Research Article
BibTex RIS Cite

Evaluating the efficacy and safety of Lumbricus rubellus extract as a natural antipyretic agent

Year 2026, Volume: 30 Issue: 1, 341 - 356, 11.01.2026
https://doi.org/10.12991/jrespharm.1845195

Abstract

Fever, a complex physiological response, is regulated by inflammatory mediators like IL-1, IL-6, and TNF-
α. Conventional antipyretics, while effective, are associated with adverse effects, prompting interest in natural
alternatives such as Lumbricus rubellus extract. This study evaluates the efficacy, safety, and antipyretic mechanism
of Lumbricus rubellus extract through in silico, in vitro, and in vivo methodologies. The extract was standardized for
specific and non-specific parameters. Molecular docking assessed interactions with prostaglandin E2 synthesis
receptors. ADMET predictions and acute oral toxicity studies were performed using Sprague Dawley rats. Antipyretic
efficacy was determined using brewer's yeast-induced pyrexia models. The extract showed high binding affinity with
mPGES-1 (docking score: -4.8), indicating potential antipyretic activity. ADMET analysis predicted favorable
pharmacokinetic properties with minimal toxicity. In vivo studies revealed significant dose-dependent reductions in
rectal temperature, with the 200 mg dose outperforming acetaminophen (0.54 °C vs. 0.42 °C reduction). Toxicity studies
showed no adverse effects at doses up to 2000 mg/kg, classifying the extract as safe per OECD guidelines. The
antipyretic action of Lumbricus rubellus is attributed to its bioactive compound, lombricine, which inhibits PGE2
synthesis. The extract also met safety standards for microbial contamination and heavy metal content, reinforcing its
therapeutic potential. Lumbricus rubellus extract demonstrates promising antipyretic efficacy and safety, positioning it
as a viable natural alternative to conventional antipyretics. Further clinical studies are warranted to confirm its
application in humans.

References

  • [1] Mackowiak PA, Chervenak FA, Grünebaum A. Defining Fever. Open Forum Infect Dis. 2021; 8(6): 1–2. https://doi.org/10.1093/ofid/ofab161.
  • [2] Mota CMD, Madden CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2. Brain Behav Immun. 2022; 103: 109–121. https://doi.org/10.1016/j.bbi.2022.04.008.
  • [3] Rose-John S. Interleukin-6 signalling in health and disease. F1000Res. 2020; 9:1013. https://doi.org/10.12688/f1000research.26058.1
  • [4] You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol. 2021; 9: 727075. https://doi.org/10.3389/fcell.2021.727075.
  • [5] Eskilsson A, Shionoya K, Engblom D, Blomqvist A. Fever during localized inflammation in mice is elicited by a humoral pathway and depends on brain endothelial interleukin-1 and interleukin-6 signaling and central EP3receptors. J Neurosci. 2021; 41(24): 5206–5218. https://doi.org/10.1523/JNEUROSCI.0313-21.2021
  • [6] Cimpello LB, Goldman DL, Khine H. Fever Pathophysiology. Clin Pediatr Emerg Med. 2000; 1(2): 84–93. https://doi.org/10.1016/S1522-8401(00)90012-0
  • [7] Mota-Rojas D, Wang D, Titto CG, Gómez-Prado J, Carvajal-de la Fuente V, Ghezzi M, Boscato-Funes L, Barrios-García H, Torres-Bernal F, Casas-Alvarado A, Martínez-Burnes J. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals (Basel). 2021;11(8):2316. https://doi.org/10.3390/ani11082316.
  • [8] Prajitha N, Athira SS, Mohanan P V. Pyrogens, a polypeptide produces fever by metabolic changes in hypothalamus: Mechanisms and detections. Immunol Lett. 2018; 204(12): 38–46. https://doi.org/10.1016/j.imlet.2018.10.006.
  • [9] Ames NJ, Powers JH, Ranucci A, Gartrell K, Yang L, VanRaden M, Leidy NK, Wallen GR. A systematic approach for studying the signs and symptoms of fever in adult patients: the fever assessment tool (FAST). Health Qual Life Outcomes. 2017;15(1):84. https://doi.org/10.1186/s12955-017-0644-6.
  • [10] Ülger F, Pehlivanlar Küçük M, Öztürk ÇE, Aksoy İ, Küçük AO, Murat N. Non-infectious Fever After Acute Spinal Cord Injury in the Intensive Care Unit. J Spinal Cord Med. 2019;42(3):310-317. https://10.1080/10790268.2017.1387715.
  • [11] Cachot JT, Manuel J, Azcona B, Falp JB, Ilari HC. Classic fever of unknown origin: Analysis of a cohort of 87 patients according to the definition with qualitative study criterion. Med Clin (Barc). 2021; 156(2): 206–213. https://doi.org/10.1016/j.medcli.2020.03.014.
  • [12] Wright WF, Mulders-Manders CM, Auwaerter PG, Bleeker-Rovers CP. Fever of Unknown Origin (FUO) – A Call for New Research Standards and Updated Clinical Management. Am J Med. 2022; 135(2): 173–178. https://doi.org/10.1016/j.amjmed.2021.07.038.
  • [13] World Health Organization. Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. 2022. p. 1–1. (accessed September 20, 2022).
  • [14] Yudhistira AW. Rainy season, there will be 13,776 cases of dengue fever in early 2022. https://databoks.katadata.co.id/datapublish/2022/03/01/musim-penghujan-terjadi-13776-kasus-dbd-pada-awal-2022. 2022. p. 1–1. (accessed September 20, 2022).
  • [15] Worldometer. COVID-19 Coronavirus Pandemic. https://www.worldometers.info/coronavirus/. 2022. p. 1–1. (accessed September 20, 2022).
  • [16] Indonesian Health Ministry. Distribution Map. https://covid19.go.id/peta-sebaran. 2022. p. 1–1. (accessed September 20, 2022).
  • [17] Odeigah LO, Mutalub YB, Agede OA, Obalowu IA, Aiyetoro S, Jimoh GAA. Adverse events following COVID-19 vaccination in Kwara State, North-central Nigeria. PLOS Glob Public Health. 2022;2(8):e0000835. https://doi.org/10.1371/journal.pgph.0000835.
  • [18] Bansal Y, Chand P, Bansal N, Singh P. Vaccine hesitancy after taking the first dose of COVID-19 vaccine: A challenge for the COVID-19 vaccination program in India. J Family Med Prim Care. 2022;11(5):2201-2206. https://doi.org/10.4103/jfmpc.jfmpc_2103_21.
  • [19] Lv H, Pan X, Liang H, Chen Y, Wang Y, Chen F, Shen L, Hu Y. A Comparison with Adverse Events Following Immunization Associated with Sabin-Strains and Salk-Strains Inactivated Polio Vaccines in Zhejiang Province, China. Vaccines (Basel). 2022;10(2):319. https://doi.org/10.3390/vaccines10020319.
  • [20] Danova J, Kocourkova A, Celko AM. Active surveillance study of adverse events following immunisation of children in the Czech Republic. BMC Public Health. 2017;17(1):167. https://doi.org/10.1186/s12889-017-4083-4.
  • [21] Health Research and Development Agency. Basic Health Research 2018. Health Research and Development Agency, Ministry of Health of the Republic of Indonesia. Jakarta; 2019. p. 128.
  • [22] Yin F, Liu Y, Guo H. Comparison between Ibuprofen and Acetaminophen in the Treatment of Infectious Fever in Children: A Meta-Analysis. J Healthc Eng. 2022;2022:1794258. doi: 10.1155/2022/1794258. Retraction in: J Healthc Eng. 2023;2023:9861957. https://doi.org/10.1155/2022/1794258.
  • [23] Tarabar S, Kelsh D, Vince B, Leyva R, Song D, Matschke K, Kellstein DE, Meeves S, Cruz-Rivera M. Phase I Pharmacokinetic Study of Fixed-Dose Combinations of Ibuprofen and Acetaminophen in Healthy Adult and Adolescent Populations. Drugs R D. 2020;20(1):23-37. https://doi.org/10.1007/s40268-020-00293-5.
  • [24] Ma LL, Liu HM, Luo CH, He YN, Wang F, Huang HZ, Han L, Yang M, Xu RC, Zhang DK. Fever and Antipyretic Supported by Traditional Chinese Medicine: A Multi-Pathway Regulation. Front Pharmacol. 2021;12:583279. https://doi.org/10.3389/fphar.2021.583279.
  • [25] Wu X, Li W, Qin Z, Xue L, Huang G, Luo Z, Chen Y. Traditional Chinese medicine as an adjunctive therapy for mild and common COVID-19. Medicine. 2021; 100(40): e27372. https://doi.org/10.1097/MD.0000000000027372.
  • [26] Rahayu AP, Tugon TDA. Herbal Medicines in Treating Typhoid Fever: Correlation of Information in Indonesia News Portals and Research Results. In: Proceedings of the 1st Paris Van Java International Seminar on Health, Economics, Social Science and Humanities (PVJ-ISHESSH 2020). Adv Soc Sci Educ Hum Res. 2021;427–429. https://doi.org/10.2991/assehr.k.210304.094.
  • [27] Gily P, Gulo Y, Lailani D, Soraya A, Wardhani FM, Nasution W. Analyze Effectiveness Extract of Worm Lumbricus rubellus and Pheretima Based on Bacteria Salmonella Typhi and Staphylococcus aureus. Int J Sci Eng Sci. 2020; 4(2):1–5. https://doi.org/10.5281/zenodo.3693855.
  • [28] Putu Gede Purwa Samatra D, Tjokorda G. B. M, Made Sukrama ID, Sucindra Dewi NW, Ka Praja R, Nurmansyah D, Widyadharma IPE. Extract of earthworms (Lumbricus rubellus) reduced malondialdehyde and 8-hydroxy-deoxyguanosine level in male Wistar rats ınfected by Salmonella typhi. Biomed Pharmacol J. 2017; 10(4): 1765–1771. https://doi.org/10.13005/bpj/1290.
  • [29] Ayuwardani N, Susilowati AA. Antibacterial Activity of Salmonella typhi in combination of earth-worms extract (Lumbricus rubellus) and turmeric rhizoma extract (Curcuma longa L.) in vitro. Aloha Int J Health Adv (AIJHA). 2019; 2(7): 165–169. https://doi.org/10.33846/aijha20703.
  • [30] Waluyo J, Wahyuni D. Antipyretic effects of dried earthworm (Pheretima Javanica K.) ın male white rat (Rattus Norvegicus) with typhoid fever. Int J Sci Technol Res. 2019; 8:8.
  • [31] Foekh NP, Sukrama IDM, Lestari AAW. The ability of earthworm Lumbricus rubellus extract in slowing down the activation of NFkB and TNF-α in lipopolysaccharide-induced Rattus norvegicus. Bali Med J. 2019; 8(2): 439–444. https://doi.org/10.15562/bmj.v8i2.1405.
  • [32] Kim K, Byun E-H. Immunological activity of Annelida (Lumbricus rubellus) water extracts. Resources Sci Res. 2019; 1(2): 58–65. https://doi.org/10.52346/rsr.2019.1.2.58.
  • [33] Syukri Y, Purwati R, Hazami N, Anshory Tahmid H, Fitria A. Standardization of specific and non-specific parameters of propolis extract as raw material for herbal product. EKSAKTA: J Sci Data Anal. 2020; 36–43. https://doi.org/10.20885/EKSAKTA.vol1.iss1.art6.
  • [34] Republic of Indonesian Food and Drug Supervisory Agency. Food and Drug Supervisory Agency Regulation Number 32 of 2019 concerning Safety and Quality Requirements for Traditional Medicines. Food and Drug Supervisory Agency Indonesian. 2019. p. 1–37.
  • [35] Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49(W1):W5-W14. https://doi.org/10.1093/nar/gkab255
  • [36] Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-13421. https://doi.org/10.3390/molecules200713384.
  • [37] OECD/OCDE. Oecd Guıdelıne For Testıng Of Chemıcals Acute Oral Toxicity-Fixed Dose Procedure INTRODUCTION. Paris; 2001 Dec.
  • [38] Coronas R, Bianco A, Niccolai M, Fancello F, Sanna AML, Asteggiano A, Medana C, Caboni P, Budroni M, Zara G. Polyphenolic Content and Antimicrobial Effects of Plant Extracts as Adjuncts for Craft Herbal Beer Stabilization. Foods. 2024;13(17):2804 https://doi.org/10.3390/foods13172804.
  • [39] Stagos D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants (Basel). 2019;9(1):19. https://doi.org/10.3390/antiox9010019.
  • [40] Muhammad N, Saeed M, Khan H. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant. BMC Complement Altern Med. 2012; 12: 59. https://doi.org/10.1186/1472-6882-12-59.
  • [41] Emon NU, Alam S, Rudra S, Haidar IKA, Farhad M, Rana MEH, Ganguly A. Antipyretic activity of Caesalpinia digyna (Rottl.) leaves extract along with phytoconstituent's binding affinity to COX-1, COX-2, and mPGES-1 receptors: In vivo and in silico approaches. Saudi J Biol Sci. 2021;28(9):5302-5309. https://doi.org/10.1016/j.sjbs.2021.05.050.
  • [42] Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4); 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007.
  • [43] Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020; 92(5): 479–490. https://doi.org/10.1002/jmv.25707.
  • [44] Zhang Q, Liu H, Zhang Y, Ruan H. The complete mitochondrial genome of Lumbricus rubellus (Oligochaeta, Lumbricidae) and its phylogenetic analysis. Mitochondrial DNA Part B. 2019; 4(2): 2677–2678. https://doi.org/10.1080/23802359.2019.1644242.
  • [45] Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary. Pharmacogenet Genomics. 2015; 25(8): 416–426. https://doi.org/10.1097/FPC.0000000000000150.
  • [46] Prajitha N, Athira SS, Mohanan PV. Comprehensive biology of antipyretic pathways. Cytokine. 2019; 116:120–127. https://doi.org/10.1016/j.cyto.2019.01.008.
  • [47] Engström Ruud L, Wilhelms DB, Eskilsson A, Vasilache AM, Elander L, Engblom D, Blomqvist A. Acetaminophen reduces lipopolysaccharide-induced fever by inhibiting cyclooxygenase-2. Neuropharmacology. 2013;71:124-129. https://doi.org/10.1016/j.neuropharm.2013.03.012.
  • [48] Rakib A, Ahmed S, Islam MA, Haye A, Uddin SMN, Uddin MMN, Hossain MK, Paul A, Emran TB. Antipyretic and hepatoprotective potential of Tinospora crispa and investigation of possible lead compounds through in silico approaches. Food Sci Nutr. 2019;8(1):547-556. https://doi.org/10.1002/fsn3.1339.
  • [49] Sholikhah EN, Mustofa M, Nugrahaningsih DAA, Yuliani FS, Purwono S, Sugiyono S, Widyarini S, Ngatidjan N, Jumina J, Santosa D, Koketsu M. Acute and Subchronic Oral Toxicity Study of Polyherbal Formulation Containing Allium sativum L., Terminalia bellirica (Gaertn.) Roxb., Curcuma aeruginosa Roxb., and Amomum compactum Sol. ex. Maton in Rats. Biomed Res Int. 2020;2020:8609364. https://doi.org/10.1155/2020/8609364.
  • [50] Walum E. Acute oral toxicity. Environ Health Perspect. 1998;106 Suppl 2(Suppl 2):497-503. https://doi.org/10.1289/ehp.98106497.
  • [51] Singh A, Ilango K. Acute and sub-chronic toxicity study of novel polyherbal formulation in non-alcoholic fatty liver using Wistar rats. Future Sci OA. 2024;10(1):FSO910. https://doi.org/10.2144/fsoa-2023-0118.
  • [52] Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016; 101; 89–98. https://doi.org/10.1016/j.addr.2016.05.007.
  • [53] Emon NU, Alam S, Rudra S, Riya SR, Paul A, Hossen SMM, Kulsum U, Ganguly A. Antidepressant, anxiolytic, antipyretic, and thrombolytic profiling of methanol extract of the aerial part of Piper nigrum: In vivo, in vitro, and in silico approaches. Food Sci Nutr. 2021;9(2):833-846. https://doi.org/10.1002/fsn3.2047.
  • [54] Republic of Indonesia Food and Drug Supervisory Agency. Food and Drug Supervisory Agency Regulation Number 18 of 2021 concerning Guidelines for Preclinical Pharmacodynamic Tests. Republic of Indonesia Food and Drug Supervisory Agency. 2021. p. 1–66.
  • [55] Indramari E. Antipyretic Effect of Lumbricus rubellus Earthworm Powder on Male White Rats (Rattus norvegicus) Wistar Strain Fever Due to DPT Vaccine. [Surabaya]: Universitas Surabaya; 2003 [cited 2023 Jun 30].
  • [56] Dangarembizi R, Erlwanger KH, Rummel C, Roth J, Madziva MT, Harden LM. Brewer’s yeast is a potent inducer of fever, sickness behavior and inflammation within the brain. Brain Behav Immun. 2018; 68:211–223. https://doi.org/10.1016/J.BBI.2017.10.019.
There are 56 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Iyan Hardiana 0000-0002-2914-1304

Elly Wahyudin 0000-0002-4602-787X

Muhammad Aswad 0000-0002-7420-2401

Rina Agustina 0000-0003-4315-757X

Submission Date December 23, 2024
Acceptance Date February 9, 2025
Publication Date January 11, 2026
Published in Issue Year 2026 Volume: 30 Issue: 1

Cite

APA Hardiana, I., Wahyudin, E., Aswad, M., & Agustina, R. (2026). Evaluating the efficacy and safety of Lumbricus rubellus extract as a natural antipyretic agent. Journal of Research in Pharmacy, 30(1), 341-356. https://doi.org/10.12991/jrespharm.1845195
AMA 1.Hardiana I, Wahyudin E, Aswad M, Agustina R. Evaluating the efficacy and safety of Lumbricus rubellus extract as a natural antipyretic agent. J. Res. Pharm. 2026;30(1):341-356. doi:10.12991/jrespharm.1845195
Chicago Hardiana, Iyan, Elly Wahyudin, Muhammad Aswad, and Rina Agustina. 2026. “Evaluating the Efficacy and Safety of Lumbricus Rubellus Extract As a Natural Antipyretic Agent”. Journal of Research in Pharmacy 30 (1): 341-56. https://doi.org/10.12991/jrespharm.1845195.
EndNote Hardiana I, Wahyudin E, Aswad M, Agustina R (January 1, 2026) Evaluating the efficacy and safety of Lumbricus rubellus extract as a natural antipyretic agent. Journal of Research in Pharmacy 30 1 341–356.
IEEE [1]I. Hardiana, E. Wahyudin, M. Aswad, and R. Agustina, “Evaluating the efficacy and safety of Lumbricus rubellus extract as a natural antipyretic agent”, J. Res. Pharm., vol. 30, no. 1, pp. 341–356, Jan. 2026, doi: 10.12991/jrespharm.1845195.
ISNAD Hardiana, Iyan - Wahyudin, Elly - Aswad, Muhammad - Agustina, Rina. “Evaluating the Efficacy and Safety of Lumbricus Rubellus Extract As a Natural Antipyretic Agent”. Journal of Research in Pharmacy 30/1 (January 1, 2026): 341-356. https://doi.org/10.12991/jrespharm.1845195.
JAMA 1.Hardiana I, Wahyudin E, Aswad M, Agustina R. Evaluating the efficacy and safety of Lumbricus rubellus extract as a natural antipyretic agent. J. Res. Pharm. 2026;30:341–356.
MLA Hardiana, Iyan, et al. “Evaluating the Efficacy and Safety of Lumbricus Rubellus Extract As a Natural Antipyretic Agent”. Journal of Research in Pharmacy, vol. 30, no. 1, Jan. 2026, pp. 341-56, doi:10.12991/jrespharm.1845195.
Vancouver 1.Hardiana I, Wahyudin E, Aswad M, Agustina R. Evaluating the efficacy and safety of Lumbricus rubellus extract as a natural antipyretic agent. J. Res. Pharm. [Internet]. 2026 Jan. 1;30(1):341-56. Available from: https://izlik.org/JA53NY43UD