Research Article
BibTex RIS Cite

In silico approach of gambier extract for Diabetes Mellitus and multivariate optimization of ultrasound-assisted extraction rich polyphenol using full factorial design

Year 2025, Volume: 29 Issue: 1, 190 - 209

Abstract

The gambier leaf from Uncaria gambir (W.Hunter) Roxb. is one of the promising natural agents as an antidiabetic candidate. Through an in silico approach, the study delves into the mechanisms of the extract's potential compounds, aiming to comprehend the molecular mechanisms underlying its antidiabetic activity. Additionally, an investigation was conducted to determine the most advantageous outcome of gambier leaf extract and the characteristics of the ideal extract. The extraction method used in the study was ultrasound-assisted extraction (UAE). Data analysis was done using a full factorial design 23 modeling approach. The extraction process involved three key factors: time, temperature, and material-solvent ratio. The observed responses included yield, total flavonoid content (TFC), and antioxidant activity (IC50). Optimal results for the gambier leaf extract were achieved with a 30-minute extraction duration at 50°C using a material-solvent ratio of 1:10, which resulted in an extract yield value of 11.87%; total flavonoid content of 467.51 mgCE/g and antioxidant activity value (IC50) of 66.01 µg/mL with a desirability value of 0.998. The optimal gambier leaf extract characteristics are a moisture content of 0.13% and a drying shrinkage of 0.15. The optimal extract has been demonstrated to contain phenolic compounds, flavonoids, and tannins. The validation results for the optimal extract condition obtained are 95% PI low and 95% PI high. Network pharmacology identified five compounds and three target proteins associated with gambier leaf in treating type 2 diabetes mellitus. Molecular docking analysis indicated that the interactions between SRC receptor and nicotiflorin, AKT1, and nicotiflorin, as well as TNF and procyanidin B2, have biological activity in treatment type 2 diabetes mellitus.

References

  • [1] Costa IS, Medeiros AF, Piuvezam G, Medeiros GC, Maciel BL, Morais AHAM. Insulin-like proteins in plant sources: A systematic review. Diabetes Metab Syndr Obes: Targets Ther. 2020; 13: 3421–3431. https://doi.org/10.2147/DMSO.S256883.
  • [2] Wang J, Ma Q, Li Y, Li P, Wang M, Wang T, Wang C, Wang T, Zhao B. Research progress on traditional chinese medicine syndromes of diabetes mellitus. Biomed Pharmacother. 2020; 121: 109565. https://doi.org/10.1016/j.biopha.2019.109565.
  • [3] Alqathama A, Alluhiabi G, Baghdadi H, Aljahani L, Khan O, Jabal S, Makkawi S, Alhomoud F. Herbal medicine from the perspective of type II diabetic patients and physicians: what is the relationship?. BMC Complementary Med Ther. 2020; 20(1): 65. https://doi.org/10.1186/s12906-020-2854-4.
  • [4] Yuniarti E, Ramadhani S. Effect of catechins Uncaria gambir Roxb. on blood sugar levels of Mus musculus L. hyperglycemia. Jurnal Penelitian Pendidikan IPA. 2023; 9(7):4917–4922. https://doi.org/10.29303/jppipa.v9i7.3476.
  • [5] Araujo NMP, Arruda HS, Paulo FD, Molina G, Pereira GA, Pastore GM. Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res Int. 2021; 142:110182 https://doi.org/10.1016/j.foodres.2021.110182.
  • [6] Saad MFM, Goh HH, Rajikan R, Yusof TRT, Baharum SN, Bunawan H. Uncaria gambir (W. Hunter) Roxb: From phytochemical composition to pharmacological importance. Trop J Pharm Res. 2020; 19(8): 1767-1773. http://doi.org/10.4314/tjpr.v19i8.28.
  • [7] Pratiwi G, Ramadhiani AR, Shiyan S. Understanding the combination of fractional factorial design and chemometrics analysis for screening super-saturable quercetin-self nano emulsifying components. Pharmacia. 2022; 69(2): 273–284. https://doi.org/10.3897/pharmacia.69.e80594.
  • [8] Apriani EF, Shiyan S, Starlista V, Febriani M. Factorial design for the optimization of clindamycin HCl-loaded ethosome with various concentrations of phospholipon 90g and ethanol. Res J Pharm Technol. 2023; 16(4): 1561 1568. https://doi.org/10.52711/0974-360X.2023.00255. [9] Abubecker MN, Deepalakshami T. In vitro antifungal potentials of bioactive compound methyl ester of hexadecanonic acid isolated from Annona muricata Linn. leaves. Biosci Biotechnol Res Asia. 2013; 10(2): 879-884. http://doi.org/10.13005/bbra/1211.
  • [10] Gonzalez-Gonzalez M, Yerena-Prieto BJ, Carrera C, Vázquez-Espinosa M, González-de-Peredo AV, García Alvarado MÁ, Palma M, Rodríguez-Jimenes GdC, Barbero GF. Optimization of an ultrasound-assisted extraction method for the extraction of gingerols and shogaols from ginger (Zingiber officinale). Agronomy. 2023; 13(7): 1787. https://doi.org/10.3390/agronomy13071787.
  • [11] Dey S, Rathod VK. Ultrasound assisted extractionof b-carotene from Spirulina platensis. Ultrason Sonochem. 2013; 20(1): 271-276. https://doi.org/10.1016/j.ultsonch.2012.05.010.
  • [12] Zou TB, Xia EQ, He TP, Huang MY, Jia Q, Li HW. Ultrasound assisted extraction of mangeferin from mango leaves using response surface methodology. https://doi.org/10.3390/molecules19021411. Molecules. 2014; 19(2): 1411-1421.
  • [13] Siddiqui SA, Redha AA, Salauddin M, Harahap IA, Rupasinghe HPV. Factors affecting the extraction of (poly)phenols from natural resources using deep eutectic solvents combined with ultrasound-assisted extraction. Crit Rev Anal Chem. 2023; 1-22. https://doi.org/10.1080/10408347.2023.2266846.
  • [14] Ntalikwa JW. Solvent extraction of jatropha oil for biodiesel production: Effects of solvent-to-solid ratio, particle size, type of solvent, extraction time, and temperature on oil yield. J Renew Energy. 2021; 2021: 1-8. https://doi.org/10.1155/2021/9221168.
  • [15] Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018; 13(1): 20. https://doi.org/10.1186%2Fs13020-018-0177-x.
  • [16] Che Sulaiman IS, Basri M, Fard MHR, Chee WJ, Ashari SE, Ismail M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem Cent J. 2017; 11: 54. https://doi.org/10.1186/s13065-017-0285-1.
  • [17] Fitri S, Anggraini DR, Ichwan M. Effects of gambir leaves extract (Uncaria gambir Roxb.) in preventing the aging process inducted D-galactose on pancreas mice. IOP Conf Ser: Earth Environ Sci. 2020; 425(1): 12-21. http://doi.org/10.1088/1755-1315/425/1/012021.
  • [18] Nandika D, Syamsu K, Arinana A, Kusumawardani DT, Fitriana Y. Bioactivities of catechin from Gambir (Uncaria gambir Roxb.) against wood-decaying fungi. BioResources. 2019; 14(3): 5646-5656. http://doi.org/10.15376/biores.14.3.5646-5656.
  • [19] Hadwan, M.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018; 19(1): 7. https://doi.org/10.1186/s12858-018-0097-5.
  • [20] Handayani V, Syarif RA, Najib A, Ahmad AR. Standardization and bacteria inhibitory test of purified extract of mahogany (Swietenia mahagoni (L.) Jacq.) seeds and leaves. Int J Res Pharm Sci. 2019; 10(3): 2132–2138. http://doi.org/10.13140/RG.2.2.14579.17444.
  • [21] Zhao Y, Yang C, Qu F, Li K, Yang J, Wu Z. Mechanical properties and drying shrinkage of alkali-activated coal gangue concrete. Sustainability. 2022; 14(22): 14736. https://doi.org/10.3390/su142214736.
  • [22] Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O. Mass spectral databases for LC/MS-and GC/MS-based metabolomics: State of the field and future prospects. TrAC, Trends Anal Chem. 2016; 78: 23-35. http://doi.org/10.1016/j.trac.2015.09.005.
  • [23] Moreau RA. Composition of plant sterols and stanols in supplemented food products. J AOAC Int. 2015; 98(3): 685 690. http://doi.org/10.5740/jaoacint.SGEMoreau.
  • [24] Iqbal M, Kurniawan RV, Nurfani HDW, Roestamadji RI, Luthfi M, Setyowati D, Setijanto RD, Surboyo MDC. Molecular docking analysis of major active compounds of pomegranate peel extract (Punica granatum L.) in inhibiting cyclooxygenase enzyme. World J Adv Res Rev. 2023; 20(3): 1824-1842. https://doi.org/10.30574/wjarr.2023.20.3.2653.
  • [25] Chen J, Ning C, Mu J, Li D, Ma Y, Meng X. Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem. 2021; 476(5): 2219-2232. https://doi.org/10.1007/s11010-021-04086-5.
  • [26] Adeshara K, G Diwan A, S Tupe R. Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies. Curr Drug Targets. 2016; 17(11): 1309-1328. http://doi.org/10.2174/138945011766615120912400.
  • [27] Sandeep, Ahmad MH, Rani L, Mondal AC. Convergent molecular pathways in type 2 diabetes mellitus and Parkinson’s disease: Insights into mechanisms and pathological consequences. Mol Neurobiol. 2022; 59(7): 4466 4487. https://doi.org/10.1007/s12035-022-02867-7.
  • [28] He Q, Bo J, Shen R, Li Y, Zhang Y, Zhang J, Yang J, Liu Y. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J Diabetes Res. 2021;2021:1341750. http://doi.org/10.1155/2021/1341750.
  • [29] Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked?. J Biomed Sci. 2016; 23(1): 87. http://doi.org/10.1186/s12929-016-0303-y. [30] Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev. 2020;2020:8609213. http://doi.org/10.1155/2020/8609213.
  • [31] Feng J, Zhou Y, Liao L, Yu L, Yuan P, Zhang J. Network Pharmacology and Transcriptomics Reveal the Mechanism of GuaLouQuMaiWan in Treatment of Type 2 Diabetes and Its Active Small Molecular Compound. J Diabetes Res. 2022;2022:2736504. https://doi.org/10.1155/2022/2736504.
  • [32] Draznin B. Molecular mechanisms of insulin resistance. 2020; Humana Press. NYC. USA https://doi.org/10.1007/978-3-030-25057-7_4.
  • [33] Negi P, Cheke RS, Patil, VM. Recent advances in pharmacological diversification of Src family kinase inhibitors. Egypt J Med Hum Genet. 2021; 22(1): 1-16. http://doi.org/10.1186/s43042-021-00172-x.
  • [34] Wang YG, Mu ZP, Li CQ, Lv WS, Wang B, Jing ZH, Ma XL. Association between tumor necrosis factor-α and diabetic peripheral neuropathy in patients with type 2 diabetes: a meta-analysis. Mol Neurobiol. 2017; 54: 983-996. https://doi.org/10.1007/s12035-016-9702-z.
  • [35] Koliaki C, Katsilambros N. Repositioning the role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the TRAIL to the development of diabetes mellitus: An update of experimental and clinical evidence. Int J Mol Sc. 2022; 23(6): 3225. https://doi.org/10.3390/ijms23063225.
  • [36] Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010; 140(6): 900-917. https://doi.org/10.1016/j.cell.2010.02.034.
  • [37] Świderska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Śliwińska A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. IntechOpen. 2018; 1: 1-18. https://doi.org/10.5772/intechopen.80402.
  • [38] Lu M, Wang Y, Jiang Y, Zhang C, Wang H, Sha W, Chen L, Lei T, Liu L. Berberine inhibits gluconeogenesis in spontaneous diabetic rats by regulating the AKT/MAPK/NO/cGMP/PKG signaling pathway. Mol Cell Biochem. 2023; 478(9): 2013-2027. https://doi.org/10.1007/s11010-022-04604-z.
  • [39] Tan Y, Tam CC, Rolston M, Alves P, Chen L, Meng S, Hong H, Chang SKC, Yokoyama W. Quercetin ameliorates insulin resistance and restores gut microbiome in mice on high-fat diets. Antioxidants (Basel). 2021; 10(8): 1251. https://doi.org/10.3390/antiox10081251.
  • [40] Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, inflammation and immunity. Nutrients. 2016; 8(3): 167. https://doi.org/10.3390/nu8030167.
  • [41] Tabrizi FPF, Hajizadeh-Sharafabad F, Vaezi M, Jafari-Vayghan H, Alizadeh M, Maleki V. Quercetin and polycystic ovary syndrome, current evidence and future directions: A systematic review. J Ovarian Res. 2020; 13(1): 11. https://doi.org/10.1186/s13048-020-0616-z.
  • [42] Zhou M, Konigsberg WH, Hao C, Pan Y, Sun J, Wang X. Bioactivity and mechanisms of flavonoids in decreasing insulin resistance. J Enzyme Inhib Med Chem. 2023; 38(1): 2199168. https://doi.org/10.1080/14756366.2023.2199168.
  • [43] Chung E, Elmassry MM, Kottapalli P, Kottapalli KR, Kaur G, Dufour JM, Wright K, Ramalingam L, Moustaid Moussa N, Wang R, Hamood AN, Shen CL. Metabolic benefits of annatto-extracted tocotrienol on glucose homeostasis, inflammation, and gut microbiome. Nutr Res. 2020; 77: 97-107. https://doi.org/10.1016/j.nutres.2020.04.001.
  • [44] Ellulu MS, Samouda H. Clinical and biological risk factors associated with inflammation in patients with type 2 diabetes mellitus. BMC Endocr Disord. 2022; 22(1): 16. https://doi.org/10.1186/s12902-021-00925-0.
  • [45] Xu Y, Tang G, Zhang C, Wang N, Feng Y. Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules. 2021; 26(23): 7115. https://doi.org/10.3390/molecules26237115.
  • [46] Wen L, Wu D, Tan X, Zhong M, Xing J, Li W, Li D, Cao F. The role of catechins in regulating diabetes: An update review. Nutrients. 2022; 14(21): 4681. https://doi.org/10.3390/nu14214681.
  • [47] Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006; 38(11): 1289-1297. https://doi.org/10.1038/ng1901.
  • [48] Borisov DV, Veselovsky AV. Ligand-receptor binding kinetics in drug design. Biomed Khim. 2020; 66(1): 42-53. Russian. https://doi.org/10.18097/PBMC20206601042.
  • [49] Kasahara K, Kinoshita K. GIANT: pattern analysis of molecular interactions in 3D structures of protein-small ligand complexes. BMC Bioinformatics. 2014; 15: 12. https://doi.org/10.1186/1471-2105-15-12.
  • [50] Liu YY, Yu LH, Zhang J, Xie DJ, Zhang XX, Yu JM. Network pharmacology-based and molecular docking-based analysis of suanzaoren decoction for the treatment of parkinson's disease with sleep disorder. Biomed Res Int. 2021; 2021: 1752570. https://doi.org/10.1155/2021/1752570.
  • [51] Supiati, S. The quality of cream formulated from gambier leaf extract. IOP Publishing. 2022; 1024(1): 012010. https://doi.org/10.1088/1755-1315/1024/1/012010.
  • [52] Pramanik F, Satari MH, Azhari A. Cytotoxic activity of gambier leave (Uncaria gambir) ethyl acetate extract on mouse embryonic fibroblast cell (NIH-3T3) using MTT assay. Open Dent J. 2023; 17. https://doi.org/10.2174/18742106-v17-e230109-2022-78.
  • [53] Ismail AS, Rizal Y, Armenia A, Kasim A. Determination of the best method for processing gambier liquid byproduct [Uncaria gambir (hunter) roxb] as natural antioxidant sources. J Indones Trop Anim Agric. 2021; 46(2). https://doi.org/10.14710/jitaa.46.2.166-172.
  • [54] Ayeni AO, Agboola O, Oladokun O, Ayoola AA, Elehinafe F, Edith A, Sika M, Azeta O. Effective moisture diffusivity and mathematical modeling of the drying process for cassava stalk biomass. In: Bioenergy and Biochemical Processing Technologies. 2022. https://doi.org/10.1007/978-3-030-96721-5_1.
  • [55] Švecová H, Vojs Staňová A, Klement A, Kodešová R, Grabic R. LC-HRMS method for study of pharmaceutical uptake in plants: effect of pH under aeroponic condition. Environ Sci Pollut Res Int. 2023;30(42):96219-96230. https://doi.org/10.1007/s11356-023-29035-1.
  • [56] Puspitasari YE, Alfikri MA, Sitanggang R, Tambunan JE. In silico analysis of phenolic compounds from Ceriops decandra griff. leaves and molecular interaction as anti diabetes. Sci Technol Indones. 2023; 8(4): 542-553. https://doi.org/10.26554/sti.2023.8.4.542-553.
  • [57] Viena V, Nizar M. α-Glucosidase inhibitory activity of ethanolic extract gambier (Uncaria gambier Roxb) from Southeast Aceh as antidiabetes. In Proceedings Multidisciplinary and Applications. 2018. https://doi.org/10.4108/eai.20-1-2018.2282446.
  • [58] Munggari IP, Kurnia D, Deawati Y, Julaeha E. Current research of phytochemical, medicinal and non-medicinal uses of Uncaria gambir Roxb.: A Review. Molecules. 2022; 27(19): 6551. https://doi.org/10.3390/molecules27196551.
  • [59] Baildya N, Khan AA, Ghosh NN, Dutta T, Chattopadhyay AP. Screening of potential drug from Azadirachta indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J Mol Struct. 2021; 1227: 129390. https://doi.org/10.1016/j.molstruc.2020.129390.
  • [60] Khan A, Liaqat A, Masood A, Ali SS, Ali L, Alshammari A, Alasmari AF, Mohammad A, Waheed Y, Wei DQ. Exploring the medicinal potential of dark chemical matters (DCM) to design promising inhibitors for PLpro of SARS-CoV-2 using molecular screening and simulation approaches. Saudi Pharm J. 2023; 31(10): 101775. https://doi.org/10.1016/j.jsps.2023.101775.
There are 58 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Shaum Shiyan

Indah Solihah This is me

Athirah Azelia Marsya This is me

Galih Pratiwi This is me

Sri Handayani This is me

Joko Tri Wibowo

Hermansyah Hermansyah This is me

Laras Novitasari This is me

Puguh Indrasetiawan This is me

Susilawati Susilawati This is me

Publication Date
Submission Date February 11, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Shiyan, S., Solihah, I., Marsya, A. A., Pratiwi, G., et al. (n.d.). In silico approach of gambier extract for Diabetes Mellitus and multivariate optimization of ultrasound-assisted extraction rich polyphenol using full factorial design. Journal of Research in Pharmacy, 29(1), 190-209.
AMA Shiyan S, Solihah I, Marsya AA, Pratiwi G, Handayani S, Wibowo JT, Hermansyah H, Novitasari L, Indrasetiawan P, Susilawati S. In silico approach of gambier extract for Diabetes Mellitus and multivariate optimization of ultrasound-assisted extraction rich polyphenol using full factorial design. J. Res. Pharm. 29(1):190-209.
Chicago Shiyan, Shaum, Indah Solihah, Athirah Azelia Marsya, Galih Pratiwi, Sri Handayani, Joko Tri Wibowo, Hermansyah Hermansyah, Laras Novitasari, Puguh Indrasetiawan, and Susilawati Susilawati. “In Silico Approach of Gambier Extract for Diabetes Mellitus and Multivariate Optimization of Ultrasound-Assisted Extraction Rich Polyphenol Using Full Factorial Design”. Journal of Research in Pharmacy 29, no. 1 n.d.: 190-209.
EndNote Shiyan S, Solihah I, Marsya AA, Pratiwi G, Handayani S, Wibowo JT, Hermansyah H, Novitasari L, Indrasetiawan P, Susilawati S In silico approach of gambier extract for Diabetes Mellitus and multivariate optimization of ultrasound-assisted extraction rich polyphenol using full factorial design. Journal of Research in Pharmacy 29 1 190–209.
IEEE S. Shiyan, “In silico approach of gambier extract for Diabetes Mellitus and multivariate optimization of ultrasound-assisted extraction rich polyphenol using full factorial design”, J. Res. Pharm., vol. 29, no. 1, pp. 190–209.
ISNAD Shiyan, Shaum et al. “In Silico Approach of Gambier Extract for Diabetes Mellitus and Multivariate Optimization of Ultrasound-Assisted Extraction Rich Polyphenol Using Full Factorial Design”. Journal of Research in Pharmacy 29/1 (n.d.), 190-209.
JAMA Shiyan S, Solihah I, Marsya AA, Pratiwi G, Handayani S, Wibowo JT, Hermansyah H, Novitasari L, Indrasetiawan P, Susilawati S. In silico approach of gambier extract for Diabetes Mellitus and multivariate optimization of ultrasound-assisted extraction rich polyphenol using full factorial design. J. Res. Pharm.;29:190–209.
MLA Shiyan, Shaum et al. “In Silico Approach of Gambier Extract for Diabetes Mellitus and Multivariate Optimization of Ultrasound-Assisted Extraction Rich Polyphenol Using Full Factorial Design”. Journal of Research in Pharmacy, vol. 29, no. 1, pp. 190-09.
Vancouver Shiyan S, Solihah I, Marsya AA, Pratiwi G, Handayani S, Wibowo JT, Hermansyah H, Novitasari L, Indrasetiawan P, Susilawati S. In silico approach of gambier extract for Diabetes Mellitus and multivariate optimization of ultrasound-assisted extraction rich polyphenol using full factorial design. J. Res. Pharm. 29(1):190-209.