic drug. J Sci Res. 2021; 27(6): 65-71. https://doi.org/10.9734/jsrr/2021/v27i630402.
  • [80] Sharma M, Malik G, Gulati D, Kaushik P, Arora S. Formulation and evaluation of fusidic acid based transferosome for burn wound infection. Mater Today Proc. 2022; 68: 836-841. https://doi.org/10.1016/j.matpr.2022.06.260.
  • [81] Ren J, Liu T, Bi B, Sohail S, ud Din F. Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J Pharm Sci. 2024; 113(2): 471-485. https://doi.org/10.1016/j.xphs.2023.10.033.
  • [82] Rajpurohit M, Patil A, Vinyas M, Urolagin D, Saeed M, Ahmad I. Fabrication and characterisation of nabumetone transferosomal gel for effective topical delivery. J Mol Struct. 2024; 1312: 138430. https://doi.org/10.1016/j.molstruc.2024.138430.
  • [83] Mohammad SI, Aldosari BN, Mehanni MM, El-Gendy AO, Hozayen WG, Afzal O, Zaki RM, Sayed OM. Fabrication and application of targeted ciprofloxacin nanocarriers for the treatment of chronic bacterial prostatitis. Int J Pharm. 2024; 7: 100247. https://doi.org/10.1016/j.ijpx.2024.100247.
  • [84] Maheshwari R, Sharma M, Chidrawar VR. Development of engineered transferosomal gel containing meloxicam for the treatment of osteoarthritis. Ann Pharm Fr. 2024;82(5):830-839. https://doi.org/10.1016/j.pharma.2024.04.006.
  • [85] Abdellatif AA, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS Pharmscitech. 2016; 17: 1067-1074. https://doi.org/10.1208/s12249-015-0441-7.
  • [86] De Oliveira TC, Tavares ME, Soares-Sobrinho JL, Chaves LL. The role of nanocarriers for transdermal application targeted to lymphatic drug delivery: Opportunities and challenges. J Drug Deliv Technol. 2022; 68: 103110. https://doi.org/10.1016/j.jddst.2022.103110.
  • [87] Singh S, Awasthi R. Breakthroughs and bottlenecks of psoriasis therapy: Emerging trends and advances in lipid based nano-drug delivery platforms for dermal and transdermal drug delivery. J Drug Deliv Technol. 2023; 12: 104548. https://doi.org/10.1016/j.jddst.2023.104548.
  • [88] Szekalska M, Wróblewska M, Czajkowska-Kośnik A, Sosnowska K, Misiak P, Wilczewska AZ, Winnicka K. The spray-dried alginate/gelatin microparticles with luliconazole as mucoadhesive drug delivery system. Materials. 2023; 16(1): 403. https://doi.org/10.3390/ma16010403
  • [89] Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anti-Cancer Drugs. 2011; 22(8): 774-782. https://doi.org/10.1097/cad.0b013e328346c7d6.
  • [90] Jiang T, Wang T, Li T, Ma Y, Shen S, He B, Mo R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano. 2018; 12(10): 9693-701. https://doi.org/10.1021/acsnano.8b03800.
  • [91] Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. J Transl Med. 2024; 22(1): 339. https://doi.org/10.1186/s12967-024-05160-4.
  • [92] Mahor S, Rawat A, Dubey PK, Gupta PN, Khatri K, Goyal AK, Vyas SP. Cationic transfersomes based topical genetic vaccine against hepatitis B. Int J Pharm. 2007; 340(1-2): 13-19. https://doi.org/10.1016/j.ijpharm.2007.03.006.
  • [93] Agrawal U, Gupta M, Vyas SP. Vesicular Carriers for Transcutaneous Immunization. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers. 2016; pp. 319-335. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • [94] Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine. 2021; 16(27): 2465-2489. https://doi.org/10.2217/nnm-2021-0335.
  • [95] Potisuwan S, Apichatwatana N, Rujivipat S. Improved skin permeation of transferosomes containing Eulophia macrobulbon extract. Colloids Surf B Biointerfaces. 2023; 229: 113474. https://doi.org/10.1016/j.colsurfb.2023.113474.
  • [96] Abd-Allah H, Ragaie MH, Elmowafy E. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne. Int J Pharm. 2023; 639: 122940. https://doi.org/10.1016/j.ijpharm.2023.122940
  • [97] Modi CD, Bharadia PD. Transfersomes: new dominants for transdermal drug delivery. Am J Pharm Tech Res. 2012; 2(3): 71-91.
  • [98] Rajan R, Jose S, Mukund VP, Vasudevan DT. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res. 2011;2(3):138-143. https://doi.org/10.4103/2231-4040.85524.
  • [99] Iqubal R, Mathew V, Shamsudheen S. Transferosomes as a Novel Therapeutic Delivery System: A Review. J Pharm Res Int. 2021; 33(45B): 241-254. https://doi.org/10.9734/jpri/2021/v33i45B32801.
  • [100] Sanna V, Roggio AM, Pala N, Marceddu S, Lubinu G, Mariani A, Sechi M. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol. Int J Biol Macromol. 2015; 72: 531-536. https://doi.org/10.1016/j.ijbiomac.2014.08.053.
  • [101] Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. Physiol J. 2023; 601(22): 4873-893. https://doi.org/10.1113/JP282053.
  • [102] Wani SN, Singh S, Sharma N, Zahoor I, Grewal S, Gupta S. Transferosome-Based Intranasal Drug Delivery Systems for the Management of Schizophrenia: a Futuristic Approach. BioNanoSci. 2024; 14: 3811-3829. https://doi.org/10.1007/s12668-023-01249-0.
  • [103] Witika BA, Mweetwa LL, Tshiamo KO, Edler K, Matafwali SK, Ntemi PV, Chikukwa MT, Makoni PA. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. J Pharm Pharmacol. 2021; 73(11): 1427-1441. https://doi.org/10.1093/jpp/rgab082

Transferosomes: Advanced nanocarriers for enhanced drug delivery

Year 2025, Volume: 29 Issue: 5, 1978 - 1993, 01.09.2025
https://doi.org/10.12991/jrespharm.1764928

Abstract

Transferosomes represent a groundbreaking advancement in drug delivery systems, characterized by their unique ability to encapsulate a diverse range of drugs, including hydrophilic, lipophilic, and amphiphilic compounds. These vesicles offer benefits such as biocompatibility, biodegradability, enhanced drug stability, improved absorption, extended duration of action, and reduced toxicity. This review critically examines recent advancements in transferosome technology, focusing on innovative formulation strategies and their therapeutic applications, such as enhanced drug delivery, vaccines, transdermal and ocular applications, among others. By synthesizing insights from current literature, this article aims to provide valuable guidance for researchers, clinicians, and pharmaceutical developers seeking to harness the full potential of transferosome-based therapies for improved medical outcomes.

References

  • [1] Bácskay I, Ujhelyi Z, Fehér P, Arany P. The evolution of the 3D-printed drug delivery systems: a review. Pharm. 2022; 14(7): 1312. https://doi.org/10.3390/pharmaceutics14071312.
  • [2] Suharyani I, Fouad Abdelwahab Mohammed A, Muchtaridi M, Wathoni N, Abdassah M. Evolution of drug delivery systems for recurrent aphthous stomatitis. Drug Des Devel Ther. 2021: 4071-4089. https://doi.org/10.2147/DDDT.S328371.
  • [3] Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021; 5(9): 951-967. https://doi.org/10.1038/s41551-021-00698-w
  • [4] Hrkach J, Langer R. From micro to nano: evolution and impact of drug delivery in treating disease. Drug Deliv Transl Res. 2020; 10(3): 567-570. https://doi.org/10.1007/s13346-020-00769-6
  • [5] Souza AC, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front Microbiol. 2017; 8: 244287. https://doi.org/10.3389/fmicb.2017.00336.
  • [6] Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018; 37(3): 209-230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009.
  • [7] Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014; 103(1): 29-52. https://doi.org/10.1002/jps.23773.
  • [8] Chamel S, Mishra A, Gull A. Transfer osomes as innovative drug delivery systems for enhanced antifungal therapy: A comprehensive review. J Drug Deliv Technol. 2024: 105545. https://doi.org/10.1002/jps.23773
  • [9] Szoka Jr F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the national academy of sciences. 1978; 75(9): 4194-4198. https://doi.org/10.1073/pnas.75.9.4194.
  • [10] Xu X, Khan MA, Burgess DJ. Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm. 2012; 423(2): 410-418. https://doi.org/10.1016/j.ijpharm.2011.12.019.
  • [11] Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carr Syst. 1996; 13(3-4):257-388. https://doi.org/10.1615/critrevtherdrugcarriersyst.v13.i3-4.30.
  • [12] Lymberopoulos A, Demopoulou C, Kyriazi M, Katsarou MS, Demertzis N, Hatziandoniou S, Maswadeh H, Papaioanou G, Demetzos C, Maibach H, Rallis M. Liposome percutaneous penetration in vivo. Toxicol Res. 2017; 1: 2397847317723196. https://doi.org/10.1177/2397847317723196.
  • [13] Pahwa R, Pal S, Saroha K, Waliyan P, Kumar M. Transferosomes: Unique vesicular carriers for effective transdermal delivery. J Appl Pharm Sci. 2021; 11(5): 001-8. https://dx.doi.org/10.7324/JAPS.2021.110501.
  • [14] Deng P, Masoud RE, Alamoudi WM, Zakaria MY. Employment of PEGylated ultra-deformable transferosomes for transdermal delivery of tapentadol with boosted bioavailability and analgesic activity in post-surgical pain. Int J Pharm. 2022; 628: 122274. https://doi.org/10.1016/j.ijpharm.2022.122274.
  • [15] Miatmoko A, Marufah NA, Nada Q, Rosita N, Erawati T, Susanto J, Purwantari KE, Nurkanto A, Purwati, Soeratri W. The effect of surfactant type on characteristics, skin penetration and anti-aging effectiveness of transfersomes containing amniotic mesenchymal stem cells metabolite products in UV-aging induced mice. Drug Deliv. 2022; 29(1): 3443-53. https://doi.org/10.1080/10717544.2022.2149895.
  • [16] Wu PS, Li YS, Kuo YC, Tsai SJ, Lin CC. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules. 2019; 24(3): 600. https://doi.org/10.3390/molecules24030600.
  • [17] Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006; 3(6): 727-737. https://doi.org/10.1517/17425247.3.6.727.
  • [18] Uwaezuoke O, Du Toit LC, Kumar P, Ally N, Choonara YE. Linoleic acid-based transferosomes for topical ocular delivery of cyclosporine A. Pharmaceutics. 2022;14(8):1695. https://doi.org/10.3390/pharmaceutics14081695.
  • [19] Lopalco A, Cutrignelli A, Denora N, Lopedota A, Franco M, Laquintana V. Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood–brain barrier. Nanomaterials (Basel). 2018;8(3):178. https://doi.org/10.3390/nano8030178.
  • [20] Raychaudhuri S, Prinz WA. Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum. Proceedings of the National Academy of Sciences. 2008; 105(41): 15785-15790. https://doi.org/10.1073/pnas.0808321105.
  • [21] Szczepańska P, Rychlicka M, Moroz P, Janek T, Gliszczyńska A, Lazar Z. Elevating phospholipids production Yarrowia lipolytica from crude glycerol. Int J Mol Sci. 2022; 23(18): 10737. https://doi.org/10.3390/ijms231810737.
  • [22] Bruni A, Bigon E. Interaction Between Phospholipids and Adenosine Triphosphatase Inhibitor. Biochem Soc Trans. 1974; 2(3): 515. https://doi.org/10.1042/bst0020515.
  • [23] Vögtle FN, Keller M, Taskin AA, Horvath SE, Guan XL, Prinz C, Opalińska M, Zorzin C, van der Laan M, Wenk MR, Schubert R, Wiedemann N, Holzer M, Meisinger C. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. J Cell Biol. 2015;210(6):951-960. https://doi.org/10.1083/jcb.201506085.
  • [24] Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: A distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res. 2023; 33(1): 1-33. https://doi.org/10.1080/08982104.2022.2069809.
  • [25] Vieira J, Castelo J, Martins M, Saraiva N, Rosado C, Pereira-Leite C. Mixed Edge Activators in Ibuprofen-Loaded Transfersomes: An Innovative Optimization Strategy Using Box-Behnken Factorial Design. Pharmaceutics. 2023;15(4):1209. https://doi.org/10.3390/pharmaceutics15041209.
  • [26] Gupta R, Kumar A. Transfersomes: the ultra-deformable carrier system for non-invasive delivery of drug. Curr Drug Deliv. 2021; 18(4): 408-420. https://doi.org/10.2174/1567201817666200804105416.
  • [27] Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Effect of edge activator on characteristic and in vitro skin permeation of meloxicam loaded in elastic liposomes. Adv Mater Res. 2011; 194: 537-540. https://doi.org/10.4028/www.scientific.net/AMR.194-196.537.
  • [28] Shi W, Yang Y, Zhao Y, Li Y. The solvent effect on the excited-state intramolecular proton transfer of cyanine derivative molecules. Org Chem Front. 2019; 6(10): 1674-1680. https://doi.org/10.1039/C9QO00230H.
  • [29] Webb C, Khadke S, Schmidt ST, Roces CB, Forbes N, Berrie G, Perrie Y. The Impact of Solvent Selection: Strategies to Guide the Manufacturing of Liposomes Using Microfluidics. Pharmaceutics. 2019;11(12):653. https://doi.org/10.3390/pharmaceutics11120653.
  • [30] Chauhan P, Tyagi BK. Herbal novel drug delivery systems and transfersomes. J Drug Deliv Ther. 2018; 8(3): 162-168. https://doi.org/10.22270/jddt.v8i3.1772.
  • [31] Trewby W, Livesey D, Voïtchovsky K. Buffering agents modify the hydration landscape at charged interfaces. J Soft Matter. 2016; 12(9): 2642-2651. https://doi.org/10.1039/C5SM02445E.
  • [32] Mitchell-Olds T, Knight CA. Chaperones as buffering agents? Science. 2002; 296(5577): 2348-2349. https://doi.org/10.1126/science.1073846.
  • [33] Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013; 352: 33-47. https://doi.org/10.1007/s00441-012-1428-2.
  • [34] Burtey A, Wagner M, Hodneland E, Skaftnesmo KO, Schoelermann J, Mondragon IR, Espedal H, Golebiewska A, Niclou SP, Bjerkvig R, Kögel T. Intercellular transfer of transferrin receptor by a contact‐, Rab8‐dependent mechanism involving tunneling nanotubes. FASEB J. 2015; 29(11): 4695-4712. https://doi.org/10.1096/fj.14-268615.
  • [35] Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake. Int J Mol Sci. 2023; 24(2): 1337. https://doi.org/10.3390/ijms24021337.
  • [36] Panigrahi A, O’Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 2021; 22(1): 108. https://doi.org/10.1186/s13059-021-02322-1.
  • [37] Bhokare B. Transfersomes: a novel drug delivery system. Int J Res Eng Appl Sci. 2017; 7(6): 189.
  • [38] Kumar RS, Pradhan M. Transferosomes: Vesicular carrier for both hydrophilic and lipophilic drugs. J Pharm Res Int. 2022: 106-120. https://doi.org/10.9734/jpri/2022/v34i27B36013.
  • [39] Chia PZ, Gunn P, Gleeson PA. Cargo trafficking between endosomes and the trans-Golgi network. Histochem Cell Biol. 2013; 140: 307-315. https://doi.org/10.1007/s00418-013-1125-6.
  • [40] Lieu ZZ, Gleeson PA. Endosome-to-Golgi transport pathways in physiological processes. Histol Histopathol. 2011; 26(3): 395-408. https://doi.org/10.14670/hh-26.395.
  • [41] Farquhar MG. Intracellular membrane traffic: Pathways, carriers, and sorting devices. In: Methods in Enzymology 1983; 98: 1-13. Academic Press. https://doi.org/10.1016/0076-6879(83)98134-X.
  • [42] Jones BE, Kelly EA, Cowieson N, Divitini G, Evans RC. Light-responsive molecular release from cubosomes using swell-squeeze lattice control. J Am Chem Soc. 2022; 144(42): 19532-19541. https://doi.org/1 0.1021/jacs.2c08583.
  • [43] Dumitriu Buzia O, Păduraru AM, Stefan CS, Dinu M, Cocoș DI, Nwabudike LC, Tatu AL. Strategies for Improving Transdermal Administration: New Approaches to Controlled Drug Release. Pharmaceutics. 2023;15(4):1183. https://doi.org/10.3390/pharmaceutics15041183.
  • [44] Lee Y, Thompson DH. Stimuli‐responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017; 9(5): e1450. https://doi.org/10.1002/wnan.1450.
  • [45] Koçer A. A remote controlled valve in liposomes for triggered liposomal release. J Liposome Res. 2007; 17(3-4): 219- 225. https://doi.org/10.1080/08982100701528203.
  • [46] Uwaezuoke O, Du Toit LC, Kumar P, Ally N, Choonara YE. Linoleic Acid-Based Transferosomes for Topical Ocular Delivery of Cyclosporine A. Pharmaceutics. 2022;14(8):1695. https://doi.org/10.3390/pharmaceutics14081695.
  • [47] Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, Bentley MV, Simões S. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015: 5837-5851. https://doi.org/10.2147/IJN.S86186.
  • [48] Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O'Neill F, Roberts M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J Pharm Pharmacol. 2019;71(10):1508-1519. https://doi.org/10.1111/jphp.13149.
  • [49] Jiang C, Ma R, Jiang X, Fang R, Ye J. A transfersomes hydrogel patch for cutaneous delivery of propranolol hydrochloride: formulation, in vitro, ex vivo and in vivo studies. J Liposome Res. 2023; 33(3): 258-267. https://doi.org/10.1080/08982104.2022.2162539.
  • [50] Opatha SA, Titapiwatanakun V, Boonpisutiinant K, Chutoprapat R. Preparation, characterization and permeation study of topical gel loaded with transfersomes containing asiatic acid. Molecules. 2022; 27(15): 4865. https://doi.org/10.3390/molecules27154865.
  • [51] Munir M, Zaman M, Waqar MA, Hameed H, Riaz T. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J Liposome Res. 2024; 34(1): 203-218. https://doi.org/10.1080/08982104.2023.2221354.
  • [52] Chen RP, Chavda VP, Patel AB, Chen ZS. Phytochemical delivery through transferosome (phytosome): an advanced transdermal drug delivery for complementary medicines. Front Pharmacol. 2022; 13: 850862. https://doi.org/10.3389/fphar.2022.850862.
  • [53] Surini S, Leonyza A, Suh CW. Formulation and in vitro penetration study of recombinant human epidermal growth factor-loaded transfersomal emulgel. Adv Pharm Bull. 2020; 10(4): 586. https://doi.org/10.34172%2Fapb.2020.070.
  • [54] Kodi SR, Reddy MS. Transferosomes: A Novel Topical Approach. J Drug Deliv Ther. 2023; 13(2): 126-131. https://doi.org/10.22270/jddt.v13i2.5952.
  • [55] Akram MW, Jamshaid H, Rehman FU, Zaeem M, Khan JZ, Zeb A. Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech. 2022; 23: 1-8. https://doi.org/10.1208/s12249-021-02166- 9.
  • [56] Sharma SO, Kumari DI, Khan SH, Pathak PR, Katiyar DE, Imam SS. An expedient approach to treat asthma through non-steroidal, natural transferosomes aerosol system. Innovare J Med Sci. 2022; 10: 7-11. http://dx.doi.org/10.22159/ijms.2022v10i6.46451.
  • [57] Imam SS. Topical formulation constituted with transferosomes for the treatment of non-melanoma skin cancer. Asian J Pharm Clin Res. 2023; 16: 27-32. http://dx.doi.org/10.22159/ajpcr.2023v16i5.47033.
  • [58] Chauhan N, Kumar K, Pant NC. An updated review on transfersomes: a novel vesicular system for transdermal drug delivery. Univers J Pharm Res. 2017. https://doi.org/10.22270/ujpr.v2i4.RW2.
  • [59] Nayak BS, Mohanty B, Mishra B, Roy H, Nandi S. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system. Chem Biol Drug Des. 2023; 102(3): 653-667. https://doi.org/10.1111/cbdd.14254.
  • [60] Solanki D, Kushwah L, Motiwale M, Chouhan V. Transferosomes-a review. World J Pharm Pharm Sci. 2016; 5(10): 435-449.
  • [61] Mirafzali Z, Thompson CS, Tallua K. Application of liposomes in the food industry. In: Microencapsulation in the food industry. 2023; 195-207. Academic Press. https://doi.org/10.1016/B978-0-12-821683-5.00028-5.
  • [62] Grit M, Crommelin DJ. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids. 1993; 64(1-3): 3-18. https://doi.org/10.1016/0009-3084(93)90053-6.
  • [63] Chabru AS, Salve PS, Ghumare GD, Dhamak RS, Tiwari DR, Waghmare DS. Comparative pharmacokinetic studies of transferosomes loaded gel and pressure sensitive adhesive based patch formulation for transdermal delivery of benztropine mesylate. J Drug Deliv Technol. 2024; 92: 105287. https://doi.org/10.1016/j.jddst.2023.105287.
  • [64] Malviya N, Prabakaran A, Alexander A. Comparative study on ethosomes and transferosomes for enhancing skin permeability of sinapic acid. J Mol Liq. 2023; 383: 122098. https://doi.org/10.1016/j.molliq.2023.122098.
  • [65] Dey S, Hasnain MS, Jha SK, Sahoo N, Nayak AK. Transferosomes: A novel nanotechnological approach for transdermal drug delivery. In Advanced and Modern Approaches for Drug Delivery. 2023; 199-221. Academic Press. https://doi.org/10.1016/B978-0-323-91668-4.00017-4.
  • [66] Das B, Nayak AK, Mallick S. Transferosomes: a novel nanovesicular approach for drug delivery. In: Systems of nanovesicular drug delivery. 2022; pp.103-114. Academic Press. https://doi.org/10.1016/B978-0-323-91864-0.00022- X.
  • [67] Allam AA, Fathalla D, Safwat MA, Soliman GM. Transferosomes versus transethosomes for the dermal delivery for minoxidil: preparation and in vitro/ex vivo appraisal. J Drug Deliv Technol. 2022; 76: 103790. https://doi.org/10.1016/j.jddst.2022.103790.
  • [68] Shende M, Bodele S, Ghode S, Baravkar A, Nalawade N. Transferosomes: A promising vesicular-based skin-oriented drug delivery system. World J Pharm Sci. 2021; 9(10):1-55. https://doi.org/10.54037/WJPS.2021.91009.
  • [69] Khamkat P, Ghosh A, Mukherjee S. Transfersomes: An innovative vesicular carrier for boosted transdermal delivery system. Res J Pharm Technol. 2022; 15(6): 2793-800. http://dx.doi.org/10.52711/0974-360X.2022.00467.
  • [70] Amin S, Sarfenejad A, Ahmad J, Kohli K, Mir SR. Nanovesicular transfersomes for enhanced systemic delivery of telmisartan. Adv Sci Eng Med. 2013; 5(4): 299-308. https://doi.org/10.1166/asem.2013.1288.
  • [71] Ali MF, Salem HF, Abdelmohsen HF, Attia SK. Preparation and clinical evaluation of nano-transferosomes for treatment of erectile dysfunction. Drug Des Devel Ther. 2015: 2431-2447. https://doi.org/10.2147/DDDT.S81236.
  • [72] Khatoon K, Rizwanullah MD, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: formulation optimization, in-vitro and in-vivo study. J Drug Deliv Technol. 2019; 54: 101303. https://doi.org/10.1016/j.jddst.2019.101303.
  • [73] Chaurasia L, Singh S, Arora K, Saxena C. Transferosome: A suitable delivery system for percutaneous administration. Curr Res Pharm Sci. 2019; 9(1):01-11. https://doi.org/10.24092/CRPS.2019.090101.
  • [74] Khan R, Jain PK, Khare B, Jain M, Thakur BS, Jain A, Jain AP. Formulation and characterization of novel transfersomes gel for enhance TDDS of losartan potassium. J Drug Deliv Ther. 2022; 12(4-S): 96-100. https://doi.org/10.22270/jddt.v12i4-S.5525.
  • [75] Guryev O, Middlebrook AJ, Sharkey M, inventors; Becton Dickinson and Co, assignee. Inverting device for liposome preparation by centrifugation. United States patent US 10,736,847. 2020.
  • [76] Massing U, Ingebrigtsen SG, Škalko-Basnet N, Holsæter AM. Dual centrifugation—a novel “in-vial” liposome processing technique. London, UK: IntechOpen; 2017.
  • [77] Zheng XH, Cui C, Zhou XX, Zeng YX, Jia WH. Centrifugation: an important pre-analytic procedure that influences plasma microRNA quantification during blood processing. Chin J Cancer. 2013; 32(12): 667. https://doi.org/10.5732%2Fcjc.012.10271.
  • [78] Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014; 3(1): 23111. https://doi.org/10.3402/jev.v3.23111.
  • [79] Battu S, Iswariya VT, Bindu EH, Pravalika R. Formulation and evaluation of transferosomes loaded with an anti- hyperlipidemic drug. J Sci Res. 2021; 27(6): 65-71. https://doi.org/10.9734/jsrr/2021/v27i630402.
  • [80] Sharma M, Malik G, Gulati D, Kaushik P, Arora S. Formulation and evaluation of fusidic acid based transferosome for burn wound infection. Mater Today Proc. 2022; 68: 836-841. https://doi.org/10.1016/j.matpr.2022.06.260.
  • [81] Ren J, Liu T, Bi B, Sohail S, ud Din F. Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J Pharm Sci. 2024; 113(2): 471-485. https://doi.org/10.1016/j.xphs.2023.10.033.
  • [82] Rajpurohit M, Patil A, Vinyas M, Urolagin D, Saeed M, Ahmad I. Fabrication and characterisation of nabumetone transferosomal gel for effective topical delivery. J Mol Struct. 2024; 1312: 138430. https://doi.org/10.1016/j.molstruc.2024.138430.
  • [83] Mohammad SI, Aldosari BN, Mehanni MM, El-Gendy AO, Hozayen WG, Afzal O, Zaki RM, Sayed OM. Fabrication and application of targeted ciprofloxacin nanocarriers for the treatment of chronic bacterial prostatitis. Int J Pharm. 2024; 7: 100247. https://doi.org/10.1016/j.ijpx.2024.100247.
  • [84] Maheshwari R, Sharma M, Chidrawar VR. Development of engineered transferosomal gel containing meloxicam for the treatment of osteoarthritis. Ann Pharm Fr. 2024;82(5):830-839. https://doi.org/10.1016/j.pharma.2024.04.006.
  • [85] Abdellatif AA, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS Pharmscitech. 2016; 17: 1067-1074. https://doi.org/10.1208/s12249-015-0441-7.
  • [86] De Oliveira TC, Tavares ME, Soares-Sobrinho JL, Chaves LL. The role of nanocarriers for transdermal application targeted to lymphatic drug delivery: Opportunities and challenges. J Drug Deliv Technol. 2022; 68: 103110. https://doi.org/10.1016/j.jddst.2022.103110.
  • [87] Singh S, Awasthi R. Breakthroughs and bottlenecks of psoriasis therapy: Emerging trends and advances in lipid based nano-drug delivery platforms for dermal and transdermal drug delivery. J Drug Deliv Technol. 2023; 12: 104548. https://doi.org/10.1016/j.jddst.2023.104548.
  • [88] Szekalska M, Wróblewska M, Czajkowska-Kośnik A, Sosnowska K, Misiak P, Wilczewska AZ, Winnicka K. The spray-dried alginate/gelatin microparticles with luliconazole as mucoadhesive drug delivery system. Materials. 2023; 16(1): 403. https://doi.org/10.3390/ma16010403
  • [89] Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anti-Cancer Drugs. 2011; 22(8): 774-782. https://doi.org/10.1097/cad.0b013e328346c7d6.
  • [90] Jiang T, Wang T, Li T, Ma Y, Shen S, He B, Mo R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano. 2018; 12(10): 9693-701. https://doi.org/10.1021/acsnano.8b03800.
  • [91] Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. J Transl Med. 2024; 22(1): 339. https://doi.org/10.1186/s12967-024-05160-4.
  • [92] Mahor S, Rawat A, Dubey PK, Gupta PN, Khatri K, Goyal AK, Vyas SP. Cationic transfersomes based topical genetic vaccine against hepatitis B. Int J Pharm. 2007; 340(1-2): 13-19. https://doi.org/10.1016/j.ijpharm.2007.03.006.
  • [93] Agrawal U, Gupta M, Vyas SP. Vesicular Carriers for Transcutaneous Immunization. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers. 2016; pp. 319-335. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • [94] Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine. 2021; 16(27): 2465-2489. https://doi.org/10.2217/nnm-2021-0335.
  • [95] Potisuwan S, Apichatwatana N, Rujivipat S. Improved skin permeation of transferosomes containing Eulophia macrobulbon extract. Colloids Surf B Biointerfaces. 2023; 229: 113474. https://doi.org/10.1016/j.colsurfb.2023.113474.
  • [96] Abd-Allah H, Ragaie MH, Elmowafy E. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne. Int J Pharm. 2023; 639: 122940. https://doi.org/10.1016/j.ijpharm.2023.122940
  • [97] Modi CD, Bharadia PD. Transfersomes: new dominants for transdermal drug delivery. Am J Pharm Tech Res. 2012; 2(3): 71-91.
  • [98] Rajan R, Jose S, Mukund VP, Vasudevan DT. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res. 2011;2(3):138-143. https://doi.org/10.4103/2231-4040.85524.
  • [99] Iqubal R, Mathew V, Shamsudheen S. Transferosomes as a Novel Therapeutic Delivery System: A Review. J Pharm Res Int. 2021; 33(45B): 241-254. https://doi.org/10.9734/jpri/2021/v33i45B32801.
  • [100] Sanna V, Roggio AM, Pala N, Marceddu S, Lubinu G, Mariani A, Sechi M. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol. Int J Biol Macromol. 2015; 72: 531-536. https://doi.org/10.1016/j.ijbiomac.2014.08.053.
  • [101] Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. Physiol J. 2023; 601(22): 4873-893. https://doi.org/10.1113/JP282053.
  • [102] Wani SN, Singh S, Sharma N, Zahoor I, Grewal S, Gupta S. Transferosome-Based Intranasal Drug Delivery Systems for the Management of Schizophrenia: a Futuristic Approach. BioNanoSci. 2024; 14: 3811-3829. https://doi.org/10.1007/s12668-023-01249-0.
  • [103] Witika BA, Mweetwa LL, Tshiamo KO, Edler K, Matafwali SK, Ntemi PV, Chikukwa MT, Makoni PA. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. J Pharm Pharmacol. 2021; 73(11): 1427-1441. https://doi.org/10.1093/jpp/rgab082
There are 103 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Review
Authors

Sreehari Nair

Dhanashree P. Sanap

Kisan R. Jadhav This is me

Submission Date July 3, 2024
Acceptance Date October 22, 2024
Publication Date September 1, 2025
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Nair, S., Sanap, D. P., & Jadhav, K. R. (2025). Transferosomes: Advanced nanocarriers for enhanced drug delivery. Journal of Research in Pharmacy, 29(5), 1978-1993. https://doi.org/10.12991/jrespharm.1764928
AMA Nair S, Sanap DP, Jadhav KR. Transferosomes: Advanced nanocarriers for enhanced drug delivery. J. Res. Pharm. September 2025;29(5):1978-1993. doi:10.12991/jrespharm.1764928
Chicago Nair, Sreehari, Dhanashree P. Sanap, and Kisan R. Jadhav. “Transferosomes: Advanced Nanocarriers for Enhanced Drug Delivery”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 1978-93. https://doi.org/10.12991/jrespharm.1764928.
EndNote Nair S, Sanap DP, Jadhav KR (September 1, 2025) Transferosomes: Advanced nanocarriers for enhanced drug delivery. Journal of Research in Pharmacy 29 5 1978–1993.
IEEE S. Nair, D. P. Sanap, and K. R. Jadhav, “Transferosomes: Advanced nanocarriers for enhanced drug delivery”, J. Res. Pharm., vol. 29, no. 5, pp. 1978–1993, 2025, doi: 10.12991/jrespharm.1764928.
ISNAD Nair, Sreehari et al. “Transferosomes: Advanced Nanocarriers for Enhanced Drug Delivery”. Journal of Research in Pharmacy 29/5 (September2025), 1978-1993. https://doi.org/10.12991/jrespharm.1764928.
JAMA Nair S, Sanap DP, Jadhav KR. Transferosomes: Advanced nanocarriers for enhanced drug delivery. J. Res. Pharm. 2025;29:1978–1993.
MLA Nair, Sreehari et al. “Transferosomes: Advanced Nanocarriers for Enhanced Drug Delivery”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 1978-93, doi:10.12991/jrespharm.1764928.
Vancouver Nair S, Sanap DP, Jadhav KR. Transferosomes: Advanced nanocarriers for enhanced drug delivery. J. Res. Pharm. 2025;29(5):1978-93.