Research Article
BibTex RIS Cite

Secondary metabolites of endophytic Pseudomonas aeruginosa XGDE 7 from Mangrove Xylocarpus granatum J. Koenig : Antibacterial, antibiofilm, and antioxidant activities

Year 2025, Volume: 29 Issue: 6, 2633 - 2642, 02.11.2025
https://doi.org/10.12991/jrespharm.1798454

Abstract

Xylocarpus granatum is a true mangrove species that belongs to Meliaceae family. X.granatum serves
limonoids compounds commonly utilized by coastal communities as traditional medicine. This study is designed to
investigate antioxidant, antibacterial, and antibiofilm activities of bioactive compounds produced by associated
endophytic bacteria isolated from X.granatum leaves. The endophytic bacteria isolate XGDE 7 was obtained from the
collection of microbiology laboratory, Department of Biology, University of Bengkulu. Based on 16sRNA analysis, this
isolate is closely related to P.aeruginosa strain BSP12 with similarity of 99.82 %. The antibacterial activity using pellet
and supernatant exhibited that the widest inhibition zone diameters were found in inhibiting Bacillus subtilis (7.93 ± 0.42
mm; 3.70 ± 0.16 mm ). Furthermore, the largest clear zone using crude extract was shown against Escherhicia.coli (12.29
± 0.50 mm). The lowest MIC of XGDE 7 was found on Eenterococcus faecalis (15.62 µg/ml) and the highest MIC was on
Stapylococcus aures (62.50 µg/ml). As for MBC, XGDE 7 isolate showed the lowest activity on E.faecalis (31.25 µg/ml),
while the highest was observed on MBC S. aureus (125 µg/ml). Antibiofilm activity of XGDE 7 extract S.aureus, B.subtilis,
E.coli and E.faecalis effectively inhibited at a concentration range of 2 x MIC with inhibition range of 80.10±0.5 to 74.79 ±
0.1%. Meanwhile, the antioxidant activity using DPPH method exhibited lC50 of 49.25 µg/ml. GC-MS analysis revealed
various bioactive compounds; Cyclo (L-prolyl-L-valine), Hexadecanoic acid, methyl ester, Pyrrolo[1,2-a]pyrazine-1,4-
dione, hexahydro-3-(2-methylpropyl), 9-octadecenoic acid (z)-,methyl ester, 10-Octadecenoic acid,methyl ester, 2,5-
Piperazinedione, 3,6-bis (2-methylpropyl), and Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3(phenylmethyl).

References

  • Zhu H, Zeng W, Chen M, He D, Cheng X, Yu J, Liu Y, Wu Y, Yang D. Endophytic Fungal Diversity of Mangrove Ferns Acrostichum speciosum and A. aureum in China. Plants (Basel). 2024;13(5):685. https://doi.org/10.3390/plants13050685.
  • Simlai A, Roy A. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview. Pharmacogn Rev. 2013; 7(14): 170-178. https://doi.org/10.4103/0973-7847.120518.
  • Rahmawati SI, Izzati FN, Hapsari Y, Septiana E, Rachman F, Bustanussalam, Simanjuntak, P. Endophytic microbes and antioxidant activities of secondary metabolites from mangroves Avicennia marina and Xylocarpus granatum. In: IOP Conf Ser: Earth Environ Sci. 2019; 278: 1- 10. https://doi.org/10.1088/1755-1315/278/1/012065.
  • Dey D, Quispe C, Hossain R, Jain D, Ahmed KR, Janmeda P, Islam MT, Ansar RSH, Martorell M, Daştan SD, Kumar M, Taheri Y, Petkoska AT, Sharifi-Rad J. Ethnomedicinal use, phytochemistry, and pharmacology of Xylocarpus granatum J. Koenig. eCAM. 2021; 2021(1): 1-16. https://doi.org/10.1155/2021/8922196.
  • Wu Y, Bai Y, Guo X, Qi J, Dong M, Sauriol F, Shi Q, Gu Y, Huo C. A new limonoids from Xylocarpus granatum. J. Chem Nat Compd. 2014; 50(2): 314-316. http://doi.org/10.1007/s10600-014-0940-x.
  • Tundis R, Loizzo MR, Menichini F. An overview on chemical aspects and potential health benefifits of limonoids and their derivatives. Crit Rev Food Sci Nutr. 2014; 54 (2) : 225–250. https://doi.org/10.1080/10408398.2011.581400.
  • Miliute I, Buzaite O, Baniulis D, Stanys V. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture. 2015; 102(4): 465-478. https://doi.org/10.13080/z-a.2015.102.060.
  • Pramono H, Irawan NR, Firdaus MRA, Sudarno, Sulmartiwi L, Mubarak AS. Bacterial endophytes from manggrove leaves with antibacterial and enzymatic activities. Malasyian J Microbiol. 2019; 15(7): 543-553.
  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019; 221: 36-49. https://doi.org/10.1016/j.micres.2019.02.001.
  • Nursyam H, Prihanto AA. Molecular Identification of Mangrove Endophytic Bacteria Rizhopora mucronata Producing Gelatinase (MMP2). J Pengolah Has Perikan Indones. 2018; 21: 143-147. https://doi.org/10.17844/jphpi.v21i1.21537.
  • Jiang Z, Tuo L, Huang D, Osterman IA, Tyurin AP, Liu S, Lukyanov DA, Sergiev PV, Donstova OA, Korshun VA, Li F, Sun C. Diversity, novelty, and antimicrobial activity of endophytic Actinobacteria from Mangrove plants in Beilun Estuary National Nature Reserve of Guangxi, China. Front Microbiol. 2018; 8:868. https://doi.org/10.3389/fmicb.2018.00868
  • Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P. The endophytic symbiont—Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera l. Front Microbiol. 2017; 8: 1897. https://doi.org/10.3389/fmicb.2017.01897.
  • Khan M S, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth promoting properties. Plos One. 2022; 17(6) : 1-22. https://doi.org/10.1371/journal.pone.0269640.
  • Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340. https://doi.org/10.3390/molecules25061340
  • Lay BW, Hastowo S. Microbiology. PT Raja Grafindo Persada. Jakarta. 1992.
  • Mohinudeen K, Devan K, Srivastava S. Secondary metabolite of plant growing promoting rhizo microorganism. İn : Singh HB, Keswani C, Reddy MS, Sansinenea E, Estrada CG. (Eds). Bioprocessing of endophytes for production of high-value biochemicals. Springer Nature Singapore Pte Ltd., Singapore, 2019, pp.353-354.
  • Asghar SF, Rehman H, Choudahry MI, Rahman A. Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extract of Iris germanica . Int J Genet Mol Biol. 2011; 3(7): 95– 100. https://doi.org/10.5897/IJGMB.9000024.
  • Tangjitjaroenkun J. Evaluation of antioxidant, antibacterial, and gas chromatography-mass spectrometry analysis of ethyl acetate extract of Streptomyces omiyaensis SCH2. Asian J Pharm Clin Res. 2018; 11(7): 271- 276. http://doi.org/10.22159/ajpcr.2018.v11i7.25692.
  • Chaudhary S, Chandrashekar KS, Pai KSR, Setty MM, Devkar RA, Reddy ND, and Shoja MH. Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complement Altern Med. 2015; 15: 50. https://doi.org/10.1186/s12906-015-0563-1.
  • Chi CF, Wang B, Wang YM, Zhang B, Deng SG. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J Funct Foods. 2014; 12:20150. https://doi.org/10.1016/j.jff.2014.10.027.
  • Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity,and determination of bioactive components from leaves of Aegle marmelos. Biomed Res Int. 2014; 2014: 497606. https://doi.org/10.1155/2014/497606.
  • Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021; 2021 : 557-568. https://doi.org/10.1002/jobm.202100061.
  • Mohamad OA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front. Microbiol. 2018; 9: 9240. https://doi.org/10.3389/fmicb.2018.00924.
  • Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: a review on formation, ınfection, antibiotic resistance, control measures, and ınnovative treatment. Microoganisms. 2023; 11: 1614. https://doi.org/10.3390/microorganisms11061614.
  • Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavalah M, Xiangmin L. Bacterial biofilm ınhibition: a focused review on recent therapeutic strategies for combating the biofilm mediated ınfections. Front Microbiol. 2021; 12: 676458. https://doi.org/10.3389/fmicb.2021.676458.
  • Michael, Wataurangi DE. Antibiofilm activity from endophyte bacteria, Vibrio cholerae strains, and actinomycetes isolates in liquid and solid culture. BMC Microbiol. 2023; 23: 83. https://doi.org/10.1186/s12866-023-02829-6.
  • Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of ction. Virulence. 2018;9(1):522–554. https://doi.org/10.1080/21505594.2017.1313372.
  • Wang JH, Yang CY, Fang ST, Lu J, Quan CH. Inhibition of biofilm in Bacillus amyloliquefaciens Q-426 by diketopiperazines. World J Microbiol Biotechnol. 2016; 32: 143. https://doi.org/10.1007/s11274-016-2106-4.
  • Qi SH, Xu Y, Gao J, Qian PY, Zhang S. Antibacterial and antilarval compounds from marine bacterium Pseudomonas rhizosphaerae. Ann Microbiol 2009; 59(2): 229–233. https://doi.org/10.1007/BF03178321.
  • Kwak MK, Liu R, Kim MK, Moon D, Kim AH, Song SH, Kang SO. Cyclic dipeptides from lactic acid bacteria ınhibit the proliferation of pathogenic fungi. J Microbiol. 2014; 52(1) : 64-70. https://doi.org/10.1007/s12275-014-3520-7.
  • Tafolla LS, Padron JM, Mendoza G, Rodriguez ML, Fernadez JJ, Norte M, Trigos A. Antiproliferative activity of biomass extract from Pseudomonas cedrina. E- J Biotechnol. 2019; 40 : 40-44. https://doi.org/10.1016/j.ejbt.2019.03.010.
  • Zheng L, Yan X, Xu J. Hymeniacidon perleve associated bioactive bacterium Pseudomonas sp. NJ6-3-1. Appl Biochem Microbiol. 2005; 41(1):29–33. http://doi.org/10.1007/s10438-005-0006-8.
  • Yang EJ, Chang HC. Purification of anew antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol. 2010; 139(1-2): 56–63. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012.
  • Druzian SP, Pinheiro LN, Susin NMB, Pra VD, Mazutti MA, Kuhn RC, Marsillac LD. Production of metabolites with antioxidant activity by Botryosphaeria dothidea in submerged fermentation. Bioprocess Biosyst Eng. 2020; 43: 13-20. https://doi.org/10.1007/s00449-019-02200-y.
  • Sanjenbam P, Gopal JV, Kannabiran K. Isolation and identification of anticandidal compound from Streptomyces sp. VITPK9. J Appl Biochem Microbiol. 2014; 50(5): 492-499. https://doi.org/10.1007/s00449-019-02200-y.
  • Awla HK, Kadir J, Othman R, Rashid TS, Wong MY. 2016. Bioactive compounds produced by Streptomyces sp. isolate UPMRS4 and antifungal activity against Pyricularia oryzae. Am J Plant Sci. 2016; 7(7): 1077–1085. http://doi.org/10.4236/ajps.2016.77103.
  • Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4- dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 2018; 8(32): 17837–17846. https://doi.org/10.1039%2Fc8ra00820e.
  • Tamura K, Stecher G, Peterson D, Filipski A. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30 (12): 2725-2729. https://doi.org/10.1093/molbev/mst197.
  • Wibowo RH, Sipriyadi, Darwis W, Putri DA, Yudha S, Mashudi, Ilsan NA, Renta PP. Isolation, Characterization and indentification of sponge-associated bacteria producing antimicrobial compounds. Biodiversitas. 2023; 24(6): 3616- 3623. https://doi.org/10.13057/biodiv/d240662.
  • Priyanto JA, Priyanto JA, Astuti RI, Nomura J, Wahyudi AT. Bioactive compounds from sponge associated bacteria: Anticancer activity and NRPS-PKS gene expression in different carbon sources. Am J Biochem Biotech. 2017; 13(4): 148-156. https://doi.org/10.3844/ajbbsp.2017.148.156.
  • Diale MO, Aswa EU, Serepa-Dlamini MH. The antibacterial activity of bacterial endophytes isolated from Combretum mole. Afr J Biotech. 2018; 17(8): 255–262. https://doi.org/10.5897/AJB2017.16349.
  • NCCLS (National Committee for Clinical Laboratory Standard), Performance Standard for Antimicrobial Susceptibility Testing. Ninth informational supplement. 30th ed. NCCLS, Malvern 2020.
  • Septama AW, Chiara MA, Turnip G, Tasfiyati AN, Dewi RT, Sianipar EA, Jaisi A. Essential oil Zingiber cassumunar Roxb. and Zingiber officinale Rosc.: A comparative study on chemical constituents, antibacterial activity, biofilm formation and ınhibition of Pseudomonas aeruginosa Qoarum Sensing System. Chem Biodivers. 2023 ;20(6):e202201205. https://doi.org/10.1002/cbdv.202201205.
  • Prastya ME, Astuti RI, Batubara I, Takagi H, Wahyudi AT. Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe. FEMS Yeast Res. 2020;20(3):foaa014. https://doi.org/10.1093/femsyr/foaa014.
  • Wahyudi AT, Priyanto JA, Wulandari DR, Astuti RK. In vitro antibacterial activities of marine sponge-associated bacteria againts pathogenic Vibrio Spp. causes vibriosis in shrimps. Int J Pharm Pharm Sci. 2019; 11(11): 33-37. http://.doi.org/10.22159/ijpps.2019v11i11.34814
There are 45 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Thoriqul Hıdayah 0009-0005-2719-3046

Risky Hadı Wıbowo 0000-0002-5917-4625

Abdi Wira Septama 0000-0002-6471-7735

Sipriyadi Sipriyadi 0000-0003-1042-2576

Morina Adfa 0000-0002-7944-3992

Muhammad Eka Prastya This is me 0000-0003-2500-1264

Eddy Sukmawinata 0000-0002-8749-0270

Muskhazli Mustafa This is me 0000-0002-4545-487X

Eliza Farestiani This is me 0009-0000-2460-2231

Publication Date November 2, 2025
Submission Date November 14, 2024
Acceptance Date January 11, 2025
Published in Issue Year 2025 Volume: 29 Issue: 6

Cite

APA Hıdayah, T., Hadı Wıbowo, R., Septama, A. W., … Sipriyadi, S. (2025). Secondary metabolites of endophytic Pseudomonas aeruginosa XGDE 7 from Mangrove Xylocarpus granatum J. Koenig : Antibacterial, antibiofilm, and antioxidant activities. Journal of Research in Pharmacy, 29(6), 2633-2642. https://doi.org/10.12991/jrespharm.1798454
AMA Hıdayah T, Hadı Wıbowo R, Septama AW, et al. Secondary metabolites of endophytic Pseudomonas aeruginosa XGDE 7 from Mangrove Xylocarpus granatum J. Koenig : Antibacterial, antibiofilm, and antioxidant activities. J. Res. Pharm. November 2025;29(6):2633-2642. doi:10.12991/jrespharm.1798454
Chicago Hıdayah, Thoriqul, Risky Hadı Wıbowo, Abdi Wira Septama, Sipriyadi Sipriyadi, Morina Adfa, Muhammad Eka Prastya, Eddy Sukmawinata, Muskhazli Mustafa, and Eliza Farestiani. “Secondary Metabolites of Endophytic Pseudomonas Aeruginosa XGDE 7 from Mangrove Xylocarpus Granatum J. Koenig : Antibacterial, Antibiofilm, and Antioxidant Activities”. Journal of Research in Pharmacy 29, no. 6 (November 2025): 2633-42. https://doi.org/10.12991/jrespharm.1798454.
EndNote Hıdayah T, Hadı Wıbowo R, Septama AW, Sipriyadi S, Adfa M, Prastya ME, Sukmawinata E, Mustafa M, Farestiani E (November 1, 2025) Secondary metabolites of endophytic Pseudomonas aeruginosa XGDE 7 from Mangrove Xylocarpus granatum J. Koenig : Antibacterial, antibiofilm, and antioxidant activities. Journal of Research in Pharmacy 29 6 2633–2642.
IEEE T. Hıdayah, R. Hadı Wıbowo, A. W. Septama, S. Sipriyadi, M. Adfa, M. E. Prastya, E. Sukmawinata, M. Mustafa, and E. Farestiani, “Secondary metabolites of endophytic Pseudomonas aeruginosa XGDE 7 from Mangrove Xylocarpus granatum J. Koenig : Antibacterial, antibiofilm, and antioxidant activities”, J. Res. Pharm., vol. 29, no. 6, pp. 2633–2642, 2025, doi: 10.12991/jrespharm.1798454.
ISNAD Hıdayah, Thoriqul et al. “Secondary Metabolites of Endophytic Pseudomonas Aeruginosa XGDE 7 from Mangrove Xylocarpus Granatum J. Koenig : Antibacterial, Antibiofilm, and Antioxidant Activities”. Journal of Research in Pharmacy 29/6 (November2025), 2633-2642. https://doi.org/10.12991/jrespharm.1798454.
JAMA Hıdayah T, Hadı Wıbowo R, Septama AW, Sipriyadi S, Adfa M, Prastya ME, Sukmawinata E, Mustafa M, Farestiani E. Secondary metabolites of endophytic Pseudomonas aeruginosa XGDE 7 from Mangrove Xylocarpus granatum J. Koenig : Antibacterial, antibiofilm, and antioxidant activities. J. Res. Pharm. 2025;29:2633–2642.
MLA Hıdayah, Thoriqul et al. “Secondary Metabolites of Endophytic Pseudomonas Aeruginosa XGDE 7 from Mangrove Xylocarpus Granatum J. Koenig : Antibacterial, Antibiofilm, and Antioxidant Activities”. Journal of Research in Pharmacy, vol. 29, no. 6, 2025, pp. 2633-42, doi:10.12991/jrespharm.1798454.
Vancouver Hıdayah T, Hadı Wıbowo R, Septama AW, Sipriyadi S, Adfa M, Prastya ME, et al. Secondary metabolites of endophytic Pseudomonas aeruginosa XGDE 7 from Mangrove Xylocarpus granatum J. Koenig : Antibacterial, antibiofilm, and antioxidant activities. J. Res. Pharm. 2025;29(6):2633-42.