Lack of evidence for improved β-adrenoceptor-mediated papillary muscle contraction by low-dose empagliflozin treatment in a rat model of streptozotocin-induced diabetes
Year 2026,
Volume: 30 Issue: 1, 60 - 71, 11.01.2026
Zeynep Elif Yeşilyurt Dirican
,
İrem Karaömerlioğlu
,
Betül Rabia Erdoğan
,
Gaye Öztürk
,
Martin Christian Michel
Ebru Arıoğlu İnan
Abstract
Diabetes mellitus leads to cardiovascular complications including impaired cardiac β-adrenoceptor (β-AR)
function. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, such as empagliflozin (EMPA), improve outcomes in heart
failure patients and animal models. Therefore, we have investigated the effects of EMPA on in vivo cardiac function and
β-AR mediated contractile responses in streptozotocin (STZ)-induced diabetes in a design reflecting late-onset of
treatment. Male Sprague Dawley rats were divided into 4 groups (control, EMPA-treated control, diabetic, and EMPA-
treated diabetic). Diabetes was induced by STZ injection (40 mg/kg). 13-16 weeks after STZ injection, a low dose of
EMPA (10 mg/kg/day, daily oral gavage) or vehicle was administered for another 8 weeks. At the end of the treatment
period, in vivo cardiac function was evaluated by pressure-volume (PV) loop analysis and β-AR mediated contractile
response was determined by isoprenaline on isolated papillary strips. The blood glucose-lowering effect of low-dose
EMPA was confirmed. EMPA did not change cardiac function in control rats. Diabetic rats had a reduced heart rate,
cardiac output, stroke work, rate of contraction and rate of relaxation and increased isovolumic relaxation, whereas in
vitro responses were not markedly attenuated. Treatment with EMPA showed a trend for improvement of some (e.g.,
stroke volume, ejection fraction, cardiac index) but not all parameters. Our results indicate that low-dose EMPA
treatment had limited effects on cardiac impairment despite reducing blood glucose when initiated after diabetes has
manifested. Future studies using a preventive rather than therapeutic approach could help to clarify the possible benefits
of EMPA on the diabetic heart.
References
-
Pennig J, Scherrer P, Gissler MC, Anto-Michel N, Hoppe N, Füner L, Härdtner C, Stachon P, Wolf D, Hilgendorf
I, Mullick A, Bode C, Zirlik A, Goldberg IJ, Willecke F. Glucose lowering by SGLT2-inhibitor empagliflozin
accelerates atherosclerosis regression in hyperglycemic STZ-diabetic mice. Sci Rep. 2019; 9(1):17937.
https://doi.org/10.1038/s41598-019-54224-9
-
Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF
Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin
Pract. 2018; 138:271-281. https://doi.org/10.1016/j.diabres.2018.02.023
-
Lee TI, Chen YC, Lin YK, Chung CC, Lu YY, Kao YH, Chen YJ. Empagliflozin Attenuates Myocardial Sodium
and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. Int J
Mol Sci. 2019 Apr 4;20(7):1680. https://doi.org/10.3390/ijms20071680
-
Action to Control Cardiovascular Risk in Diabetes Study Group; Gerstein HC, Miller ME, Byington RP, Goff DC
Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG,
Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545-2559.
https://doi.org/10.1056/NEJMoa0802743
-
ADVANCE Collaborative Group; Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M,
Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter
N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and
vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-2572.
http://dx.doi.org/10.1056/NEJMoa0802987
-
Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R,
Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD; VADT Investigators. Glucose
control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129-139. doi:
10.1056/NEJMoa0808431. Epub 2008 Dec 17. Erratum in: N Engl J Med. 2009;361(10):1028. Erratum in: N Engl J
Med. 2009;361(10):1024-1025. https://doi.org/10.1056/NEJMoa0808431
-
Michel MC, Mayoux E, Vallon V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor
empagliflozin in animals and humans. Naunyn Schmiedebergs Arch Pharmacol. 2015; 388(8):801-816.
https://doi.org/10.1007/s00210-015-1134-1
-
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle
HJ, Broedl UC, Inzucchi SE; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes,
and Mortality in Type 2 Diabetes. N Engl J Med. 2015; 373(22):2117-2128.
https://doi.org/10.1056/NEJMoa1504720
-
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR;
CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2
Diabetes. N Engl J Med. 2017; 377(7):644-657. https://doi.org/10.1056/NEJMoa1611925
-
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy
SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson
PA, Langkilde AM, Sabatine MS; DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular
Outcomes in Type 2 Diabetes. N Engl J Med. 2019; 380(4):347-357. https://doi.org/10.1056/NEJMoa1812389
-
Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, Charbonnel B, Frederich R, Gallo
S, Cosentino F, Shih WJ, Gantz I, Terra SG, Cherney DZI, McGuire DK; VERTIS CV
Investigators.Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020; 383(15):1425-
1435. https://doi.org/10.1056/NEJMoa2004967
-
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS,
Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A,
Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh
PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand
M, Langkilde AM; DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure
and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008.
https://doi.org/10.1056/NEJMoa1911303
-
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M,
Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi DJ, Chopra V, Chuquiure E,
Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ,
Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad
F; EMPEROR-Reduced Trial Investigators. Cardiovascular and Renal Outcomes with Empagliflozin in Heart
Failure. N Engl J Med. 2020;383(15):1413-1424. https://doi.org/10.1056/NEJMoa2022190
-
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner-La Rocca HP, Choi DJ, Chopra V,
Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely
B, Nicholls SJ, Perrone SV, Piña IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H,
Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee
JM, Brueckmann M, Pocock SJ, Zannad F, Packer M; EMPEROR-Preserved Trial Investigators. Empagliflozin in
Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385(16):1451-
1461.https://doi.org/10.1056/NEJMoa2107038
-
Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN,
Lam CSP, Martinez F, Shah SJ, Desai AS, Jhund PS, Belohlavek J, Chiang CE, Borleffs CJW, Comin-Colet J,
Dobreanu D, Drozdz J, Fang JC, Alcocer-Gamba MA, Al Habeeb W, Han Y, Cabrera Honorio JW, Janssens SP,
Katova T, Kitakaze M, Merkely B, O'Meara E, Saraiva JFK, Tereshchenko SN, Thierer J, Vaduganathan M,
Vardeny O, Verma S, Pham VN, Wilderäng U, Zaozerska N, Bachus E, Lindholm D, Petersson M, Langkilde
AM; DELIVER Trial Committees and Investigators. Dapagliflozin in Heart Failure with Mildly Reduced or
Preserved Ejection Fraction. N Engl J Med. 2022;387(12):1089-1098. https://doi.org/10.1056/NEJMoa2206286
-
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J,
Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma
T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C,
Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A; ESC Scientific Document
Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J.
2021;42(36):3599-3726. doi: 10.1093/eurheartj/ehab368. Erratum in: Eur Heart J. 2021;42(48):4901.
https://doi.org/10.1093/eurheartj/ehab368
-
Writing Committee; Maddox TM, Januzzi JL Jr, Allen LA, Breathett K, Butler J, Davis LL, Fonarow GC, Ibrahim
NE, Lindenfeld J, Masoudi FA, Motiwala SR, Oliveros E, Patterson JH, Walsh MN, Wasserman A, Yancy CW,
Youmans QR. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart
Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction: A Report
of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77(6):772-
810. https://doi.org/10.1016/j.jacc.2020.11.022
-
Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the
activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in
mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor.
Cardiovasc Drugs Ther. 2017; 31(2):119-132. https://doi.org/10.1007/s10557-017-6725-2
-
Hammoudi N, Jeong D, Singh R, Farhat A, Komajda M, Mayoux E, Hajjar R, Lebeche D. Empagliflozin
Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes. Cardiovasc Drugs Ther.
2017;31(3):233-246. https://doi.org/10.1007/s10557-017-6734-1
-
Arow M, Waldman M, Yadin D, Nudelman V, Shainberg A, Abraham NG, Freimark D, Kornowski R, Aravot
D, Hochhauser E, Arad M. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic
cardiomyopathy. Cardiovasc Diabetol. 2020;19(1):7. https://doi.org/10.1186/s12933-019-0980-4
-
Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR, Garro M, Barron B, Mayoux E, Rector RS, Whaley-Connell A,
DeMarco VG. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic
function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017;16(1):9.
https://doi.org/10.1186/s12933-016-0489-z
-
Liu L, Luo H, Liang Y, Tang J, Shu Y. Dapagliflozin ameliorates STZ-induced cardiac hypertrophy in type 2
diabetic rats by inhibiting the calpain-1 expression and nuclear transfer of NF-κB. Comput Math Methods Med.
2022; 2022:3293054. https://doi.org/10.1155/2022/3293054
-
Tian J, Zhang M, Suo M, Liu D, Wang X, Liu M, Pan J, Jin T, An F. Dapagliflozin alleviates cardiac fibrosis
through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic
rats. J Cell Mol Med. 2021;25(16):7642-7659. https://doi.org/10.1111/jcmm.16601
-
El-Sayed N, Mostafa YM, AboGresha NM, Ahmed AAM, Mahmoud IZ, El-Sayed NM. Dapagliflozin attenuates
diabetic cardiomyopathy through erythropoietin up-regulation of AKT/JAK/MAPK pathways in
streptozotocin-induced diabetic rats. Chem Biol Interact. 2021; 347:109617.
https://doi.org/10.1016/j.cbi.2021.109617
-
Sun P, Wang Y, Ding Y, Luo J, Zhong J, Xu N, Zhang Y, Xie W. Canagliflozin attenuates lipotoxicity in
cardiomyocytes and protects diabetic mouse hearts by inhibiting the mTOR/HIF-1α pathway. iScience.
2021;24(6):102521. https://doi.org/10.1016/j.isci.2021.102521
-
Lim VG, Bell RM, Arjun S, Kolatsi-Joannou M, Long DA, Yellon DM. SGLT2 inhibitor, canagliflozin,
attenuates myocardial infarction in the diabetic and nondiabetic heart. ACC Basic Transl Sci. 2019; 4(1):15-26.
https://doi.org/10.1016/j.jacbts.2018.10.002
-
Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, Dollet L, Le May C, Toumaniantz G, Manrique
A, Charpentier F, Staels B, Magré J, Cariou B, Prieur X. The Sodium-Glucose Cotransporter 2 Inhibitor
Dapagliflozin Prevents Cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes. 2017;66(4):1030-
1040. https://doi.org/10.2337/db16-0733
-
Kräker K, Herse F, Golic M, Reichhart N, Crespo-Garcia S, Strauß O, Grune J, Kintscher U, Ebrahim M, Bader
M, Alenina N, Heuser A, Luft FC, Müller DN, Dechend R, Haase N. Effects of empagliflozin and target-organ
damage in a novel rodent model of heart failure induced by combined hypertension and diabetes. Sci Rep.
2020;10(1):14061. https://doi.org/10.1038/s41598-020-70708-5
-
Ma S, He LL, Zhang GR, Zuo QJ, Wang ZL, Zhai JL, Zhang TT, Wang Y, Ma HJ, Guo YF. Canagliflozin
mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn
Schmiedebergs Arch Pharmacol. 2022;395(8):945-962. https://doi.org/10.1007/s00210-022-02243-1
-
Ideishi A, Suematsu Y, Tashiro K, Morita H, Kuwano T, Tomita S, Nakai K, Miura SI. Combination of
Linagliptin and Empagliflozin Preserves Cardiac Systolic Function in an Ischemia-Reperfusion Injury Mice
With Diabetes Mellitus. Cardiol Res. 2021;12(2):91-97. https://doi.org/10.14740/cr1194
-
Trang NN, Chung CC, Lee TW, Cheng WL, Kao YH, Huang SY, Lee TI, Chen YJ. Empagliflozin and Liraglutide
Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. Int J Mol Sci. 2021;22(3):1177.
https://doi.org/10.3390/ijms22031177
-
Xing YJ, Liu BH, Wan SJ, Cheng Y, Zhou SM, Sun Y, Yao XM, Hua Q, Meng XJ, Cheng JH, Zhong M, Zhang Y,
Lv K, Kong X. A SGLT2 Inhibitor Dapagliflozin Alleviates Diabetic Cardiomyopathy by Suppressing High
Glucose-Induced Oxidative Stress in vivo and in vitro. Front Pharmacol. 2021 ;12:708177.
https://doi.org/10.3389/fphar.2021.708177
-
Hodrea J, Saeed A, Molnar A, Fintha A, Barczi A, Wagner LJ, Szabo AJ, Fekete A, Balogh DB. SGLT2 inhibitor
dapagliflozin prevents atherosclerotic and cardiac complications in experimental type 1 diabetes. PLoS One.
2022;17(2):e0263285.https://doi.org/10.1371/journal.pone.0263285
-
Zhou Y, Wu W. The sodium-glucose co-transporter 2 inhibitor, empagliflozin, protects against diabetic
cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway. Cell Physiol Biochem. 2017;
41(6):2503-2512. https://doi.org/10.1159/000475942
-
El-Shafey M, El-Agawy MSE, Eldosoky M, Ebrahim HA, Elsherbini DMA, El-Sherbiny M, Asseri SM,
Elsherbiny NM. Role of Dapagliflozin and Liraglutide on Diabetes-Induced Cardiomyopathy in Rats:
Implication of Oxidative Stress, Inflammation, and Apoptosis. Front Endocrinol (Lausanne). 2022;13:862394.
https://doi.org/10.3389/fendo.2022.862394
-
Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Chowdhury FI, Nayan SI, Rahman MM, Khan F, Subhan N,
Alam MA. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple
antioxidant and anti-inflammatory signaling pathways. Sci Rep. 2020 ;10(1):14459.
https://doi.org/10.1038/s41598-020-71449-1
-
National Institute for Health and Care Excellence. Type 2 diabetes in adults: management 2019
https://www.nice.org.uk/guidance/ng28 (accessed December 2019).
-
Harding SE, Brown LA, Wynne DG, Davies CH, Poole-Wilson PA. Mechanisms of ß adrenoceptor
desensitisation in the failing human heart. Cardiovasc Res. 1994; 28:1451-1460.
https://doi.org/10.1093/cvr/28.10.1451.
-
Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol. Rev. 1999;
51(4):651-689. https://doi.org/10.1016/S0031-6997(24)01425-X
-
Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: physiological and pathophysiological relevance.
J Pharmacol Sci. 2006; 100(5):323-337. https://doi.org/10.1254/jphs.CRJ06001X
-
Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure? Circ Res.
2003; 93(10):896-906. https://doi.org/10.1161/01.RES.0000102042.83024.CA
-
Arioglu-Inan E, Kaykı-Mutlu G, Michel MC. Cardiac β3-adrenoceptors - a role in human pathophysiology? Br J
Pharmacol. 2019; 176(14):2482-2495. https://doi.org/10.1111/bph.14635
-
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and signaling of β-adrenoceptor subtypes in the diabetic
heart. Cells. 2020;9(12):2548. https://doi.org/10.3390/cells9122548
-
Dinçer ÜD, Onay A, Arı N, Özçelikay AT, Altan VM. The effects of diabetes on b-adrenoceptor mediated
responsiveness of human and rat atria. Diabetes Res Clin Pract. 1998; 40(2):113-122.
https://doi.org/10.1016/S0168-8227(98)00034-5
-
Dinçer ÜD, Bidasee KR, Güner Ş, Tay A, Özçelikay AT, Altan VM. The effect of diabetes on expression of β1-,β2-, and β3-adrenoreceptors in rat hearts. Diabetes. 2001;50(2):455-461.
https://doi.org/10.2337/diabetes.50.2.455
-
Jiang C, Carillion A, Na N, De Jong A, Feldman S, Lacorte JM, Bonnefont-Rousselot D, Riou B, Amour J.
Modification of the β-Adrenoceptor Stimulation Pathway in Zucker Obese and Obese Diabetic Rat
Myocardium. Crit Care Med. 2015;43(7):e241-9. https://doi.org/10.1097/CCM.0000000000000999
-
Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, Stamm P, Mader M, Zinßius E,
Agdauletova S, Gottschlich A, Steven S, Schulz E, Bottari SP, Mayoux E, Münzel T, Daiber A. The sodium-
glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the
streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One. 2014
;9(11):e112394. https://doi.org/10.1371/journal.pone.0112394
-
Steven S, Oelze M, Hanf A, Kröller-Schön S, Kashani F, Roohani S, Welschof P, Kopp M, Gödtel-Armbrust U,
Xia N, Li H, Schulz E, Lackner KJ, Wojnowski L, Bottari SP, Wenzel P, Mayoux E, Münzel T, Daiber A. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol.
2017;13:370-385. https://doi.org/10.1016/j.redox.2017.06.009
-
Wentworth JM, Fourlanos S, Colman PG, Harrison LC. A pilot study of the feasibility of empagliflozin in
recent-onset type 1 diabetes. Metabol Open. 2020; 100021. https://doi.org/10.1016/j.metop.2020.100021
-
Rosenstock J, Marquard J, Laffel LM, Neubacher D, Kaspers S, Cherney DZ, Zinman B, Skyler JS, George J,
Soleymanlou N, Perkins BA. Empagliflozin as Adjunctive to Insulin Therapy in Type 1 Diabetes: The EASE
Trials. Diabetes Care. 2018 ;41(12):2560-2569. https://doi.org/10.2337/dc18-1749
-
Garg SK, Henry RR, Banks P, Buse JB, Davies MJ, Fulcher GR, Pozzilli P, Gesty-Palmer D, Lapuerta P, Simó R,
Danne T, McGuire DK, Kushner JA, Peters A, Strumph P. Effects of Sotagliflozin Added to Insulin in Patients
with Type 1 Diabetes. N Engl J Med. 2017;377(24):2337-2348. https://doi.org/10.1056/NEJMoa1708337
-
Arioglu Inan E, Ellenbroek JH, Michel MC. A systematic review of urinary bladder hypertrophy in
experimental diabetes: part I. streptozotocin-induced rat models. Neurourol Urodyn. 2018; 37(4):1212-1219.
https://doi.org/10.1002/nau.23490
-
Onay-Besikci A, Guner S, Arioglu E, Ozakca I, Ozcelikay AT, Altan VM. The effects of chronic trimetazidine
treatment on mechanical function and fatty acid oxidation in diabetic rat hearts. Can J Physiol Pharmacol.
2007;85(5):527-535. https://doi.org/10.1139/y07-036
-
Hafez G, Gonulalan U, Kosan M, Arioglu E, Ozturk B, Cetinkaya M, Gur S. Acetylsalicylic acid protects erectile
function in diabetic rats. Andrologia. 2014;46(9):997-1003. https://doi.org/10.1111/and.12187
-
Gonulalan U, Kosan M, Hafez G, Arioglu E, Akdemir O, Ozturk B, Gur S, Cetinkaya M. The effect of diabetes
mellitus on alpha1-adrenergic receptor subtypes in the bladder of rats. Urology. 2012;80(4):951 e9-16.
https://doi.org/10.1016/j.urology.2012.06.019
-
Arioglu-Inan E, Ozakca I, Kayki-Mutlu G, Sepici-Dincel A, Altan VM. The role of insulin-thyroid hormone
interaction on beta-adrenoceptor-mediated cardiac responses. Eur J Pharmacol. 2013; 718(1-3):533-543.
https://doi.org/10.1016/j.ejphar.2013.06.021
-
Ozakca I, Arioglu E, Guner S, Altan VM, Ozcelikay AT. Role of beta-3-adrenoceptor in catecholamine-induced
relaxations in gastric fundus from control and diabetic rats. Pharmacology. 2007;80(4):227-238.
https://doi.org/10.1159/000104876
-
Kayki-Mutlu G, Karaomerlioglu I, Arioglu-Inan E. The effect of nitric oxide synthase on beta 3 adrenoceptor
mediated relaxation in STZ diabetic rat heart. J Fac Pharm Ankara. 2019; 43(1):64-71.
https://doi.org/10.33483/jfpau.519948
-
Kayki-Mutlu G, Arioglu-Inan E, Ozakca I, Ozcelikay AT, Altan VM. beta3-Adrenoceptor-mediated responses in
diabetic rat heart. Gen Physiol Biophys. 2014; 33(1):99-109. https://doi.org/10.4149/gpb_2013065
-
Mostafavinia A, Amini A, Ghorishi SK, Pouriran R, Bayat M. The effects of dosage and the routes of
administrations of streptozotocin and alloxan on induction rate of type1 diabetes mellitus and mortality rate in
rats. Lab Anim Res. 2016; 32(3):160-165. https://doi.org/10.5625/lar.2016.32.3.160
-
Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart
failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet.
2020;396(10254):819-829. https://doi.org/10.1016/s0140-6736(20)31824-9
-
Yesilyurt ZE, Erdogan BR, Karaomerlioglu I, Muderrisoglu AE, Michel MC, Arioglu-Inan E. Urinary Bladder
Weight and Function in a Rat Model of Mild Hyperglycemia and Its Treatment With Dapagliflozin. Front
Pharmacol. 2019; 10:911. https://doi.org/10.3389/fphar.2019.00911
-
Yesilyurt ZE, Ertürk BM, Erdogan BR, Arioglu Inan E, Michel MC. Effects of the sodium-glucose transporter 2
inhibitor empagliflozin on bladder sie, contraction and ralexation in a rat model of type 1 diabetes. Neurourol
Urodyn. 2021; 42 Suppl 2:S141-S2. https://doi.org/10.1002/nau.24746
-
Michel MC, Yesilyurt ZE, Öztürk G, Arioglu Inan E. Empagliflozin and linagliptin do not affect urinary bladder
enlargement in a rat model of type 1 diabetes. Br J Pharmacol. 2021; 178:4977-4978.
https://doi.org/10.1111/bph.15648
-
Kim DH, Kim YJ, Kim HK, Chang SA, Kim MS, Sohn DW, Oh BH, Park YB. Usefulness of mitral annulus
velocity for the early detection of left ventricular dysfunction in a rat model of diabetic cardiomyopathy. J
Cardiovasc Ultrasound. 2010;18(1):6-11. https://doi.org/10.4250/jcu.2010.18.1.6
-
Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional beta3-adrenoceptor in the human
heart. J Clin Invest. 1996; 98(2):556-562. https://doi.org/10.1172/JCI118823
-
Michel MC, Murphy TJ, Motulsky HJ. New Author Guidelines for Displaying Data and Reporting Data
Analysis and Statistical Methods in Experimental Biology. Mol Pharmacol. 2020; 97(1):49-60.
https://doi.org/10.1124/mol.119.118927
-
Erdogan BR, Vollert J, Michel MC. Choice of y-axis can mislead readers. Naunyn Schmiedebergs Arch
Pharmacol. 2020; 393(9):1769-1772. https://doi.org/10.1007/s00210-020-01926-x
-
Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature.
2019;567(7748):305-307. https://doi.org/10.1038/d41586-019-00857-9
-
Michel MC, Murphy TJ, Motulsky HJ. New Author Guidelines for Displaying Data and Reporting Data
Analysis and Statistical Methods in Experimental Biology. J Pharmacol Exp Ther. 2020; 372(1):136-147.
https://doi.org/10.1124/jpet.119.264143