Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 4, 1732 - 1745, 05.07.2025
https://doi.org/10.12991/jrespharm.1734720

Abstract

References

  • [1] Jordan SA, Cunningham DG, Marles RJ. Assessment of herbal medicinal products : Challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol Appl Pharmacol. 2010; 243(2): 198 216. http://dx.doi.org/10.1016/j.taap.2009.12.005.
  • [2] Pandey M, Debnath M, Gupta S, Chikara SK. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J Pharmacogn Phytother. 2011; 3(3): 27–37.
  • [3] Ruparel P, Lockwood B. The quality of commercially available herbal products. Nat Prod Commun. 2011; 6(5): 733–744. https://doi.org/10.1177/1934578X1100600529.
  • [4] Applequist WL, Miller JS. Selection and authentication of botanical materials for the development of analytical methods. Anal Bioanal Chem. 2013; 405: 4419–4428. https://doi.org/10.1007/s00216-012-6595-6601.
  • [5] Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira ICFR. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2014; 170: 378–385.
  • [6] Pacifico S, Piccolella S, Lettieri A, Nocera P, Bollino F, Catauro M. A metabolic profiling approach to an Italian sage leaf extract (SoA541) defines its antioxidant and anti-acetylcholinesterase properties. J Funct Foods. 2017; 29: 1–9. http://dx.doi.org/10.1016/j.jff.2016.11.031.
  • [7] Zeković Z, Pintać D, Majkić T, Vidović S, Mimica-Dukić N, Teslić N, Versari A, Pavlić B. Utilization of sage by products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Ind Crops Prod. 2017; 99: 49–59. https://doi.org/10.1016/j.indcrop.2017.01.028.
  • [8] Mekinić IG, Skroza D, Ljubenkov I, Šimat V, Možina SS, Katalinić V. In vitro antioxidant and antibacterial activity of Lamiaceae phenolic extracts: A correlation study. Food Technol Biotechnol. 2014; 52(1): 119–127.
  • [9] Sharopov F, Valiev A, Sobeh M, Arnold E, Winka M. Bioactivity of three salvia species in relation to their total phenolic and flavonoid contents. Pharm Chem J. 2018; 52(7): 596–600. https://doi.org/10.1007/s11094-018 1866-6.
  • [10] Fecka I, Turek S. Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, melissa, and sage. J Agric Food Chem. 2007; 55(26): 10908–10917.
  • [11] Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan AC. Characterization of phenolic composition in lamiaceae spices by LC-ESI-MS/MS. J Agric Food Chem. 2010; 58(19): 10576–10581. https://doi.org/10.1021/jf102042g.
  • [12] Park JB. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. Int J Food Sci Nutr. 2011; 62(6): 577 584. https://doi.org/10.3109/09637486.2011.562882.
  • [13] Rababah TM, Ereifej KI, Esoh RB, Al-U’Datt MH, Alrababah MA, Yang W.Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat Prod Res. 2011; 25(6): 596–605. https://doi.org/10.1080/14786419.2010.488232.
  • [14] Zimmermann BF, Walch SG, Tinzoh LN, Stühlinger W, Lachenmeier DW. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J Chromatogr B Anal Technol Biomed Life Sci. 2011; 879(24): 2459–264. https://doi.org/10.1016/j.jchromb.2011.06.038.
  • [15] Dragović-Uzelac V, Garofulić IE, Jukić M, Penić M, Dent M. The influence of microwave-assisted extraction on the isolation of sage (Salvia officinalis L.) Polyphenols. Food Technol Biotechnol. 2012; 50(3): 377–383.
  • [16] Cvetkovikj I, Stefkov G, Acevska J, Stanoeva JP, Karapandzova M, Stefova M, Dimitrovska A, Kulevanova S. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J Chromatogr. 2013; 1282: 38–45. http://dx.doi.org/10.1016/j.chroma.2012.12.068.
  • [17] Dent M, Dragović-Uzelac V, Penić M, Brñić M, Bosiljkov T, Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol Biotechnol. 2013; 51(1): 84–91.
  • [18] Hamrouni-Sellami I, Rahali FZ, Rebey IB, Bourgou S, Limam F, Marzouk B. Total phenolics, flavonoids, and antioxidant sctivity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioprocess Technol. 2013; 6(3): 806–817. https://doi.org/10.1007/s11947-012-0877-7.
  • [19] Roby MHH, Sarhan MA, Selim KAH, Khalel KI. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod. 2013; 43(1): 827–831. http://dx.doi.org/10.1016/j.indcrop.2012.08.029.
  • [20] Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J Func Foods. 2015; 18: 820–897. http://dx.doi.org/10.1016/j.jff.2015.06.018.
  • [21] Celano R, Piccinelli AL, Pagano I, Roscigno G, Campone L, De Falco E, Russo M., Rastrelli L. Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Res Int. 2017; 99: 298 307. http://dx.doi.org/10.1016/j.foodres.2017.05.036.
  • [22] Milevskaya VV, Temerdashev ZA, Butyl’skaya TS, Kiseleva NV. Determination of phenolic compounds in medicinal plants from the Lamiaceae family. J Anal Chem. 2017; 72(3): 342–348.
  • [23] Fotovvat M, Radjabian T, Saboora A. HPLC fingerprint of important phenolic compounds in some Salvia L. species from Iran. Rec Nat Prod. 2019; 13(1): 37–49. https://doi.org/10.25135/rnp.72.18.02.228.
  • [24] Chaudhari VS, Borkar RM, Murty US, Banerjee S. Analytical method development and validation of reverse phase high-performance liquid chromatography (RP-HPLC) method for simultaneous quantifications of quercetin and piperine in dual-drug loaded nanostructured lipid carriers. J Pharm Biomed Anal. 2020; 186: 113325. https://doi.org/10.1016/j.jpba.2020.113325.
  • [25] Bilia AR, Eterno F, Bergonzi MC, Mazzi G, Vincieri FF. Evaluation of the content and stability of the constituents of mother tinctures and tinctures : The case of Crataegus oxyacantha. J Pharm Biomed Anal. 2007; 44: 70–78. https://doi.org/10.1016/j.jpba.2007.01.046.
  • [26] Pferschy-Wenzig EM, Bauer R. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav. 2015; 42: 344–362. https://doi.org/10.1016/j.yebeh.2015.05.037.
  • [27] Brown PN, Chan M, Betz JM. Optimization and single-laboratory validation study of a high-performance liquid chromatography (HPLC) method for the determination of phenolic Echinacea constituents. Anal Bioanal Chem. 2010; 397(5): 1883–1892. https://doi.org/10.1007/s00216-010-3763-z.
  • [28] Steinmann D, Ganzera M. Recent advances on HPLC/MS in medicinal plant analysis. J Pharm Biomed. 2011; 25: 744–757. http://dx.doi.org/10.1016/j.jpba.2010.11.015.
  • [29] Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010; 2(12): 1231–1246. https://doi.org/10.3390/nu2121231.
  • [30] Gray MJ, Chang D, Zhang Y, Liu J, Bensoussan A. Development of liquid chromatography/mass spectrometry methods for the quantitative analysis of herbal medicine in biological fluids: A review. Biomed Chromatogr. 2010; 24: 91–103. https://doi.org/10.1002/bmc.1287.
  • [31] Dobrinas S, Stanciu G, Lupsor S. Total phenolic content and HPLC characterization of some culinary herbs. J Sci Arts. 2017; 2(2): 321–330.
  • [32] Lu W, Bennett BD, Rabinowitz JD. Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B. 2008; 871(2): 236–242. https://doi.org/10.1016/j.jchromb.2008.04.031.
  • [33] Want EJ, Cravatt BF, Siuzdak G. The expanding role of mass spectrometry in metabolite profiling and characterization. ChemBioChem. 2005; 6(11): 1941-1951. https://doi.org/10.1002/cbic.200500151.
  • [34] Generalić I, Skroza D, Surjak J, Možina SS, Ljubenkov I, Katalinić A, Simat V, Katalinić V. Seasonal variations of phenolic compounds and biological properties in sage (Salvia officinalis L.). Chem Biodivers. 2012; 9(2): 441 457. https://doi.org/10.1002/cbdv.201100219.
  • [35] Kaplan O, Bezouška K, Plíhal O, Ettrich R, Kulik N, Vaněk O, Kavan D, Benada O. , Malandra A, Šveda O, Veselá AB, Rinágelová A , Slámová K, Cantarella M, Felsberg J, Dušková J, Dohnálek J, Kotik M, Křen V, Martínková L. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10. BMC Biotechnol. 2011; 11: 1–15.
  • [36] Huang DL, Wang RZ, Liu YG, Zeng GM, Lai C, Xu P, Lu BA, Xu JJ, Wang C, Huang C. Application of molecularly imprinted polymers in wastewater treatment: a review. Environ Sci Pollut Res. 2015; 22(2): 963–977. https://doi.org/10.1007/s11356-014-3599-8.
  • [37] Bardakci H, Celep E, Gözet T, Kan Y, KH. Phytochemical characterization and antioxidant activities of the fruit extracts of several Crataegus taxa. S Afr J Bot. 2019; 124: 5–13. https://doi.org/10.1016/j.sajb.2019.04.012.
  • [38] Martínez-Cruz O, Paredes-López O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J Chromatogr A. 2014; 1346: 43–48. http://dx.doi.org/10.1016/j.chroma.2014.04.007.
  • [39] Generalić I, Skroza D, Ljubenkov I, Katalinić A, Burčul F, Katalinić V. Influence of the phenophase on the phenolic profile and antioxidant properties of Dalmatian sage. Food Chem. 2011; 127(2): 427–433. https://doi.org/10.1016/j.foodchem.2011.01.013.
  • [40] Liu H, Liang JP, Li PB, Peng W, Peng YY, Zhang GM, Xie C, Long C, Su W. Core bioactive components promoting blood circulation in the traditional chinese medicine compound xueshuantong capsule (CXC) based on the relevance analysis between chemical HPLC fingerprint and in vivo biological effects. PLoS One. 2014; 9(11):e112675. https://doi.org/10.1371/journal.pone.0112675.
  • [41] Brown PN, Paley LA, Roman MC, Chan M. Single-laboratory validation of a method for the detection and/or quantification of select alkaloids in goldenseal supplements and raw materials by reversed-phase high performance liquid chromatography. Pharm Biol. 2008; 46(12): 135–144. https://doi.org/10.1080/13880200701735171.
  • [42] Betz JM, Brown PN, Roman MC. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia. 2011; 82: 44–52. http://dx.doi.org/10.1016/j.fitote.2010.09.011.
  • [43] Brown PN, Lister P. Current initiatives for the validation of analytical methods for botanicals. Curr Opin Biotec. 2014; 25: 124–128. http://dx.doi.org/10.1016/j.copbio.2013.10.003.
  • [44] Mudge E, Paley L, Schieber A, Brown PN. Optimization and single-laboratory validation of a method for the determination of flavonolignans in milk thistle seeds by high-performance liquid chromatography with ultraviolet detection. Anal Bioanal Chem. 2015; 407(25): 7657–7666. https://doi.org/10.1007/s00216-015-8925-6.
  • [45] Mudge EM, Brown PN. Determination of mitragynine in Mitragyna speciosa raw materials and finished products by liquid chromatography with UV detection: Single-laboratory validation. J AOAC Int. 2017; 100(1): 18–24. https://doi.org/10.5740/jaoacint.16-0220.
  • [46] Li B, Zhang C, Peng L, Liang Z, Yan X, Zhu Y, Li Y. Comparison of essential oil composition and phenolic acid content of selected Salvia species measured by GC-MS and HPLC methods. Ind Crops Prod. 2015; 69: 329–334. http://dx.doi.org/10.1016/j.indcrop.2015.02.047.
  • [47] Brown PN, Mudge EM, Paley L. Determination of phenolic constituents in echinacea raw materials and dietary supplements by HPLC-UV: Collaborative study. J AOAC Int. 2016; 99(5): 1197–203. https://doi.org/10.1093/jaoacint/qsad089.
  • [48] Mudge E, Applequist WL, Finley J, Lister P, Townesmith AK, Walker KM, Brown P. Variation of select flavonols and chlorogenic acid content of elderberry collected throughout the Eastern United States. J Food Compos Anal. 2016; 47: 52–59. http://dx.doi.org/10.1016/j.jfca.2015.12.003.

UHPLC-DAD method development and validation for simultaneous quantification of 7 phenolic compounds in dietary supplements of sage capsulesa

Year 2025, Volume: 29 Issue: 4, 1732 - 1745, 05.07.2025
https://doi.org/10.12991/jrespharm.1734720

Abstract

The content of the dietary supplements of capsules generated from extracts of medicinal plants in terms of bioactive compounds may not be known. The aim of this study is to do method development and validation for quantification of the phenolic compounds (chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid luteolin-7-o-glucoside, and rosmarinic acid) in capsules of dietary sage (Salvia officinalis) supplements by ultra-high performance liquid chromatography with diode array detector (UHPLC-DAD) to facilitate the quality control. Mobile phase gradient method is optimized in reverse UHPLC mode using aqueous acetonitrile as the mobile and C18 (50*2.1 mm, 1.8 µm) as the stationary phase. Quantitation was done by signal specific integration using diode array detector (DAD). Total run time is 18 minutes. Separation of the phenolic compounds were at 35 °C by employing gradient elution of water: trifluoroacetic acid (100:0.1, v/v) and acetonitrile: water: trifluoroacetic acid (95:5:0.1, v/v/v) as mobile phase A and B, respectively at a flow rate of 0.5 ml/min. The method showed good linearity with correlation coefficient (r2) that varied between 0.9993 and 0.9997. Limit of detection (LOD) and limit of quantification (LOQ) values were 1.97-18.77 and 6.58-62.56 mg/ml, respectively. Recovery (%) were between 90% and 114% for capsule matrix for all compounds at all levels except for ferulic acid and luteolin-7-o-glucoside. The method is suitable for application in quality control laboratories because of the short run time and simultaneous analysis of phenolic compounds in dietary supplements of sage capsules.a

References

  • [1] Jordan SA, Cunningham DG, Marles RJ. Assessment of herbal medicinal products : Challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol Appl Pharmacol. 2010; 243(2): 198 216. http://dx.doi.org/10.1016/j.taap.2009.12.005.
  • [2] Pandey M, Debnath M, Gupta S, Chikara SK. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J Pharmacogn Phytother. 2011; 3(3): 27–37.
  • [3] Ruparel P, Lockwood B. The quality of commercially available herbal products. Nat Prod Commun. 2011; 6(5): 733–744. https://doi.org/10.1177/1934578X1100600529.
  • [4] Applequist WL, Miller JS. Selection and authentication of botanical materials for the development of analytical methods. Anal Bioanal Chem. 2013; 405: 4419–4428. https://doi.org/10.1007/s00216-012-6595-6601.
  • [5] Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira ICFR. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2014; 170: 378–385.
  • [6] Pacifico S, Piccolella S, Lettieri A, Nocera P, Bollino F, Catauro M. A metabolic profiling approach to an Italian sage leaf extract (SoA541) defines its antioxidant and anti-acetylcholinesterase properties. J Funct Foods. 2017; 29: 1–9. http://dx.doi.org/10.1016/j.jff.2016.11.031.
  • [7] Zeković Z, Pintać D, Majkić T, Vidović S, Mimica-Dukić N, Teslić N, Versari A, Pavlić B. Utilization of sage by products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Ind Crops Prod. 2017; 99: 49–59. https://doi.org/10.1016/j.indcrop.2017.01.028.
  • [8] Mekinić IG, Skroza D, Ljubenkov I, Šimat V, Možina SS, Katalinić V. In vitro antioxidant and antibacterial activity of Lamiaceae phenolic extracts: A correlation study. Food Technol Biotechnol. 2014; 52(1): 119–127.
  • [9] Sharopov F, Valiev A, Sobeh M, Arnold E, Winka M. Bioactivity of three salvia species in relation to their total phenolic and flavonoid contents. Pharm Chem J. 2018; 52(7): 596–600. https://doi.org/10.1007/s11094-018 1866-6.
  • [10] Fecka I, Turek S. Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, melissa, and sage. J Agric Food Chem. 2007; 55(26): 10908–10917.
  • [11] Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan AC. Characterization of phenolic composition in lamiaceae spices by LC-ESI-MS/MS. J Agric Food Chem. 2010; 58(19): 10576–10581. https://doi.org/10.1021/jf102042g.
  • [12] Park JB. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. Int J Food Sci Nutr. 2011; 62(6): 577 584. https://doi.org/10.3109/09637486.2011.562882.
  • [13] Rababah TM, Ereifej KI, Esoh RB, Al-U’Datt MH, Alrababah MA, Yang W.Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat Prod Res. 2011; 25(6): 596–605. https://doi.org/10.1080/14786419.2010.488232.
  • [14] Zimmermann BF, Walch SG, Tinzoh LN, Stühlinger W, Lachenmeier DW. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J Chromatogr B Anal Technol Biomed Life Sci. 2011; 879(24): 2459–264. https://doi.org/10.1016/j.jchromb.2011.06.038.
  • [15] Dragović-Uzelac V, Garofulić IE, Jukić M, Penić M, Dent M. The influence of microwave-assisted extraction on the isolation of sage (Salvia officinalis L.) Polyphenols. Food Technol Biotechnol. 2012; 50(3): 377–383.
  • [16] Cvetkovikj I, Stefkov G, Acevska J, Stanoeva JP, Karapandzova M, Stefova M, Dimitrovska A, Kulevanova S. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J Chromatogr. 2013; 1282: 38–45. http://dx.doi.org/10.1016/j.chroma.2012.12.068.
  • [17] Dent M, Dragović-Uzelac V, Penić M, Brñić M, Bosiljkov T, Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol Biotechnol. 2013; 51(1): 84–91.
  • [18] Hamrouni-Sellami I, Rahali FZ, Rebey IB, Bourgou S, Limam F, Marzouk B. Total phenolics, flavonoids, and antioxidant sctivity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioprocess Technol. 2013; 6(3): 806–817. https://doi.org/10.1007/s11947-012-0877-7.
  • [19] Roby MHH, Sarhan MA, Selim KAH, Khalel KI. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod. 2013; 43(1): 827–831. http://dx.doi.org/10.1016/j.indcrop.2012.08.029.
  • [20] Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J Func Foods. 2015; 18: 820–897. http://dx.doi.org/10.1016/j.jff.2015.06.018.
  • [21] Celano R, Piccinelli AL, Pagano I, Roscigno G, Campone L, De Falco E, Russo M., Rastrelli L. Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Res Int. 2017; 99: 298 307. http://dx.doi.org/10.1016/j.foodres.2017.05.036.
  • [22] Milevskaya VV, Temerdashev ZA, Butyl’skaya TS, Kiseleva NV. Determination of phenolic compounds in medicinal plants from the Lamiaceae family. J Anal Chem. 2017; 72(3): 342–348.
  • [23] Fotovvat M, Radjabian T, Saboora A. HPLC fingerprint of important phenolic compounds in some Salvia L. species from Iran. Rec Nat Prod. 2019; 13(1): 37–49. https://doi.org/10.25135/rnp.72.18.02.228.
  • [24] Chaudhari VS, Borkar RM, Murty US, Banerjee S. Analytical method development and validation of reverse phase high-performance liquid chromatography (RP-HPLC) method for simultaneous quantifications of quercetin and piperine in dual-drug loaded nanostructured lipid carriers. J Pharm Biomed Anal. 2020; 186: 113325. https://doi.org/10.1016/j.jpba.2020.113325.
  • [25] Bilia AR, Eterno F, Bergonzi MC, Mazzi G, Vincieri FF. Evaluation of the content and stability of the constituents of mother tinctures and tinctures : The case of Crataegus oxyacantha. J Pharm Biomed Anal. 2007; 44: 70–78. https://doi.org/10.1016/j.jpba.2007.01.046.
  • [26] Pferschy-Wenzig EM, Bauer R. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav. 2015; 42: 344–362. https://doi.org/10.1016/j.yebeh.2015.05.037.
  • [27] Brown PN, Chan M, Betz JM. Optimization and single-laboratory validation study of a high-performance liquid chromatography (HPLC) method for the determination of phenolic Echinacea constituents. Anal Bioanal Chem. 2010; 397(5): 1883–1892. https://doi.org/10.1007/s00216-010-3763-z.
  • [28] Steinmann D, Ganzera M. Recent advances on HPLC/MS in medicinal plant analysis. J Pharm Biomed. 2011; 25: 744–757. http://dx.doi.org/10.1016/j.jpba.2010.11.015.
  • [29] Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010; 2(12): 1231–1246. https://doi.org/10.3390/nu2121231.
  • [30] Gray MJ, Chang D, Zhang Y, Liu J, Bensoussan A. Development of liquid chromatography/mass spectrometry methods for the quantitative analysis of herbal medicine in biological fluids: A review. Biomed Chromatogr. 2010; 24: 91–103. https://doi.org/10.1002/bmc.1287.
  • [31] Dobrinas S, Stanciu G, Lupsor S. Total phenolic content and HPLC characterization of some culinary herbs. J Sci Arts. 2017; 2(2): 321–330.
  • [32] Lu W, Bennett BD, Rabinowitz JD. Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B. 2008; 871(2): 236–242. https://doi.org/10.1016/j.jchromb.2008.04.031.
  • [33] Want EJ, Cravatt BF, Siuzdak G. The expanding role of mass spectrometry in metabolite profiling and characterization. ChemBioChem. 2005; 6(11): 1941-1951. https://doi.org/10.1002/cbic.200500151.
  • [34] Generalić I, Skroza D, Surjak J, Možina SS, Ljubenkov I, Katalinić A, Simat V, Katalinić V. Seasonal variations of phenolic compounds and biological properties in sage (Salvia officinalis L.). Chem Biodivers. 2012; 9(2): 441 457. https://doi.org/10.1002/cbdv.201100219.
  • [35] Kaplan O, Bezouška K, Plíhal O, Ettrich R, Kulik N, Vaněk O, Kavan D, Benada O. , Malandra A, Šveda O, Veselá AB, Rinágelová A , Slámová K, Cantarella M, Felsberg J, Dušková J, Dohnálek J, Kotik M, Křen V, Martínková L. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10. BMC Biotechnol. 2011; 11: 1–15.
  • [36] Huang DL, Wang RZ, Liu YG, Zeng GM, Lai C, Xu P, Lu BA, Xu JJ, Wang C, Huang C. Application of molecularly imprinted polymers in wastewater treatment: a review. Environ Sci Pollut Res. 2015; 22(2): 963–977. https://doi.org/10.1007/s11356-014-3599-8.
  • [37] Bardakci H, Celep E, Gözet T, Kan Y, KH. Phytochemical characterization and antioxidant activities of the fruit extracts of several Crataegus taxa. S Afr J Bot. 2019; 124: 5–13. https://doi.org/10.1016/j.sajb.2019.04.012.
  • [38] Martínez-Cruz O, Paredes-López O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J Chromatogr A. 2014; 1346: 43–48. http://dx.doi.org/10.1016/j.chroma.2014.04.007.
  • [39] Generalić I, Skroza D, Ljubenkov I, Katalinić A, Burčul F, Katalinić V. Influence of the phenophase on the phenolic profile and antioxidant properties of Dalmatian sage. Food Chem. 2011; 127(2): 427–433. https://doi.org/10.1016/j.foodchem.2011.01.013.
  • [40] Liu H, Liang JP, Li PB, Peng W, Peng YY, Zhang GM, Xie C, Long C, Su W. Core bioactive components promoting blood circulation in the traditional chinese medicine compound xueshuantong capsule (CXC) based on the relevance analysis between chemical HPLC fingerprint and in vivo biological effects. PLoS One. 2014; 9(11):e112675. https://doi.org/10.1371/journal.pone.0112675.
  • [41] Brown PN, Paley LA, Roman MC, Chan M. Single-laboratory validation of a method for the detection and/or quantification of select alkaloids in goldenseal supplements and raw materials by reversed-phase high performance liquid chromatography. Pharm Biol. 2008; 46(12): 135–144. https://doi.org/10.1080/13880200701735171.
  • [42] Betz JM, Brown PN, Roman MC. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia. 2011; 82: 44–52. http://dx.doi.org/10.1016/j.fitote.2010.09.011.
  • [43] Brown PN, Lister P. Current initiatives for the validation of analytical methods for botanicals. Curr Opin Biotec. 2014; 25: 124–128. http://dx.doi.org/10.1016/j.copbio.2013.10.003.
  • [44] Mudge E, Paley L, Schieber A, Brown PN. Optimization and single-laboratory validation of a method for the determination of flavonolignans in milk thistle seeds by high-performance liquid chromatography with ultraviolet detection. Anal Bioanal Chem. 2015; 407(25): 7657–7666. https://doi.org/10.1007/s00216-015-8925-6.
  • [45] Mudge EM, Brown PN. Determination of mitragynine in Mitragyna speciosa raw materials and finished products by liquid chromatography with UV detection: Single-laboratory validation. J AOAC Int. 2017; 100(1): 18–24. https://doi.org/10.5740/jaoacint.16-0220.
  • [46] Li B, Zhang C, Peng L, Liang Z, Yan X, Zhu Y, Li Y. Comparison of essential oil composition and phenolic acid content of selected Salvia species measured by GC-MS and HPLC methods. Ind Crops Prod. 2015; 69: 329–334. http://dx.doi.org/10.1016/j.indcrop.2015.02.047.
  • [47] Brown PN, Mudge EM, Paley L. Determination of phenolic constituents in echinacea raw materials and dietary supplements by HPLC-UV: Collaborative study. J AOAC Int. 2016; 99(5): 1197–203. https://doi.org/10.1093/jaoacint/qsad089.
  • [48] Mudge E, Applequist WL, Finley J, Lister P, Townesmith AK, Walker KM, Brown P. Variation of select flavonols and chlorogenic acid content of elderberry collected throughout the Eastern United States. J Food Compos Anal. 2016; 47: 52–59. http://dx.doi.org/10.1016/j.jfca.2015.12.003.
There are 48 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Analytical Chemistry
Journal Section Research Article
Authors

Tuba Gozet

Athar Alkhidhri This is me

Publication Date July 5, 2025
Submission Date July 10, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Gozet, T., & Alkhidhri, A. (2025). UHPLC-DAD method development and validation for simultaneous quantification of 7 phenolic compounds in dietary supplements of sage capsulesa. Journal of Research in Pharmacy, 29(4), 1732-1745. https://doi.org/10.12991/jrespharm.1734720
AMA Gozet T, Alkhidhri A. UHPLC-DAD method development and validation for simultaneous quantification of 7 phenolic compounds in dietary supplements of sage capsulesa. J. Res. Pharm. July 2025;29(4):1732-1745. doi:10.12991/jrespharm.1734720
Chicago Gozet, Tuba, and Athar Alkhidhri. “UHPLC-DAD Method Development and Validation for Simultaneous Quantification of 7 Phenolic Compounds in Dietary Supplements of Sage Capsulesa”. Journal of Research in Pharmacy 29, no. 4 (July 2025): 1732-45. https://doi.org/10.12991/jrespharm.1734720.
EndNote Gozet T, Alkhidhri A (July 1, 2025) UHPLC-DAD method development and validation for simultaneous quantification of 7 phenolic compounds in dietary supplements of sage capsulesa. Journal of Research in Pharmacy 29 4 1732–1745.
IEEE T. Gozet and A. Alkhidhri, “UHPLC-DAD method development and validation for simultaneous quantification of 7 phenolic compounds in dietary supplements of sage capsulesa”, J. Res. Pharm., vol. 29, no. 4, pp. 1732–1745, 2025, doi: 10.12991/jrespharm.1734720.
ISNAD Gozet, Tuba - Alkhidhri, Athar. “UHPLC-DAD Method Development and Validation for Simultaneous Quantification of 7 Phenolic Compounds in Dietary Supplements of Sage Capsulesa”. Journal of Research in Pharmacy 29/4 (July2025), 1732-1745. https://doi.org/10.12991/jrespharm.1734720.
JAMA Gozet T, Alkhidhri A. UHPLC-DAD method development and validation for simultaneous quantification of 7 phenolic compounds in dietary supplements of sage capsulesa. J. Res. Pharm. 2025;29:1732–1745.
MLA Gozet, Tuba and Athar Alkhidhri. “UHPLC-DAD Method Development and Validation for Simultaneous Quantification of 7 Phenolic Compounds in Dietary Supplements of Sage Capsulesa”. Journal of Research in Pharmacy, vol. 29, no. 4, 2025, pp. 1732-45, doi:10.12991/jrespharm.1734720.
Vancouver Gozet T, Alkhidhri A. UHPLC-DAD method development and validation for simultaneous quantification of 7 phenolic compounds in dietary supplements of sage capsulesa. J. Res. Pharm. 2025;29(4):1732-45.